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Abstract

We present ALFRED: a virtual memory abstraction that resolves
the dichotomy between volatile and non-volatile memory in in-
termittent computing. Mixed-volatile microcontrollers allow pro-
grammers to allocate part of the application state onto non-volatile
main memory. Programmers are therefore to explore manually the
trade-off between simpler management of persistent state against
the energy overhead for non-volatile memory operations and inter-
mittence anomalies due to re-execution of non-idempotent code.
This approach is laborious and yields sub-optimal performance. We
take a different stand with ALFRED: we provide programmers with
a virtual memory abstraction detached from the specific volatile na-
ture of memory and automatically determine an efficient mapping
from virtual to volatile or non-volatile memory. Unlike existing
works, ALFRED does not require programmers to learn a new pro-
gramming model or language syntax, while the mapping is entirely
resolved at compile-time, reducing the run-time energy overhead.
We implement ALFRED through a series of program machine-level
code transformations. Compared to existing systems, we demon-
strate thatALFRED reduces energy consumption by up to two orders
of magnitude given a fixed workload. This enables the workloads
to finish sooner, as the use of available energy shifts from ensuring
forward progress to useful application processing.

1 Introduction

Ambient energy harvesting [10] enables deployments of battery-
less sensing devices [1, 20, 23, 27, 47, 49], reducing environment
impact and maintenance costs. However, harvested energy is erratic
and generally not sufficient to power devices continuously. Devices
thus experience frequent power failures that cause executions to
become intermittent, with periods of active operation interleaved by
periods where the device is off recharging its energy buffers. Power
failures cause devices to shut down and lose the program state,
restarting all over again when energy is newly available. Forward
progress of programs is therefore compromised.
Problem. Several systems exist to ensure forward progress, as we
discuss in Sec. 2. Common to these solutions is the insertion of
state-saving operations within the execution flow. A state-saving
operation offers the opportunity to create a replica of the program
state, including main memory, register files, and program counter,
onto non-volatile memory. The program state is eventually restored
from non-volatile memory when power returns, ensuring forward
progress across power failures. The placement of state-saving oper-
ations in the program may be either decided in a (semi-)automatic
fashion [7, 8, 11, 29, 36, 45, 48] or implicitly determined by program-
mers with custom programming abstractions [16, 34, 35, 43, 46, 51].

Mixed-volatile microcontroller platforms also exist, which offer
the ability to store slices of the program state directly to non-volatile

memory. This is achieved using specific pragma statements when
declaring a variable, as in [28]:

#pragma PERSISTENT(x)
unsigned int x = 5;

Program state allocated on non-volatile memory is automatically
retained across power failures and may be excluded from state-
saving operations, simplifying the management of persistent state.

Using mixed-volatile microcontroller platforms comes at the
cost of increased energy consumption: non-volatile memory oper-
ations may require up to 247% the energy of their volatile coun-
terpart [28, 40]. Storing only parts of the program state on non-
volatile memory may also yield intermittence anomalies [42, 44],
which require further energy to be corrected. These occur when
non-idempotent code is re-executed that manipulates variables on
non-volatile memory, producing results that are different than a
continuous execution. Using mixed-volatile platforms, quantifying
the advantages in simpler management of persistent state against
the corresponding energy overhead is complex, as these depend on
factors including energy patterns and execution flow.
ALFRED.We take a different stand. Rather than requiring program-
mers to manually determine when to use non-volatile memory for
what slice of the program state, we promote a higher-level of ab-
straction through a concept of virtual memory. Programmers write
intermittent code without explicitly mapping variables to volatile or
non-volatile memory. Given a placement of state-saving operations
in the code, we automatically decide what slice of the program state
must be allocated onto non-volatile memory, and at what point in
the execution. Programmers are therefore relieved from deciding
the mapping between program state and memory. Moreover, the
mapping is not fixed at variable level, but is automatically adjusted

at different places in the code for the same data item, based on
read/write patterns and program structure.

ALFRED1 is our implementation of virtual memory for intermit-
tent computing, based on two key features:

(1) it is transparent to programmers: no dedicated syntax is to
be learned, and programmers write code in the familiar se-
quential manner without the need to tag variables.

(2) the mapping from virtual to volatile or non-volatile mem-
ory is entirely resolved at compile-time, reducing the energy
overhead that represents the cost of using the abstraction.

The virtual memory abstraction we conceive does not provide
virtualization in the same sense as mainstream OSes. Instead, it
offers an abstraction that shields programmers from the need to stat-
ically determine a specific memory allocation schema. ALFRED is
therefore sharply different compared tomainstream virtual memory
systems [5, 19]. These usually provide an idealized abstraction of
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storage resources, so that software processes operate as if they had
access to a contiguous memory area, possibly even larger than the
one physically available. Address translation hardware maps virtual
addresses to physical addresses at run-time. In ALFRED, we target
resource-constrained energy-harvesting devices that compute in-
termittently [23]. The abstraction we offer provides programmers
with a higher-level view on the persistency properties of different
memory areas, and automatically determines the mapping from
the virtual memory to the volatile or non-volatile one. Because of
resource constraints, we determine this mapping at compile-time.

ALFRED determines this mapping using three key program trans-
formation techniques, illustrated in Sec. 3. Their ultimate goal is
simple, yet challenging to achieve, especially at compile-time:

Use the energy-efficient volatile memory as much as possible,

while enabling forward progress using non-volatile memory

with reduced energy consumption compared to existing solutions.

This entails that we need to promote the use of volatile memory
whenever convenient, for example, to compute intermediate results
or to store temporary data that need not survive a power failure,
while reallocating the data that does require to be persistent onto
non-volatile memory in anticipation of a possible power failure.
By doing so, we decrease energy consumption by taking the best
of both worlds: we benefit from the lower energy consumption of
volatile memory whenever possible, and rely on the persistency
features of non-volatile memory whenever required.

Applying program transformations at compile-time is, however,
challenging because of the lack of run-time information. Sec. 4 illus-
trates how we address the uncertainty that may correspondingly
arises, using a set of dedicated program normalization passes. The
result of the transformations require a specific memory layout to
operate correctly and a solution to the intermittence anomalies
that possibly arise. We describe in Sec. 5 how we deal with these
issues, using an approach that is co-designed with our program
transformation techniques.

We build a prototype implementation of ALFRED based on ScEp-
TIC [38, 42], an extensible open-source emulation environment for
intermittent programs. Given fixed workloads generated from sta-
ple benchmarks in the field [7, 8, 26, 29, 42, 45, 48], we measure AL-
FRED performance in energy consumption, number of clock cycles,
memory accesses, and restore operations. We compare this perfor-
mance against several baselines obtained by abstracting the key
design dimensions of existing systems in a framework that allows
us to instantiate baselines that correspond to existing works, while
retaining the freedom to explore alternative configurations. We find
that, depending on the benchmark, ALFRED can provide several-
fold improvements in energy consumption, which allow the system
to shift the energy budget to useful application computations. This
ultimately allows the system to achieve similar improvements in
the time to complete the fixed workload.

2 Related Work

Ensuring forward progress is arguably the focus of most existing
works in intermittent computing [23]. Common to these is the use
of some form of persistent state stored on non-volatile memory.

A significant fraction of existing solutions employ a form check-
pointing to cross power failures [3, 7, 11, 36, 45]. This consists in

replicating the content of main memory, special registers, and pro-
gram counter onto non-volatile memory at specific points in the
code. Whenever the device resumes with new energy, these are
retrieved back from non-volatile memory and computations restart
from a point close to the power failure. Systems such as Hiber-
nus [7, 8] operate in a reactive manner: an interrupt is fired from a
hardware device that prompts the application to take a checkpoint,
for example, whenever the energy buffer falls below a threshold.
Differently, systems exist that place explicit function calls to proac-
tively perform checkpoints [11, 36, 45, 48]. The specific placement
is a function of program structure and energy patterns.

Other approaches offer abstractions that programmers use to
define and manage persistent state [16, 34, 35, 51] and time pro-
files [24]. For example, DINO [34] allows programmers to split the
sequential execution of a program by inserting specific task bound-
aries and ensuring transactional semantics between consecutive
boundaries. Alpaca [35] goes a step further and provides dedicated
abstractions to defines tasks as individual execution units that run
with transactional semantics against power failures and subsequent
reboots, and channels to exchange data across tasks.

Using mixed-volatile platforms, intermittence anomalies poten-
tially occur due to repeated executions of non-idempotent code [42,
44]. These are unexpected program behaviors that make execu-
tions differ from their continuous counterparts. Systems are avail-
able that address intermittence anomalies with dedicated check-
point placement strategies [48] or custom programming abstrac-
tions [16, 34, 35, 51]. In the latter, the abstraction semantics is de-
signed to cater for the possible occurrence of intermittence anom-
alies. Tools also exist for testing their occurrence [38, 42], and
approaches are available that conversely take advantage of them to
realize intermittence-aware control flows, effectively promoting the
occurrence of power failures to an additional program input [40].
Additional issues in intermittent computing include performing
general testing of intermittent programs [15, 17, 21, 22], profiling
their energy consumption [2, 15, 21], and handling peripheral states
across power failures [6, 9, 12, 37].

Our work offers a different standpoint. Unlike the works above,
we take the decision about what part of the application state to
allocate on non-volatile memory away from programmers, and
offer a uniform abstraction that does not entail any specific alloca-
tion of data to memory facilities. A set of program transformation
techniques automatically determines an energy-efficient allocation
at compile time, as a function of program structure and read/write
patterns. Most importantly, such an allocation is not fixed once
and for all at variable-level as in existing solutions, but is possibly
adjusted at different places in the code for the same data item.

Closest to our work are TICS [31] and the system of Jayakumar et
al. [30]. TICS [31] limits the size of persistent state by solely saving
the active stack frame and modified memory locations outside of
it, which is conceptually similar to our approach. However, TICS
primarily helps programmers deal with time across power failures,
whereas we specifically target energy efficiency independent of data
age. TICS also exclusively uses non-volatile memory for global data
and undo-logging [36] to avoid intermittence anomalies [42, 44].
In contrast, we opportunistically promote slices of main memory
onto the faster and more efficient volatile memory to reduce energy
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Figure 1: ALFRED compile-time pipeline.

consumption, and employ program transformation techniques that
ensure memory idempotency [48].

Jayakumar et al. [30] technique operates at run-time by adjusting
the mapping of global variables, program code, and stack frames be-
tween volatile and non-volatile memory, doing so at the granularity
of individual functions. They rely on hardware interrupts generated
by an external component to trigger state-saving operations at run-
time and tentatively allocate everything to non-volatile memory
first, then incrementally move data or code to volatile memory until
forward progress is compromised. At that point, they backtrack to
the latest functioning configuration. Besides working at the granu-
larity of single data items at compile-time, rather than individual
functions at run-time, our design is fundamentally different, as the
allocation of data to volatile or non-volatile memory we determine
is thought to systematically improve energy consumption. There-
fore, if forward progress is possible before applying ALFRED, it
remains so afterwards. ALFRED is thus never detrimental to the
application’s ability to do useful work.

3 Virtual Memory Mapping

The program transformation techniques of ALFRED determine the
mapping from virtual to volatile or non-volatile memory. They
are independent of the target architecture, as they are applied on
an architecture-independent intermediate representation of the
input program commonly used in compilers [33]. We illustrate the
compile-time pipeline in Sec. 3.1, followed by an explanation of the
individual techniques in Sec. 3.2 to Sec. 3.4.

3.1 Overview

Fig. 1 shows the compile-time pipeline of ALFRED. The input at
stage ⟨1⟩ is a programwritten using the virtual memory abstraction;
therefore, variables in the program are not explicitly mapped to
either volatile or non-volatile memory.

The program is first processed through the compile-time of an
existing checkpoint system [7, 8, 11, 29, 36, 45, 48] or task-based
programming abstraction [16, 34, 35, 43, 46, 51]. Either way, at
stage ⟨2⟩ the program includes state-save operations inlined in the
execution flow as calls to a checkpointing subsystem or placed at
task boundaries. These operations are meant to dump program state
onto non-volatile memory prior to a power failure and to restore
the program state from non-volatile memory when energy is newly
available after a power failure. The techniques we explain next are
orthogonal to how state-save operations are placed in the code.

Unlike existing programming systems for intermittent comput-
ing, our techniques work at the level of machine-code. At this level,
memory operations are visible as they are actually executed on the

target platform. At stage ⟨3⟩ in Fig. 1 we translate the program into
an intermediate representation of the source code and initially map
every memory operation to volatile memory. If we were to execute
the code this way, state-save operations would need to dump the
entire main memory to the non-volatile one when executing.

Further, at the same stage we partition the code into logical units
we call computation intervals. A computation interval consists in a
sequence of machine-code instructions executed between two state-
save operations. For programs using checkpoint mechanisms [7, 8,
11, 29, 36, 45, 48], computation intervals correspond to sequences of
instructions placed between two checkpoints. Instead, for programs
using task-based programming abstractions [16, 34, 35, 43, 46, 51],
computation intervals essentially correspond to tasks.

From now on, the three program transformations we illustrate
next are applied in the order we present them. We focus on the
intuition and general application of each transformation, whereas
we postpone the discussion about dealing with compile-time uncer-
tainty to Sec. 4. Our techniques operate on every memory target
that appears in the program; these may include not just memory
targets that the compiler uses to map variables in source code, but
also the memory used by operations that are normally transparent
to programmers, such as PUSH or POP instructions. We detail how
we identify the memory addresses of data items possibly involved
in a transformation in Sec. 4 and how to compute their addresses
after the transformations are applied in Sec. 5.

As we hinted before, the mapping we want to achieve is one
where volatile memory is used as much as possible to store data
that does not require to be persistent, for example, intermediate
results or temporary data, as it is more energy efficient than its
non-volatile counterpart. By the same token, we want to make sure
to use the latter, and to pay the corresponding energy overhead,
whenever persisting data to survive power failures is necessary.
Intuitively, the transformations generate a mapping from virtual to
volatile or non-volatile memory where the former acts as a volatile
cache of sorts where intermediate results are computed.

The snippets we show next include both source and machine
code for clarity. Line numbers refer to source code. As mentioned
already, however, ALFRED operates entirely on machine code.

3.2 Mapping Write Operations

The first transformation we apply is based on a key intuition: a
memory write operation should target non-volatile memory as soon

as the written data is final compared to the next state-save operation,

so it relieves the latter from the corresponding processing.

The notion of final describes situations where the program does
not alter the data anymore before the next state-save operation.
Our intuition essentially corresponds to anticipating the actions
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1. save state();
2. a = ...
3. a = a+ 1;
4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

2.1. STORE R0, a

3.1. LOAD a, R1

3.2. STORE R2, a

4.1. LOAD a, R3

5.1. LOAD a, R4

6.1. LOAD a, R5

6.2. STORE R5, anv

redundant

(a) Before the transformation.

1. save state();
2. a = ...
3. a = a+ 1;
4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

2.1. STORE R0, a

3.1. LOAD a, R1

3.2. STORE R2, anv

No longer saves a

4.1. LOAD a, R3

5.1. LOAD a, R4

(b) After the transformation.

Figure 2: Example of mapping write operations.

that the state-save operation would perform anyways. This allows
these operations to spare the overhead for saving data that can be
considered final earlier: after the transformation the data is already
on non-volatile memory when the state-save operation executes.
Example. Consider the program of Fig. 2(a) and let us focus on the
instructions before the state-save operation of line 6. These instruc-
tions correspond to a computation interval. We find two STORE
instructions that target the volatile memory location that variable
𝑎 is initially mapped to. Note that the second STORE instruction
writes the same value that the state-save operation of line 6 stores
for variable 𝑎, because the latter is initially allocated onto volatile
memory and must be preserved across power failures. This is the
case because the data for variable 𝑎 is final at line 3.

To save the overhead of redundant memory operations, we make
the STORE instruction of line 3 immediately target non-volatile
memory. This transformation allows us to remove the instructions
that are necessary to save variable 𝑎 at the state-save operation
of line 6, along with the corresponding energy overhead, as line 3
already saves the content variable 𝑎 onto non-volatile memory.

Fig. 2(b) shows the resulting program, which has reduced energy
overhead because the state-save operation is no longer concerned
with variable 𝑎 that is made persistent already at line 3. Concep-
tually, this corresponds to move the STORE instruction that would
normally be part of the state-save operation to the last point in the
program where variable 𝑎 is actually written.

This transformation does not alter the target of the STORE in-
struction of line 2, where the data is not final yet. Doing so would
incur an unnecessary energy overhead due to a write operation on
non-volatile memory for non-final data, which is going to be over-
written soon after. In fact, the STORE instruction of line 2 produces
an intermediate result for variable 𝑎, which we need not persist.
Generalization.We apply this technique to an arbitrary compu-
tation interval as follows. For each memory location 𝑥 , we con-
sider the possibly empty set of memory write instructions 𝐼𝑤 =

(𝐼𝑤1, ..., 𝐼𝑤𝑛) that manipulate 𝑥 and are included in the computation
interval; 𝐼𝑤𝑛 is thus the last such instruction and there is no other
memory write instruction before the next state-save operation.

We relocate the target of 𝐼𝑤𝑛 to non-volatile memory, as what-
ever data 𝐼𝑤𝑛 stores is final. The targets of all other write instruc-
tions 𝐼𝑤1, ..., 𝐼𝑤 (𝑛−1) stay on volatile memory, as they produce in-
termediate result that 𝐼𝑤𝑛 eventually overwrites. Note that this
transformation is sufficient to preserve the value of the memory
location 𝑥 across power failures, while reducing the number of
instructions targeting non-volatile memory.

By applying this transformation to all computation intervals and
all memory locations, state-saving operations at stage ⟨4⟩ in Fig. 1

4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

R.1. LOAD anv , R0

R.2. STORE R0, a

state restore();

7.1. LOAD a, R1

7.2. STORE R2, a

redundant

(a) Before the transformation.

4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

state restore();

7.1. LOAD anv, R1

7.2. STORE R2, a

No longer restores a

(b) After the transformation.

Figure 3: Example of mapping read operations.

are left with only register file and special registers to dump on non-
volatile memory, and accordingly modified. If a memory location
is altered in a computation interval, our technique identifies when
such a change is final and persists the data there. Otherwise, if 𝐼 = ∅
there is no need to persist the data, as some previous state-save
operation already did that the last time the data changed.

This processing not only reduces the operations on non-volatile
memory, but also reduces the overhead of state-saving operations.
A regular checkpoint mechanism would save the entire content of
volatile memory onto the non-volatile one [7, 8, 11, 45], including
unmodified memory locations. In our case, memory locations not
modified in a computation interval are excluded from processing.
We thus achieve differential checkpointing [3] with zero run-time
overhead in both energy and memory consumption.

Next, consider the read instructions possibly included in the
computation interval between 𝐼𝑤𝑛 and the state-save operation. As
the data is now on non-volatile memory, in principle, they should
also be relocated to non-volatile memory. Whether this is the most
efficient choice, however, is not as simple. The third transformation,
described in Sec. 3.4, addresses the related trade-offs.

3.3 Mapping Read Operations

The second transformation is dual to the first one and based on
the corresponding intuition: when resuming after a power failure,

restore routines may be limited to register file and special registers,

while memory read operations from non-volatile memory should be

postponed to whenever the data is needed, if at all.

This transformation effectively corresponds to postponing the
restore operation to when the data is actually used and a read opera-
tion would execute anyways. By doing so, we spare the instructions
in the restore routines that would load the data back to volatile
memory from the non-volatile one. This is the case after applying
the first transformation, which makes state-save operations be lim-
ited to restoring the register file and special registers. The content
of main memory is persisted earlier, when it becomes final.
Example. Consider the program of Fig. 3(a). Following a power
failure, the execution resumes from line 6 as the restore routines
loads the value of the program counter from non-volatile memory,
along with register file, other special registers, and the slice of main
memory that was persisted prior to the power failure. However,
note that the LOAD instruction of line 7 reads the same value for
variable 𝑎 that is loaded earlier as part of the restore routine.

Dually to the first transformation, a more efficient strategy is to
limit the restore routine to register file and special registers, and
make the LOAD instruction of line 7 target the non-volatile memory
where the data resides. Compared to the plain application of a
checkpoint mechanism, for example, this transformation allows us
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1. save state();
2. a = ...
3. a = a+ 1;
4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

3.2. STORE R2, anv

3.3. STORE R2, a

Target volatile copy

Create volatile copy

4.1. LOAD a, R3

5.1. LOAD a, R4

Figure 4: Consolidating read operations.

to remove the instructions that restore variable 𝑎 from checkpoint
data, as the first read instruction that is actually part of the program
is relocated to the right address on non-volatile memory.

Fig. 3(b) shows the program after this transformation, which
bears reduced energy overhead because the restore routine is no
longer concerned with variable 𝑎, as it is loaded straight from
non-volatile memory if and when necessary. Conceptually, this
corresponds to move the LOAD instruction that would normally be
part of the restore to routine for variable 𝑎 to the first point in the
program where variable 𝑎 is actually read.
Generalization. Similar to the previous transformation, we apply
this technique to an arbitrary computation interval as follows. First,
we limit restore routines to load back register file and special regis-
ters from non-volatile memory. Next, for each concerned memory
location 𝑥 , we consider the possibly empty set of memory read
instructions 𝐼𝑟 = (𝐼𝑟1, ..., 𝐼𝑟𝑛) that manipulate 𝑥 and are included
in the computation interval. Dually to the first transformation, 𝐼𝑟1
is the first such instruction and there is no other memory read
instruction after the state-save operation that marks the start of the
computation interval. We relocate the target of 𝐼𝑟1 to non-volatile
memory, as that is where the data is to be loaded from.

Whether the remaining 𝑛 − 1 read operations 𝐼𝑟2, ..., 𝐼𝑟𝑛 in a
computation interval are to target volatile or non-volatile memory
is determined by applying the program transformation that follows.

3.4 Consolidating Read Operations

Starting with a program that exclusively uses volatile memory at
stage ⟨3⟩ in Fig. 1, the first two transformation techniques relocate
the target of selected read or write operations to non-volatile mem-
ory. As data now resides on non-volatile memory in the vicinity of
state-save operations, further relocations to non-volatile memory
may be required for other read operations in a computation interval.
This is the case, for example, for read operations following the last
write operation that makes data final on non-volatile memory, as
mentioned in Sec. 3.2. Whether this is the most efficient choice,
however, is not straightforward to determine.

The third transformation we apply is based on the intuition that
whenever memory operations are relocated to non-volatile memory,

it may be convenient to create a volatile copy of data to benefit from

lower energy consumption for subsequent read operations.

Example. The program in Fig. 2(b) includes further read operations
after line 3 and memory location 𝑎 is on non-volatile memory as a
result of the first transformation. In principle, we should relocate
the read instructions on line 4 and 5 to non-volatile memory, as
that is where the relevant data resides. Because of the higher en-
ergy consumption of non-volatile memory, doing so may possibly
backfire, outweighing the gains of the first transformation.

We must thus determine whether it is worth paying the penalty
for creating a volatile copy of variable 𝑎 to benefit from the more
energy efficient operations there. Such a penalty is essentially rep-
resented by an additional STORE instruction required, right after
the STORE of line 3, to create a copy of the data on volatile memory,
as shown in Fig. 4. The new STORE uses the same source register,
hence it represents the only added overhead. The benefit is the
improved energy consumption obtained by making the instructions
of line 4 and 5 target volatile memory, instead of the non-volatile
one. Note that the exact same situation occurs for read instructions
following the first LOAD instruction in Fig. 3(b).

Consider the frequently used MSP430-FR5969 [16, 28, 34, 35, 40],
which features an internal FRAM as non-volatile memory, and say
the microcontroller runs at 16𝑀𝐻𝑧, where FRAM accesses require
an extra clock cycle. Based on datasheet information [28], we cal-
culate that if read operations in line 4 and 5 target non-volatile
memory, the program consumes 1.522𝑛𝐽 for these operations. In
contrast, if we pay the penalty of the additional STORE instruction,
but use volatile memory for all other read operations, the program
consumes 1.376𝑛𝐽 to achieve the same processing. This is a 10.6%
improvement. We accordingly insert an additional STORE instruc-
tion after line 3 to copy 𝑎 to volatile memory and we keep the read
operations of line 4 and 5 target volatile memory.
Generalization. For each memory location 𝑥 , we consider the
𝑛 read instructions 𝐼𝑟1, ..., 𝐼𝑟𝑛 in a computation interval that we
need to consolidate, thus excluding those altered by the second
transformation. We compute the energy consumption of a single
non-volatile memory read instruction as

𝐸𝑟𝑒𝑎𝑑_𝑛𝑣 = 𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 ∗ (1 +𝐶𝐶𝑟𝑒𝑎𝑑 ), (1)

where 𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 is the energy consumption per clock cycle of
the non-volatile memory read instruction and 𝐶𝐶𝑟𝑒𝑎𝑑 are the extra
clock cycles that the instruction execution possibly requires. Based
on operating frequency, mixed-volatile microcontrollers may incur
in extra clock cycles when operating on the slower non-volatile
memory. These clock cycles consume the same energy as a regular
non-volatile read operation.

The break-even point between paying the penalty of an ad-
ditional STORE instruction to benefit from more energy-efficient
volatile read operations, versus the cost of allocating all read opera-
tions to non-volatile memory is determined according to inequality

𝐸𝑟𝑒𝑎𝑑_𝑛𝑣 ∗ 𝑛 < 𝐸𝑤𝑟𝑖𝑡𝑒 + 𝐸𝑟𝑒𝑎𝑑 ∗ 𝑛, (2)

where 𝐸𝑟𝑒𝑎𝑑_𝑛𝑣 is the one of Eq. 1, 𝑛 is the number of the considered
memory read instructions in the computation interval, and 𝐸𝑟𝑒𝑎𝑑
and 𝐸𝑤𝑟𝑖𝑡𝑒 represent the energy consumption of a volatile memory
read and write instruction, respectively. This can be rewritten as

0 < 𝐸𝑤𝑟𝑖𝑡𝑒 − 𝑛 ∗ (𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 ∗ (1 +𝐶𝐶𝑟𝑒𝑎𝑑 ) − 𝐸𝑟𝑒𝑎𝑑 ). (3)

As the energy figures are fixed for a given microcontroller, Eq. 3
is exclusively a function of 𝑛, that is, the number of memory read
instructions to consolidate in the computation interval. We can
accordingly state that creating a volatile copy of the considered
memory location is beneficial as long as

𝑛 > 𝑛𝑚𝑖𝑛 , with 𝑛𝑚𝑖𝑛 =

⌊
𝐸𝑤𝑟𝑖𝑡𝑒

𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 ∗ (1 +𝐶𝐶𝑟𝑒𝑎𝑑 ) − 𝐸𝑟𝑒𝑎𝑑

⌋
,

(4)
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1. save state();
2. for(i = 0; i <N; i++) {
3. sum = sum+ a[i];
4. x = a[i];
5. y = a[N − i+ 1];
6. ...
7. }
8. save state();

3.1. LOAD i, R0

3.2. LOAD [a+R0], R1

tag: i

tag: a[i]

4.1. LOAD i, R2

4.2. LOAD [a+R2], R3

tag: i

tag: a[i]

5.1. LOAD i, R4

5.2. SUB R5, N , R4

5.3. ADD R6, R4, 1
5.4. LOAD [a+R6], R7

tag: i
tag: N-i
tag: N-i+1
tag: a[N-i+1]

Figure 5: Example of the same group of instructions accessing

multiple memory locations.

where 𝑛𝑚𝑖𝑛 represents the minimum number of memory read in-
structions necessary to ensure that creating a volatile copy of the
considered memory location incurs in lower overall energy con-
sumption. If the condition of Eq. 4 is not met, we make the 𝑛 read
operations target non-volatile memory.

Interestingly,𝑛𝑚𝑖𝑛 is independent of the specific read/write mem-
ory patterns and of program structure. It only depends on hardware
characteristics. As an example, 𝑛𝑚𝑖𝑛 is 0 (2) for the MSP430-FR5969
at a clock frequency of 16𝑀𝐻𝑧 (8𝑀ℎ𝑧). This means, for example,
that if the MCU is to run at 16𝑀𝐻𝑧, it is always beneficial to create
a volatile copy of the relevant memory locations.

4 Compile-time Uncertainty

The transformation techniques of Sec. 3 rely on program infor-
mation, such as the order of instruction execution and accessed
memory addresses, that may not not be completely available at
compile-time. Constructs altering the control flow, such as condi-
tional statements or loops, and memory accesses through pointers
make these information dependent on the program state. We de-
scribe next how we resolve this uncertainty, making it possible to
apply the techniques of Sec. 3 to arbitrary programs.

We distinguish between two types of compile-time uncertainty.
Memory uncertainty occurs when the exact memory address that a
read/write operation targets cannot be determined. We resolve this
uncertainty using virtual memory tags, as described in Sec. 4.1. In-
struction uncertainty occurs when the order of instruction execution
is not certain. Addressing this issue requires different techniques
depending on program structure. Starting from Sec. 4.2, we show
how to resolve instruction uncertainty in case of loops, conditional
statements, and function calls. Finally, in Sec. 4.7, we address a
particular case of instruction uncertainty that affects computation
intervals boundaries when the execution of state-save operations
is uncertain at compile-time.

Here again, the code snippets include both source and machine
code for easier illustration, with line numbers pointing to the former,
yet ALFRED operates entirely on machine code.

4.1 Memory Uncertainty

Our key observation here is that the techniques of Sec. 3 do not
necessarily require exact memory addresses to operate; rather, they
need to identify the groups of instructions accessing the same
memory location, whatever that may be.
Example. Fig. 5 shows an example. Lines 3, 4, and 5 target multiple
memory locations across different iterations of the loop. The corre-
sponding physical addresses in memory change at every iteration.

To apply the techniques of Sec. 3, however, exact knowledge of
the physical addresses in memory is not required. We rather need
to determine that, at any given iteration of the loop, lines 3 and 4
target the same memory location, whereas line 5 targets a different
one. Note that the information originally available in machine code
is insufficient to this end: from that, we can only conclude that lines
3, 4, and 5 access all the addresses in the range (𝑎[0], 𝑎[𝑁 − 1]).

We automatically associate a virtual memory tag to every mem-
ory locations an instruction targets, as shown in Fig. 5. A virtual
memory tag is an abstraction of physical memory that aids the
application of the techniques of Sec. 3 by succinctly capturing what
memory locations are the same in a computation interval.

In the program of Fig. 5, we attach the tag 𝑎[𝑖] to the memory lo-
cations read in lines 3 and 4. Instead, we attach the tag 𝑎[𝑁 − 𝑖 + 1]
to the memory location read in line 5. This information is sufficient
for the technique mapping read operations, described in Sec. 3.3, to
understand that line 3 and 4 are to be considered as one sequence
𝐼 ′𝑟 , whereas line 5 is to be considered as a different sequence 𝐼 ′′𝑟 .

Virtual memory tags are, in a way, similar to debug symbols
attached to machine code. They are obtained by inspecting the
source code ahead of the corresponding translation, through mul-
tiple passes of a dedicated pre-processor. The transformations of
Sec. 3 look at these information, instead of the memory locations as
represented in machine code. Even in the case of pointers, we can
combine virtual memory tags with memory alias analysis [14, 32]
to identify cases of indirect access to the same memory location.
Unlike debug symbols, however, these information is removed from
the program at stage ⟨5⟩ before generating the final binary.

4.2 Instruction Uncertainty

Key to the application of the program transformations in Sec. 3.2 and
Sec. 3.3 is the identification of the last (first) memory write (read)
instruction in a computation interval. This may be affected by loops,
conditional statements, and function calls that alter the order of
instruction execution. Further, whenever the execution of state-save
operations depends on run-time information, for example, when a
checkpoint call is inserted in a loop body, the span of computation
intervals is also undefined at compile time. We describe in the next
sections how we address these issues.

4.3 Instruction Uncertainty→ Loops

Loops control the execution of a subset of instructions. In this
section we describe how we address the instruction uncertainty
that loops may introduce.
Example. Fig. 6(a) exemplifies the situation. Say we are to apply
the mapping of write operations, described in Sec. 3.2. Doing so
requires to identify the last memorywrite instruction 𝐼𝑤𝑛 before the
state-save operation. Depending on the value of 𝑖 compared to 𝑁 ,
the write operation in line 5 may or may not be the one that makes
the data final for variable sum. The symmetric reasoning is valid
when we are to apply the mapping of read operations, described
in Sec. 3.3. Depending on the value of 𝑖 compared to 𝑁 , the read
operation in line 3 may or may not be the first for variable sum

after the state restore. As a matter of fact, 𝑖 and 𝑁 are in control of
what write (read) instruction is the 𝐼𝑤𝑛 (𝐼𝑟1).
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1. save state();
2. for(i = 0; i <N; i++) {
3. tmp = sum;
4. tmp = tmp+ a[i];
5. sum = tmp;
6. }
7. save state();

3.1. LOAD sum, R0

• During first iteration, it needs to
read sum from NVM

• During other iterations, it needs
to read sum from volatile memory

7 Ir1 uncertain

5.1. STORE R2, sum

• During last iteration, it needs to
write sum onto NVM

• During other iterations, it needs
to write sum onto volatile memory

7 Iwn uncertain

(a) Example of a compile-time uncertainty in a loop.

1. save state();
2. sum = sum;
3. for(i = 0; i <N; i++) {
4. tmp = sum;
5. tmp = tmp+ a[i];
6. sum = tmp;
7. }
8. sum = sum;
9. save state();

2.1. LOAD sum, R0

Dummy write to fix Ir1

3.1. LOAD sum, R1

• During all the iterations, it needs
to read sum from volatile memory

4 Uncertainty removed

5.1. STORE R2, sum

• During all the iterations, it needs
to write sum onto volatile memory

8.1. STORE R3, sum

Dummy write to fix Iwn

4 Uncertainty removed

(b) Normalized form of the loop that removes the compile-time uncertainty.

Figure 6: Example of compile-time uncertainty with loops.

One may act pessimistically and make both the LOAD on line 3
and the STORE on line 5 target non-volatile memory. This choice
may be inefficient, because for all values of 𝑖 that are neither 0
nor 𝑁 − 1, the loop computes intermediate results that are going
to be overwritten anyways, so the cost of non-volatile memory
operations is unnecessary. To complicate matters, the value of 𝑁
itself may vary across different executions of the same fragment of
code, as it may depend on program inputs and runtime state.
Generalization. In general, such uncertainty arises whenever one
of the following conditions are satisfied: (i) a loop controls the
execution of memory write instruction 𝐼𝑤𝑛 that may execute as
last write in the computation interval, or (ii) a loop controls the
execution of a memory read instruction 𝐼𝑟 that may execute before
any memory write in the computation interval.
Normalization. We apply techniques of program normalization [4,
50] to resolve this uncertainty, as well as all others that possibly
arise when the order of instruction execution depends on run-
time information. We normalize all the instructions 𝐼𝑤𝑛 (𝐼𝑟 ) that
meet the above conditions, so that they no longer can execute as
last memory write (read). Program normalization refers to a set
of established program transformations techniques designed to
facilitate program analysis and automatic parallelization. Many
compiler techniques [18] for multi-core processors, for example,
include multiple program normalization passes.

To resolve the uncertainty in Fig. 6(a), we need to be in the
position to persist the value of sum once we are sure the loop is
over and before the state-save operation. Fig. 6(b) shows one way
to achieve this. We add a dummy write consisting in a pair of LOAD
and STORE instructions for variable sum after the loop2. These
instructions are inserted after code elimination steps and bear no
impact on program semantics and, but fix where in the code the
data for sum is final, regardless of the value of 𝑖 and 𝑁 . We add
a similar instruction prior to the loop to fix where the first read
operation for sum occurs. Different than before, we can make both
STORE on line 8 and the LOAD on line 2 target non-volatile memory
without unnecessary overhead. All other operations now concern

2Note that these modifications to machine code occur after the compiler already
applied code elimination steps.

1. save state();
2. if(a > 0){
3. a = a+ 1;
4. }
5. a = a/3;
6. save state();

(a) Program

1. save state();

2.1. LOAD a, R0

R0 > 0

3.1. LOAD a, R1

3.2. STORE R2, av

5.1. LOAD a, R3

5.2. STORE R4, anv

6. save state();

TrueFalse

Branch taken: True

• Line 3 is the first write Iw1

• Line 5 is not a first read

Branch taken: False

• Line 5 is the first write Iw1

• Line 5 is a first read

7 Irf uncertain

(b) Control Flow Graph

Figure 7: Example of compile-time uncertainty with condi-

tional statements when mapping read operations.

intermediate results that may be stored on volatile memory. As a
result, 𝑖 and 𝑁 are effectively no longer in control of what is the
𝐼𝑤𝑛 (𝐼𝑟1) write (read) instruction that the transformation in Sec. 3.2
and Sec. 3.3 would allocate to non-volatile memory.

The normalization step does introduce an overhead. To keep that
at minimum, whenever possible we leverage information cached in
registers. For example, in Fig. 6(b), when line 6 executes it updates
variable sum with the value of variable tmp, which is stored in a
register. If the value is still available in a register, the operation in
line 8 may simply access that instead of re-loading the value from
main memory. Applying this kind of optimization is, however, not
always possible, as the content of registers may be overwritten by
other instructions that execute in between. In Sec. 6 we provide
evidence that, despite the overhead of the normalization passes,
ALFRED programs are more energy-efficient than their regular
counterparts.

4.4 Instruction Uncertainty → Conditionals and

Memory Mapping

Conditional statements, such as the 𝑖 𝑓 statement, controls the exe-
cution of a subset of instructions. In this section we describe how
we address the instruction uncertainty that conditional statements
may introduce.
Example. Fig. 7(a) exemplifies the situation, for which Fig. 7(b)
shows the programControl FlowGraph (CFG). Note that we already
applied the mapping of memory write operations, described in
Sec. 3.2, which makes the STORE of line 3 target volatile memory,
as it does not write final data for 𝑎. Say that we are to apply the
mapping of read operations, described in Sec. 3.3. Doing so requires
to identify all the first memory read instructions 𝐼𝑟 𝑓 = 𝐼𝑟1, ..., 𝐼𝑟𝑛
that execute before any memory write instruction 𝐼𝑤1. As Fig. 7(a)
shows, when the 𝑖 𝑓 statement of line 2 evaluates to true, the STORE
of line 3 executes as 𝐼𝑤1 and the LOAD of lines 2 and 3 are part of 𝐼𝑟 𝑓 ,
but not the LOAD of line 5. Instead, when it evaluates to false, the
STORE of line 5 executes as 𝐼𝑤1 and the LOAD of lines 2 and 5 are part
of 𝐼𝑟 𝑓 . As a matter of fact, the 𝑖 𝑓 statement of line 2 controls the
instruction that executes as 𝐼𝑤1 and consequently controls whether
the LOAD of line 5 is part of 𝐼𝑟 𝑓 . Therefore, it controls its mapping
onto volatile/non-volatile memory. In fact, when the 𝑖 𝑓 statement
of line 2 makes the STORE of line 3 execute, the LOAD of line 5
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1. save state();
2. a = a/3;
3. if(a > 0){
4. a = a+ 1;
5. }
6. save state();

(a) Program

1. save state();

3.1. LOAD a, R2

R2 > 0

4.1. LOAD a, R3

4.2. STORE R4, a

2.1. LOAD a, R0

2.2. STORE R1, a

6. save state();

TrueFalse

Branch taken: False

• Line 2 is the last write Iwn

Branch taken: True

• Line 4 is the last write Iwn

7 Iwn uncertain

(b) Control Flow Graph

Figure 8: Example of compile-time uncertainty with condi-

tional statements when mapping write operations.

must target volatile memory, as this is where the current value
of 𝑎 resides. Otherwise, it must target non-volatile memory. As a
consequence, we are unable to decide the mapping of the LOAD of
line 5, as an instruction can target one memory location at a time
and mapping such LOAD to volatile (non-volatile) memory would
cause incorrect results in the case it executes before (after) 𝐼𝑤1.

Note that, as Fig. 8 shows, a similar case can happen when we
apply the mapping of write operations, described in Sec. 3.2. In such
a case, the conditional statement of line 2 controls the instruction
𝐼𝑤𝑛 that may execute as last write.
Generalization. Depending on the type of operation that we are
mapping, the described instruction uncertainty happens under dif-
ferent conditions. When we map memory read operations, the
uncertainty arises whenever (i) a conditional statement 𝐶 controls
the execution of a memory write instruction 𝐼𝑤1 targeting a mem-
ory location with tag 𝑥 that may execute as the first write of the
computation interval and (ii) there exists a memory read instruction
𝐼𝑟𝑥 targeting a memory location with tag 𝑥 that, depending on the
outcome of 𝐶 , may or may not execute after 𝐼𝑤1. In the example of
Fig. 7, the STORE of line 3 is 𝐼𝑤1 and the LOAD of line 5 is 𝐼𝑟𝑥 . As we
previously describe, such uncertainty makes us unable to identify
a mapping for 𝐼𝑟𝑤 that ensures results consistency.

Instead, when we map memory write operations, the uncertainty
arises whenever a conditional statement controls the execution of
a memory write instruction 𝐼𝑤𝑛 that may execute as last write of
the computation interval. In the example of Fig. 8, the STORE of line
4 is such 𝐼𝑤𝑛 .
Addressing uncertainty. Two different strategies allows us to
address the compile-time uncertainty that conditional statements
cause when mapping memory read and write operations: conserva-
tive and non-conservative.

The conservative strategy has the effect of mapping to non-
volatile memory all the instructions involved in the compile-time
uncertainty. It considers as first (last) read (write) 𝐼𝑓 𝑟 (𝐼𝑤𝑛) all the
memory read (write) instructions 𝐼𝑟 (𝐼𝑤 ) for which there exists a
path in the program CFG where 𝐼𝑟 (𝐼𝑤 ) executes before (after) any
memory write instruction in the computation interval. Moreover,
when mapping write operations, it ignores all the memory write
instructions 𝐼𝑤1 controlled by a conditional statement that may

1. save state();

2.1. LOAD anv, R0

R0 > 0

3.1. LOAD anv, R1

3.2. STORE R2, anv

5.1. LOAD anv, R3

5.2. STORE R4, anv

6. save state();

TrueFalse

(a) Conservative strategy

1. save state();

2.1. LOAD a, R0

R0 > 0

3.1. LOAD a, R1

3.2. STORE R2, av

N.1. LOAD a, R3

N.2. STORE R3, av

5.1. LOAD a, R4

5.2. STORE R5, anv

6. save state();

TrueFalse

4 Uncertainty removed

(b) Non-conservative strategy

Figure 9: Example of the two strategies to address the uncer-

tainty of Fig. 7.

execute as first write. For example, in Fig. 7, we consider as part
of 𝐼𝑟 𝑓 the LOAD instructions of lines 2, 3, and 5. Moreover, when
mapping write operations, the STORE of line 3 is ignored and there-
fore targets non-volatile memory. Fig. 9(a) shows the result. Note
that with such strategy, the 𝑖 𝑓 statement of line 2 still controls
the instruction that executes as 𝐼𝑤1. However, as we make all the
uncertain instructions target non-volatile memory, this is no longer
a source of uncertainty.

The non-conservative strategy instead normalizes the instruc-
tions that can execute as first (last) read (write). For doing so, such
strategy relies on the same dummy-write operations that we de-
scribe in Sec. 4.3 for addressing the uncertainty in loops. Note that
to normalize the first memory reads, such strategy uses a dummy-
write operation to fix where the first memory write instruction
execute. For example, in Fig. 7, we place a dummy-write targeting
𝑎 in the 𝑓 𝑎𝑙𝑠𝑒 branch of the 𝑖 𝑓 statement of line 2. This makes the
LOAD of line 5 execute after a memory write instruction, ensuring
that it no longer can execute both as first and non-first read. Fig. 9(b)
shows the result. Note that with such strategy, the 𝑖 𝑓 statement
of line 2 still controls which instruction among the two branches
executes as 𝐼𝑤1. However, as only one of them can act as 𝐼𝑤1, this
is no longer a source of uncertainty and we can consider both as
𝐼𝑤1.
Strategy selection. The non-conservative strategy normalizes
also the energy consumption of the branches, as it starts from the
configuration of the conservative strategy and reduces the energy
consumption of one branch at the expenses of the other. Say that
our target platform is the MSP430-FR5969 [28] at 16𝑀ℎ𝑧. In the
example of Fig. 9, the conservative strategy makes the program to
consume 1.52𝑛𝐽 when the 𝑓 𝑎𝑙𝑠𝑒 branch executes and 3.04𝑛𝐽 when
the 𝑡𝑟𝑢𝑒 executes. Assuming that no additional jump instruction
need to be placed in the program, the non-conservative strategy
increases the energy consumption of the 𝑓 𝑎𝑙𝑠𝑒 branch to 2.14𝑛𝐽
and decreases the energy consumption of the 𝑡𝑟𝑢𝑒 branch to 2.14𝑛𝐽 .

Conversely from the loop case, we are unable to establish if the
normalization of the non-conservative stategy provides a lower
energy consumption with respect to the conservative stategy, as
this requires us to know the frequency of execution of each branch.
Not only such information is not available at compile-time, but it
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1. save state();
2. if(a > 0){
3. x = a+ 1;
4. y = a− 1;
5. z = a ∗ 2;
6. }
7. a = a+ 1;
8. save state();

(a) Program

1. save state();

2.1. LOAD a, R0

R0 > 0

3.1. LOAD anv, R1

4.1. LOAD anv, R2

5.1. LOAD anv, R3

7.1. LOAD anv, R4

7.2. STORE R5, anv

8. save state();

TrueFalse

Ifr of True branch

n is 4

Ifr of False branch

n is 1

7 n uncertain

(b) Control Flow Graph

Figure 10: Example of compile-time uncertainty with condi-

tional statements when consolidating read operations. The

uncertainty affects the number 𝑛 of memory reads to consider.

may also not always be possible to predict or identify, as branch exe-
cution depends on various factors, such as program inputs and com-
putational state. For this reason, we discard the non-conservative
stategy, as it may have a negative effect on the program’s energy
consumption. However, to avoid intermittence anomalies, we may
need to apply the non-conservative strategy to normalize the in-
structions that may execute as first memory write targeting a non-
volatile memory location. We address such case in Sec. 5.

Hence, to address the uncertainty introduced by conditional
statements, we apply the conservative strategy to identify a mem-
ory mapping that grants no compile-time uncertainty. Then, we
rely on our technique to consolidate memory read operations, as
described in Sec. 3.4, to identify the most efficient memory mapping
that minimizes the energy consumption of all the branches. The
next section describes how we account for uncertainty during the
application of such technique.

4.5 Instruction Uncertainty → Conditionals and

reads consolidation

As we describe in Sec. 3.4, consolidating memory read operations
requires to identify the memory read instructions 𝐼𝑟 that happen
after a memory read or write instruction 𝐼𝑛𝑣 targeting non-volatile
memory. The presence of conditional statements that controls the
execution of any such 𝐼𝑟 or 𝐼𝑛𝑣 is a source of multiple compile-time
uncertainties: the number 𝑛 of memory reads 𝐼𝑟 to consider and the
memory read or write instruction 𝐼𝑛𝑣 to consider. To complicate
matters, the conservative policy of Sec. 4.4 that we apply to address
uncertainty when mapping memory write instructions may intro-
duce multiple conditionally-executed memory write instructions
𝐼𝑤 that target non-volatile memory. Such conditionally-executed
instructions are source of uncertainty when identifying the mem-
ory reads instructions 𝐼𝑟 , preventing us to consolidate them. We
describe next each one of the three cases.

4.5.1 Number of reads

The presence of conditional statements that control the execution
of memory read instructions 𝐼𝑟 that execute after the first (last)
memory read (write) instruction 𝐼𝑛𝑣 targeting non-volatile memory

is a source of uncertainty on the number 𝑛 of 𝐼𝑟 operations, which
we use to evaluate if such 𝐼𝑟 need to target volatile memory.
Example. Fig. 10 exemplifies the situation, wherewe alreadymapped
read and write instructions to non-volatile memory. Note that the
LOAD of lines 2-7 and the STORE of line 7 target non-volatile memory
as a result of the initial mapping or read and write operations. Say
that we are to apply the consolidation of the read operations. We
identify the LOAD of line 2 as the first memory read instruction 𝐼𝑛𝑣
that targets non-volatile memory. Hence, we now need to identify
the number 𝑛 of memory reads that execute after such 𝐼𝑛𝑣 . Let us
suppose that 𝑛𝑚𝑖𝑛 is 1, that is, the lower bound of the number of
memory reads required for applying the consolidation. As Fig. 10(b)
shows, when the 𝑖 𝑓 statement of line 2 evaluates to 𝑡𝑟𝑢𝑒 , 𝑛 is 4 and
we need to consolidate such reads, as 𝑛 > 𝑛𝑚𝑖𝑛 . Otherwise, when
it evaluates to 𝑓 𝑎𝑙𝑠𝑒 , 𝑛 is 1 and we need not to consolidate such
reads, as 𝑛 <= 𝑛𝑚𝑖𝑛 . As a matter of fact, the 𝑖 𝑓 statement of line
2 controls the number 𝑛 of memory reads that executes after 𝐼𝑛𝑣 ,
which are the targets of the consolidation step.

In general, this problem happens whenever a conditional state-
ment controls the execution of any memory read instruction 𝐼𝑟 that
we make target non-volatile memory when mapping read and write
instructions.
Addressing uncertainty. To establish the number 𝑛 that we need
to consider, there are two possible strategies, optimistic and pes-

simistic. Note that such strategies are symmetric to the conservative
and non-conservative strategies that we consider in Sec. 4.4.

The optimistic strategy considers the maximum possible num-
ber of memory read instructions, that is, the number of memory
reads in the execution path with the highest possible energy con-
sumption. In Fig. 10, such strategy considers 𝑛 equal to 4.

Instead, the pessimistic strategy considers the minimum pos-
sible number of memory read instructions, that is, the number of
memory reads in the execution path with the lowest possible energy
consumption. In Fig. 10, such strategy considers 𝑛 equal to 1.

Note that with both strategies, the 𝑖 𝑓 statement of line 2 still
controls the number 𝑛 of memory read instructions that execute
after 𝐼𝑛𝑣 . However, such strategies address the uncertainty by fixing
the number of memory reads 𝑛.

Choosing the optimistic stategy over the pessimistic one has
the same effect of choosing the non-conservative strategy that we
consider for removing the uncertainty from conditional operations
when we map memory read and write instructions. For this reason,
we select the more conservative pessimistic strategy.

4.5.2 Consolidating initial instruction

The presence of conditional statements that control the execution
the first (last) memory read (write) instruction 𝐼𝑛𝑣 targeting non-
volatile memory is a source of uncertainty, as 𝐼𝑛𝑣 is the instruction
from which we create a volatile copy of the targeted memory loca-
tion.
Example. Fig. 11 exemplifies the situation, wherewe alreadymapped
read and write instructions to non-volatile memory. Note that the
LOAD of lines 3-7 and the STORE of line 7 target non-volatile mem-
ory as a result of the initial mapping. Say that we are to apply
the consolidation of read operations. We need to identify the first
instruction 𝐼𝑛𝑣 to execute that targets non-volatile memory, as well
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1. save state();
2. if(condition){
3. x = a+ 1;
4. y = a− 1;
5. }
6. z = f(a);
7. a = a+ 1;
8. save state();

(a) Program

1. save state();

2.1. condition > 0

3.1. LOAD anv, R0

4.1. LOAD anv, R1

6.1. LOAD anv, R2

7.1. LOAD anv, R3

7.2. STORE R4, anv

8. save state();

TrueFalse

Inv

To consolidate

Inv

To consolidate

7 Inv and consolidation uncertain

(b) Control Flow Graph

Figure 11: Example of compile-time uncertainty with condi-

tional statements when consolidating read operations. The

uncertainty affects the instruction 𝐼𝑛𝑣 from which we start consoli-

dating read operations.

as the number 𝑛 of memory read instructions that follows 𝐼𝑛𝑣 . As
Fig. 11(b) shows, when the 𝑖 𝑓 statement of line 2 evaluates to 𝑡𝑟𝑢𝑒 ,
𝐼𝑛𝑣 is the LOAD of line 3. Otherwise, 𝐼𝑛𝑣 is the LOAD of line 7. As a
matter of fact, the 𝑖 𝑓 statement of line 2 controls the instruction
𝐼𝑛𝑣 from which we start the consolidation of read operations.

In general, such uncertainty may happen whenever a conditional
statement controls the execution of an instruction 𝐼𝑥 that we make
target non-volatile memory as a consequence of the mapping step.
The uncertainty always arises when 𝐼𝑥 is a memory write instruc-
tion. Instead, when 𝐼𝑥 is a read instruction, an uncertainty arises
only when there exists a path in the program CFG such that 𝐼𝑥
executes as first memory read among all the 𝐼𝑥 .
Addressing uncertainty. We address such uncertainty by follow-
ing an iterative approach while consolidating read operations. First,
we identify all the memory read and write instructions 𝐼𝑥 that we
mapped to non-volatile memory as a consequence of the read and
write mapping step. Then, we consider each one of such 𝐼𝑥 as 𝐼𝑛𝑣 ,
that is, the instruction from which we consolidate the memory read
operations that follows. Note that we process each 𝐼𝑥 in order of
execution in the program’ CFG. Moreover, we limit the memory
read instructions that we consider after any 𝐼𝑛𝑣 to the ones that
belongs to the same branch of 𝐼𝑛𝑣 , if any. This allows us to identify
an optimal solution that covers only the instructions inside such
branch, without introducing any new uncertainty.

For example, in Fig. 11, we identify as 𝐼𝑥 the LOAD instructions of
lines 2-7 and the STORE of line 7. Let us suppose that 𝑛𝑚𝑖𝑛 is 0, that
is, the case for the MSP430-FR5969 when the clock frequency is
16𝑀𝐻𝑧. We start considering the LOAD of line 3 as 𝐼𝑛𝑣 . We identify
𝑛 equal to 1, as we limit our search of memory read instructions
inside the branch of lines 3-4. Being 𝑛 > 𝑛𝑚𝑖𝑛 , we consolidate the
LOAD in the branch, creating a volatile copy of 𝑎 after the LOAD of
line 3 and making the LOAD of line 4 target such copy.

We now proceed with the next 𝐼𝑛𝑣 instruction, which is the LOAD
of line 6, as all the previous LOAD now target volatile memory. Here
we identify 𝑛 equal to 1 and, being 𝑛 > 𝑛𝑚𝑖𝑛 , we proceed with the

1. save state();
2. a = n;
3. x = a+ 1;
4. y = a− 1;
5. if(a > 0){
6. a = a+ 1;
7. }
8. z = a;
9. save state();

(a) Program

1. save state();

2.1. STORE R0, anv

3.1. LOAD anv, R1

4.1. LOAD anv, R2

5.1. LOAD anv, R3

R3 > 0

6.1. LOAD anv, R4

6.2. STORE R5, anv

8.1. LOAD anv, R6

9. save state();

TrueFalse

Inv

To consolidate

Inv ?

To consolidate?

mapping depends
on both Inv

7 consolidation uncertain

(b) Control Flow Graph

Figure 12: Example of compile-time uncertainty with condi-

tional statements when consolidating read operations. The

uncertainty affects a memory write instruction 𝐼𝑛𝑣 from which we

create a volatile copy of a memory location.

consolidation. Hence, we crate a volatile copy of 𝑎 after the LOAD
of line 6 and we make the LOAD of line 7 target such copy.

Next, we proceed with the STORE of line 7, for which we need
not any consolidation, as 𝑛 is 0. Our analysis now ends, as we now
processed all the memory read and write instructions that target
non-volatile memory.

Such iterative approach allows us to evaluate the consolidation
of every possible subset of memory read instructions. This allows
us to identify the most energy efficient memory mapping that is
specific only to single branches and that would otherwise not be
efficient or applicable to an antire computation interval due to the
presence of uncertainties.

4.5.3 Accounting for conditional writes

The presence of conditional statements that control the execution
of any memory write instruction 𝐼𝑛𝑣 targeting non-volatile mem-
ory is a source of uncertainty that prevents us to establish if the
subsequent memory read needs to target volatile or non-volatile
memory.
Example. Fig. 12 exemplifies the situation, wherewe alreadymapped
read and write instructions to non-volatile memory. Say that we
are to apply the consolidation of read operations. We start applying
the iterative algorithm that we previously describe and we consider
as the STORE of line 2 as 𝐼𝑛𝑣 . To proceed with the consolidation of
read operations, we need to identify all the memory read instruc-
tions 𝐼𝑟 that execute after such STORE, and before any other STORE
targeting non-volatile memory. As Fig. 12(b) shows, when the 𝑖 𝑓 of
line 5 evaluates to 𝑡𝑟𝑢𝑒 , the STORE of line 6 executes and we do not
consider the LOAD of line 8 as 𝐼𝑟 , as a prior write executes. Instead,
when the 𝑖 𝑓 of line 5 evaluates to 𝑓 𝑎𝑙𝑠𝑒 , we consider the LOAD of
line 8 as 𝐼𝑟 . As a matter of fact, the 𝑖 𝑓 statement of line 5 controls
the STORE of line 6 and controls whether we need to consider as 𝐼𝑟
all the instructions that may execute after it.

One could proceed and apply the conservative policy of making
the LOAD of line 8 target non-volatile memory. However, such option
may not be the most energy efficient and may fail to identify the
most efficient memory mapping. Say that 𝑛𝑚𝑖𝑛 is 0, that is, the case
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1. save state();

2.1. LOAD anv, R0

R0 > 0

3.1. LOAD anv, R1

3.2. STORE R2, anv

5.1. LOAD anv, R3

5.2. STORE R4, anv

6. save state();

TrueFalse

(a) Before consolidation

1. save state();

2.1. LOAD anv, R0

2.2. STORE R0, av

R0 > 0

3.1. LOAD av, R1

3.2. STORE R2, av

5.1. LOAD an, R3

5.2. STORE R4, anv

6. save state();

TrueFalse

Directly targets

volatile memory

(b) After consolidation

Figure 13: Example of a consolidation of memory reads that

removes the overhead introduced by the conditional strategy

when addressing the compile-time uncertainty of conditional

statements.

for the MSP430-FR5969 when the clock frequency is 16𝑀𝐻𝑧. The
number of 𝐼𝑟 instructions that execute after the STORE of line 6 is 1,
which is higher than 𝑛𝑚𝑖𝑛 . As a result, creating a volatile copy of
𝑎 after the STORE of line 6 provides a more efficient solution that
making the LOAD of line 8 target non-volatile memory.
Addressing uncertainty. To address such kind of uncertainty we
proceed iteratively, using a similar approach to the one we previ-
ously describe. Note that we cannot extend the instructions that
we consider outside the branch, as we otherwise may introduce
new compile-time uncertainties or wrongly make instructions tar-
get volatile/non-volatile memory. First, we start by evaluating the
number of memory read instructions 𝑛 by ignoring all the memory
read 𝐼𝑟 that may e Next, we gradually include the memory reads
instructions happening after the next conditionally-executed mem-
ory write instruction, until we reach a non-conditionally executed
memory write. Whenever 𝑛 > 𝑛𝑚𝑖𝑛 , we consolidate the identified
𝐼𝑟 .

In the example of Fig. 12(b), we consider as 𝐼𝑛𝑣 the STORE of line
2. First, we identify as 𝐼𝑟 the LOAD of lines 3-6. Note that 𝑛 is 3, as
our pessimistic strategy forces us to not account for the LOAD of line
6 when counting 𝑛, as it is conditionally-executed. Say that 𝑛𝑚𝑖𝑛 is
0, that is, the case for the MSP430-FR5969 when the clock frequency
is 16𝑀𝐻𝑧. Being 𝑛 > 𝑛𝑚𝑖𝑛 , we consolidate such 𝐼𝑟 instructions by
creating a volatile copy of 𝑎 after the STORE of line 2 and making
them target volatile memory. Next, we now consider the read that
executes after the STORE of line 6, with 𝑛 equal to 1. We consider the
LOAD of line 8 as the only 𝐼𝑟 , as the LOAD of lines 3-6 were already
consolidated during the previous step. Being 𝑛 equal to 1, that is,
𝑛 > 𝑛𝑚𝑖𝑛 , we consolidate such 𝐼𝑟 instruction.

These iterative steps ensure that we identify the most efficient
mapping for all the memory read instructions in the computation
interval, as we evaluate the consolidation of all the possible subsets
of instructions. Note that at each step, we identify as 𝐼𝑟 only the
memory read instructions that target non-volatile memory, consist-
ing in the memory read instructions that the previous iteration did
not consolidate. This is necessary as we would otherwise account
for the energy consumption of the memory read operations that

we already map to volatile memory, potentially causing the identi-
fication of an inefficient mapping for the memory read instructions
that still target non-volatile memory.

As we iteratively account for conditionally-executed memory
write instructions, an iterationmay considermore then onememory
write instruction for which a volatile copy is not created, that is,
a memory write instruction for which we did not consolidate the
following reads during the previous iteration. Such case affects the
application criteria for the read consolidation technique, as we may
need to create more than one volatile copy. Hence, to account for
the extra energy consumption required for creating such copies, we
need to introduce a new parameter, 𝑛𝑤 , in the 𝑛𝑚𝑖𝑛 formula that
we introduce in Sec. 3.4:

𝑛𝑚𝑖𝑛 =

⌊
𝐸𝑤𝑟𝑖𝑡𝑒 ∗ (𝑛𝑤)

𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 ∗ (1 +𝐶𝐶𝑟𝑒𝑎𝑑 ) − 𝐸𝑟𝑒𝑎𝑑

⌋
, (5)

The 𝑛𝑤 parameter corresponds to the number of memory write
instructions that we need to insert in the program to create a volatile
copy of the considered memory location.
Accounting for conservative strategy. At each iteration, we may
consider as additional write a memory write instruction 𝐼𝑤𝑖 that
does not produce final data, yet targets non-volatile memory due
to the presence of an uncertainty that we avoid by applying the
conservative strategy described in Sec. 4.4. When we consider such
memorywrite 𝐼𝑤𝑖 andwe end up in consolidating thememory reads
that follows, we need not to create a volatile copy after 𝐼𝑤𝑖 . Instead,
we directly make 𝐼𝑤𝑖 target volatile memory, as the consolidation
of the following reads removes the uncertainty that forced us to
make 𝐼𝑤𝑖 target non-volatile memory in the first place.

That is the case of the aforementioned Fig. 7, for which Fig. 13(a)
shows the resulting control flow graph after the mapping of read
and write operations. As we previously describe, we make the
STORE of line 3 target non-volatile memory to avoid compile-time
uncertainty on the mapping of the LOAD of line 5. Say that we are
to consolidate memory reads and that 𝑛𝑚𝑖𝑛 is 0, that is, the case for
the MSP430-FR5969 when the clock frequency is 16𝑀𝐻𝑧. We first
consider the LOAD of line 2 as 𝐼𝑛𝑣 and we identify the LOAD of line 3
as the only 𝐼𝑟 , as the 𝑖 𝑓 of line 2 contains a STORE instruction. Being
such 𝐼𝑟 conditionally-executed, we apply the pessimistic strategy
and we set 𝑛 equal to 0. Thus, we do not consolidate any read, as
𝑛 <= 𝑛𝑚𝑖𝑛 .

Next, we consider also the STORE of line 3 and the memory reads
that execute after. 𝐼𝑟 now consists in the LOAD of lines 3 and 5. This
leads to 𝑛 equal to 1, as the LOAD of line 3 is conditionally-executed.
We now need to compute 𝑛𝑚𝑖𝑛 using Eq. 5, as we are considering
an additional conditionally-executed write operation. The STORE
of line 3 does not produce final data and targets non-volatile mem-
ory to avoid a compile-time uncertainty, which we remove upon
consolidation of memory reads. In fact, after its consolidation, the
LOAD of line 5 targets volatile memory and the compile-time uncer-
tainty is no longer present. As a consequence, the STORE of line 3
need not to target non-volatile memory and we can make it target
volatile memory. For this reason, the number 𝑛𝑤 of memory write
instructions required to create a volatile copy of 𝑎 is 1, that is, the
additional STORE that we need to place after the LOAD of line 2.
As such, 𝑛𝑚𝑖𝑛 is still 0 and being 𝑛 > 𝑛𝑚𝑖𝑛 we proceed with the
consolidation of read operations. Fig. 13(b) shows the result.
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void f() {
1. a = ... ; 3. save state();

4. a = a+ 1;
5. f();
6. save state();
7. f();
8. a = n;
9. save state();

1.1. STORE R0, a
4.1. STORE R1, a

8.1. STORE R2, a

Last write

Not last write

Last write7 uncertain mapping

(a) Example of a compile-time uncertainty in function calls

void f() {
1. a = ... ; 3. save state();

4. a = a+ 1;
5. f();
6. a = a;
7. save state();
8. f();
9. a = n;
10. save state();

1.1. STORE R0, a

6.1. LOAD a, R1

6.2. STORE R1, a

Dummy write
to fix last write

Last write

9.1. STORE R2, a

Not last write

Not last write

Last write4 mapping no longer uncertain

(b) Normalized form of the program that removes the compile-time uncertainty

Figure 14: Example of a compile-time uncertainty with func-

tion calls.

4.6 Instruction Uncertainty→ Function Calls

Developers usually split programs into several functions, or sub-
routines, to logically divide the different program funcionalities.
Being each function a separate computation unit that reads and
writes a private slice of main memory, that is, the stack frame of
the function, we consider each function as a separate computation
interval when applying the techniques of Sec. 3.
Mapping memory reads and writes. From a memory standpoint,
the results of functions execution always reside outside the function’
stack frame, as a function can produce results in two different ways:
it writes a memory location outside its stack frame, or, it returns
the computed result to its caller. We map the memory read and
write operations targeting outside the function’ frame following
the same principles that we describe in Sec. 3.2, Sec. 3.3, and Sec. 3.4,
accounting for function calls and their outside-frame accesses when
identifying the first (last) memory read (write) instructions.

Differently, we map the stack frame of functions to volatile or
non-volatile memory depending on whether a function includes a
state-saving operation. Functions not containing any state-saving
operation execute within a single computation interval. As such,
their stack frame contains only intermediate results, which we
need not to preserve across power failures. Hence, we map all the
memory read and write instructions that target the stack frame of
such functions to volatile memory. Instead, we normally apply our
technique for mapping the read and write operations to functions
containing one or more state-saving operations, as such functions
execute across multiple computation intervals and their stack frame
contains data that need to be preserve across power failures to
correctly complete the function execution. Note that this is usually
the case of the program entry point, that is, the main function.
Compile-time uncertainty. The presence of multiple calls to a
function that executes outside frame accesses is a source of compile-
time uncertainty on the mapping of such accesses.

Fig. 14(a) exemplifies the situation, where the function 𝑓 exe-
cutes a memory write operation that writes the global variable 𝑎,

consisting in an outside frame access. Say that we are to apply
the mapping of write operations, described in Sec. 3.2. Doing so
requires to identify the last memory write instruction 𝐼𝑤𝑛 of each
computation interval. Depending on where a call to 𝑓 executes, the
STORE of line 1 may or may not be the one that makes the data
final for the global variable 𝑎. In the computation interval of lines
4-5 the call to 𝑓 of line 3 executes and the STORE of line 1 makes
the data final for the global variable 𝑎. Hence, such STORE is the
𝐼𝑤𝑛 we need to make target non-volatile memory. Instead, when
the call to 𝑓 of line 7 executes in the computation interval of lines
7-8, the STORE of line 1 produces intermediate data for the global
variable 𝑎, as the STORE of line 8 is the one making the data final
for 𝑎. Here the STORE of line 8 is the 𝐼𝑤𝑛 we need to make target
non-volatile memory, whereas the STORE of line 1 need to target
volatile memory. As a matter of fact, the calls to 𝑓 control whether
the STORE of line 1 is the 𝐼𝑤𝑛 . Note that the symmetric reasoning
is valid when we apply the mapping of read operations, described
in Sec. 3.3.

In general, the described instruction uncertainty arises whenever
a function 𝑓 contains a memory write (read) instruction 𝐼𝑥 that
targets outside 𝑓 frame and there exists at least two function calls
𝑐1 and 𝑐2 to 𝑓 such that: (i) when 𝑐1 executes 𝑓 , 𝐼𝑥 is the last (first)
memory write (read) and (ii) when 𝑐2 executes 𝑓 , 𝐼𝑥 is not the last
(first) memory write (read).
Function calls normalization. Such compile-time uncertainty
shares a similar pattern of the uncertainty of loops, described in
Sec. 4.3. Hence, we rely on the same normalization technique to
address such compile-time uncertainty. We insert a dummy write
operation after (before) the function call where 𝑓 executes a last
(first) memory write (read). This ensures that function calls no
longer control whether 𝑓 executes a last (first) memory write (read).

In the example of Fig. 14(a), we place a dummy write targeting
𝑎 after line 5 This ensures that the STORE of line 1 produces only
intermediate data for 𝑎, as when the call to 𝑓 of line 5 executes, the
STORE of line 1 no longer produces final data for 𝑎. Fig. 14(b) shows
the normalized program.

4.7 Instruction Uncertainty→ Computation

Intervals

To apply the techniques described in Sec. 3 to an arbitrary pro-
gram, we need to partition its instructions into computation inter-
vals, consisting in sequences of instructions executed between two
state-saving operations. Differently from previous cases, calls to
a function containing a state-saving operation do not introduce
any uncertainty, as they ends a computation interval, acting as a
computation interval boundary. Instead, the presence of loops and
conditional statements that control the execution of state-saving
operations may introduce compile-time uncertainty on the span
of computation intervals. We describe next how we address these
issues. Note that programs instrumented with task-based mecha-
nisms [16, 34, 35, 43, 46, 51] are usually not affected by this problem,
as state-saving operations only execute upon tasks compleition.
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1. save state();
2. a = tmp;
3. for(i = 0; i < n; i = i+ 1){
4. a = a+ 1;
5. save state();
6. ...
7. }
8. ...
9. save state();

(a) Program

1. save state();
2. a = tmp;
3.1. PRE-HEADER: i = 0;
3.2. HEADER: if(i >= n)

jump to END;
4. BODY: a = a+ 1;
5. save state();
6. ...
7.1. LATCH: i = i + 1;
7.2. jump to HEADER;
8. END: ...
9. save state();

2.1. STORE R0, av

4.1. LOAD a, R1

4.2. STORE R2, anv

C1

C3

C2

• In C1 must target volatile memory
• In C2 must target non-volatile memory

7 uncertain mapping

(b) Control flow representation

Figure 15: Example of a compile-time uncertainty in compu-

tation intervals of loops.

4.7.1 Loops

The presence of state-saving operations inside loops may intro-
duce compile-time uncertainty on the instructions that we need to
include in a computation interval.
Example. Fig. 15 exemplifies the situation, for which Fig. 15(b)
shows the resulting control flow when the program of Fig. 15(a) is
translated to machine-code. Say that we are partitioning the pro-
gram into computation intervals, required to apply the mapping
of read and write operations, described in Sec. 3. Following how
the loop executes, we identify three computation intervals. The
computation interval 𝐶𝐼1 of lines 2-4 includes the instructions exe-
cuted before the loop, that is, lines 2-3, and part of the instructions
executed during the first loop iteration, that is, lines 3-4. The com-
putation interval 𝐶𝐼2 of lines 6-7 and 3-4 includes the remaining
instructions executed during the first loop iteration, that is, lines
3-4, and part of the instructions executed during the second loop
iteration, that is, lines 6-7. Note that 𝐶𝐼2 covers all the iterations
of the loop, except the first and last iterations. Finally, the compu-
tation interval 𝐶𝐼3 of lines 6-8 includes the instructions executed
during the last loop iteration, that is, lines 6-7, and the instructions
executed after the loop, that is, line 8.

The state-saving operation of line 5 marks the end of a computa-
tion interval in the middle of a loop iteration, making the memory
operations of lines 3-4 part of both 𝐶𝐼1 and 𝐶𝐼2. Say that we map
the memory write operations and that we are to map the memory
read operations. When mapping 𝐶𝐼1, we make the LOAD of line 4
target volatile memory, as it need to access the intermediate result
produced by the STORE of line 2. Instead, when mapping 𝐶𝐼2, we
make the same LOAD of line 4 target non-volatile memory, as it
represents the first instruction of 𝐶𝐼2 that reads 𝑎. This represents
a compile-time uncertainty, as the LOAD of line 4 cannot target both
volatile and non-volatile memory at the same time.

1. save state();
2. a = tmp;
3.1. PRE-HEADER: i = 0;
3.2. save state();
3.3. HEADER: if(i >= n)

jump to END;
4. BODY: a = a+ 1;
5. ...
6.1. LATCH: i = i + 1;
6.2. save state();
6.3. jump to HEADER;
7. END: ...
8. save state();

2.1. STORE R0, anv

4.1. LOAD anv, R1

4.2. STORE R2, anv

C1

C2

C3 4 Uncertainty resolved

Figure 16: Normalization of the computation interval bound-

aries of the example of Fig. 15.

In general, such type of compile-time uncertainty arises when
a loop controls the execution of a state-saving operation and one
of the resulting computation intervals contains both (i) a memory
read or write operation 𝐼1 on a memory location 𝑥 that executes
during a loop iteration and (ii) a memory read or write operation
𝐼2 on a memory location 𝑥 that executes outside a loop. 𝐼1 is the
instruction that is part of multiple computation intervals and, as a
consequence, has an uncertain mapping. In the example of Fig. 15,
𝐼1 is the LOAD of line 4 and 𝐼2 is the STORE of line 2.
Normalization of computation intervals. To avoid such kind of
compile-time uncertainty, we normalize the computation interval
boundaries, ensuring that memory read and write instructions
executed during the iterations of a loop do not belong to multiple
computation intervals.

First, we place a state-saving operation before the loop header.
This ensures that the memory read and write instructions of the
header and body cannot belong to a computation interval that starts
prior to the loop. In the example of Fig. 15, we place a state-saving
operation between the PRE-HEADER and HEADER of line 3.

Similarly, we move the last state-saving operation of the loop
at the end of the latch, before the jump instruction. This ensures
that the memory read and write instructions of the body and latch
cannot belong to a computation interval that starts after to the loop.
In the example of Fig. 15, we move the state-saving operation of
line 5 at line 7.

Fig. 16 shows the result. The LOAD of line 4 of Fig. 15 is now part
of only one computation interval, that is, the one of lines 3-7 of
Fig. 16.

Note that by moving the checkpoint at the end of the latch we
do not alter the number of instructions executed between two
checkpoints. For this reason, our transformation does not cause
non-terminating path bugs [17], where the program is not able to
progress across power failures due to the instructions between two
checkpoints consuming more energy than the device can buffer.

4.7.2 Conditional Statements

Similarly to the loop case, conditional statements that controls the
execution of state-saving operations may introduce a compile-time
uncertain.

Fig. 17(a) exemplifies the situation. The presence of the 𝑖 𝑓 state-
ment of line 2 causes the STORE of line 2 to be part of multiple
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1. save state();
2. a = ...;
3. if(condition){
4. a = a+ 1;
5. save state();
6. }
7. y = a/3;
8. save state();

1. save state();

2.1. STORE R1, a

condition

4.1. LOAD a, R3

4.2. STORE R4, a

5. save state();

7.1. LOAD a, R2

8. save state();

TrueFalse

C1

C2

C3

• In C1: final result

• In C2: intermediate result

7 Uncertain mapping

(a) Example of a compile-time uncertainty in computation intervals of conditional
statements.

1. save state();
2. a = ...;
3. save state();
4. if(condition){
5. a = a+ 1;
6. }
7. y = a/3;
8. save state();

1. save state();

2.1. STORE R1, a

condition

4.1. LOAD a, R3

4.2. STORE R4, a

5. save state();

7.1. LOAD a, R2

8. save state();

TrueFalse

C1

C2

4 Uncertainty resolved

(b) Normalization of computation intervals of conditional statements.

Figure 17: Example of a compile-time uncertainty in compu-

tation intervals of conditional statements.

computation intervals. This represents the same uncertainty that
happens in loops, leading us to an uncertain mapping for the STORE
of line 2 when we are to map write operations. The symmetric
reasoning is also valid for the LOAD of line 7.
Normalization of computation intervals. Similarly to loops,
such type of compile-time uncertainty arises when a memory read
or write operation is part of multiple computation intervals. As
such, to avoid such kind of compile-time uncertainty, we rely on
the same normalziation technique of loops, which normalizes the
computation interval boundaries.

First, we place a state-saving operation before the conditional
statement. In the example of Fig. 17(a), we place a state-saving
operation before the 𝑖 𝑓 statement of line 3. This fixes the end of
the computation interval prior to the conditional statement.

Then, we remove from each branch the last state-saving op-
eration. In the example of Fig. 17(a), we remove the state-saving
operation of line 5. Fig. 17(b) shows the result.

After such transformation, if a branch still contains a state-saving
operation, we need to place a state-saving operation after the condi-
tional statement, so to fix the boundary of the computation intervals
that the conditional statement controls. Note that this is required
only when a branch contains multiple state-saving operations in the
first place, as otherwise would introduce an unnecessary overhead
that serves no purpose in avoiding the compile-time uncertainty.
In the example of Fig. 17(a), such additional state-saving operation
is not required.

1. save state();
2. tmp = a
3. tmp = tmp+ 1;
4. a = tmp;
5. y = f(a);

6. save state();

Power failure

LOAD anv, R0

STORE R1, anv

LOAD anv, R2

NVM

a: 0

NVM

a: 1

1. save state();
2. tmp = a
3. tmp = tmp+ 1;
4. a = tmp;
5. y = f(a);
6. save state();

NVM

a: 1

NVM

a: 2

7 Result differs from equivalent continuous execution

(a) Example of an intermittence anomaly.

1. save state();
2. tmp = a
3. tmp = tmp+ 1;
4. a = tmp;
5. y = f(a);

6. save state();

Power failure

LOAD ar, R0

STORE R1, arw

LOAD arw, R2

NVM

ar: 0

arw: ...

NVM

ar: 0

arw: 1

1. save state();
2. tmp = a
3. tmp = tmp+ 1;
4. a = tmp;
5. y = f(a);
6. save state();

NVM

ar: 0

arw: 1

4 Result equivalent to continuous execution

(b) Example of how to avoid the intermittence anomaly with memory versioning.

Figure 18: Example of an intermittence anomaly.

5 Memory Handling

Tomake the techniques of Sec. 3 and Sec. 4 work correctly, we devise
a custom memory layout that can be determined at compile-time
and a schema to address the possible intermittence anomalies.

5.1 Memory Layout

Despite virtual memory tags ensure we can group instructions that
operate on the same memory location, we still need to identify
the addresses of the volatile or non-volatile versions of a memory
location to correctly direct read/write operations.

We address this problem by placing the volatile and non-volatile
versions of a memory location at the same offset with respect to the
corresponding base address. Note that the compiler treats the two
segments as separate memory sections and makes them start at a
fixed offset. This ensures that the volatile and non-volatile versions
of the same memory location are at a fixed offset, too.

We can then express the address of the non-volatile version of a
memory location as a function of the address of its volatile version,
and vice versa. This allows us to allocate memory operations to
either memory segment with ease, even in the presence of indirect
accesses through pointers. For instance, to make an instruction that
originally operates on volatile memory now target the non-volatile
one, we add the offset between volatile and non-volatile segments to
its target address. We operate the other way around when we make
an instruction target volatile memory from the non-volatile one.
When the instruction executes, it retrieves the address information
that are unknown at compile-time and calculates the actual target.

5.2 Dealing with Intermittence Anomalies

Usingmixed-volatile platforms, the re-executions of non-idempotent
portions of code may cause intermittence anomalies [34, 41, 42, 44,
48], consisting in behaviors unattainable in a continuous execution.
The problem possibly arises regardless of whether the code is writ-
ten directly by programmers [34, 41, 42, 48] or is the result of the
program transformations of Sec. 3.
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Example. Consider the program of Fig. 18(a). Variable 𝑎 is non-
volatile. Following the state-save operation on line 1, the current
value of variable 𝑎, that is, 0, is initially retrieved from non-volatile
memory. The execution continues and line 4 updates the value of
variable 𝑎 on non-volatile memory to 1. This is how a continuous
execution would normally unfold.

Imagine a power failure happens right after the execution of
line 4. When the device resumes as energy is back, the program
restores the program state from non-volatile memory, which in-
cludes the program counter. The program then resumes from line 2,
which is re-executed. As variable 𝑎 on non-volatile memory retains
the effects of the operations executed before the power failure, the
value read by line 2 is now 1, that is, the value written in line 4
before the power failure in the previous power cycle. This causes
line 4 to produce a result that is unattainable in any continuous
execution, as it updates the value of variable 𝑎 to 2, instead of 1.

Many such situations exist that possibly cause erratic behaviors,
including memory operations on the stack and heap [41, 42, 48].
Memory versioning. Intermittence anomalies happen whenever a
power failure introduces a Write-After-Read (WAR) hazard [34, 41,
48] on a non-volatile memory location. In Fig. 18(a), the memory
read of line 2 and the memory write of line 4 represent a WAR
hazard for variable 𝑎. Several techniques exist to avoid the occur-
rence of intermittence anomalies [26, 34–36, 41, 42, 48]. In general,
it is sufficient to break the sequences of instructions involved in
WAR hazards [34, 41, 42, 48] so the involved instructions neces-
sarily execute in different power cycles. Existing solutions place
additional checkpoints [48] or enforce transactional semantics to
specific portions of code [26, 34–36].

We use a different approach that tightly integrates with the
compile-time operation of ALFRED. First, to reduce the number of
instructions possibly re-executed, every call to a state-save oper-
ation in ALFRED systematically dumps the state on non-volatile
memory, regardless of the current energy level. This is different
than in many checkpoint systems, where the decision to take a
checkpoint is subject to current energy levels [7, 8, 11, 45]. The
overhead we impose by doing this is very limited, as state-save
operations are limited to register file and program counter after
applying the transformations of Sec. 3.

For each computation interval, we then create two versions of
each non-volatile memory location possibly involved in a WAR
hazard. One version is a read-only copy and contains the result
produced by previous computation intervals; the other version is a
read-and-write copy and contains the result of the considered com-
putation interval. We direct the memory read (write) instructions
to the read-only (read-and-write) copy. This ensures that in case
of a re-execution, the read operations access the values produced
by the previous computation interval, as the (partial) results of the
current computation interval remain invisible in the read-and-write
copies. When transitioning to the next computation interval, the
read-only and read-and-write copies are swapped to allow the next
computation interval to access the (now, read-only) data of the
computation interval just concluded.

Fig. 18(b) shows how this solves the intermittence anomaly of
Fig. 18(a). Line 2 reads variable 𝑎’s read-only copy, whereas line 4
writes variable 𝑎’s read-and-write copy. Line 4 accordingly reads

variable 𝑎’s read-and-write copy, as it needs the data that line 4 pro-
duces. If a power failure happens after line 4 and line 2 is eventually
re-executed, that read operation still targets𝑎 read-only copy, which
correctly reports 0. Instead, after swapping the two copies, the next
computation interval correctly accesses the copy of variable 𝑎 that
reports value 1, equivalently to a continuous execution.

We apply this technique as a further code processing step, as
shown in stage ⟨5⟩ of Fig. 1. First, we identify the WAR hazards.
For each memory write instruction 𝐼𝑤 on a non-volatile memory
location with tag 𝑥 , we check if there exists a memory read instruc-
tion 𝐼𝑟 such that i) 𝐼𝑟 targets a non-volatile memory location with
the same memory tag 𝑥 , and ii) 𝐼𝑟 may execute before 𝐼𝑤 , that is, 𝐼𝑟
happens before 𝐼𝑤 in the control-flow graph. If such 𝐼𝑟 exists, the
pair (𝐼𝑤 , 𝐼𝑟 ) represents a WAR hazard.

Next, we create the read-only and read-and-write copies by dou-
bling the space that the compiler normally reserves to the data
structure 𝑥 refers to. As we allocate the two copies in contiguous
memory cells, their relative offset is fixed and may be used at com-
pile time to direct the memory operation to either copy. We then
make 𝐼𝑟 target the read-only copy, together with every memory
read instruction that operate on 𝑥 and executes before 𝐼𝑤 . In con-
trast, we make 𝐼𝑤 target the read-and-write copy of 𝑥 , together
with all corresponding memory read instructions that happen after
𝐼𝑤 .
Compile-time uncertainty. As memory versioning is applied
after program normalization, the compile-time uncertainty in the
order of instruction execution or in the span of computation inter-
vals is already resolved at this stage.

Note that when mapping memory read and write operations to
non-volatile memory, there are two different versions of a memory
location that refer to two different versions of the same data. We
have the same situation when applying memory versioning. As
such, the applicaton of memory versioning may be subjected to the
same compile-time uncertainties that we already describe in Sec. 4,
which we can resolve using the same normalization techniques.
However, memory versioning introduces new memory access pat-
terns then we need to account when applying normalization tech-
niques to avoid compile-time uncertainties. We describe next how
we extend the normalization techniques of Sec. 4 to account for
such access patterns.

5.2.1 Compile-time Uncertainty → Loops

Memory versioning may introduce a new access pattern inside
loops that may lead to a compile-time similar to the one described
in Sec. 4.3.
Example. Fig. 19(a) exemplifies the situation, where we already ap-
plied the mapping of read and write operations, described in Sec. 3.
Say that we are to apply memory versioning to avoid the WAR
hazard of line 4. We need to make all the memory read operations
before the STORE of line 4 target 𝑎 read-only version. During the
first loop iteration, the LOAD of line 3 needs to target 𝑎 read-only
version. Instead, during all the other loop iterations, the LOAD of
line 3 needs to target 𝑎 read-and-write version, as it need to read the
data that the STORE of line 4 produced during the previous iteration.

This compile-time uncertainty shares the same pattern of the
example of Fig. 6(a), described in Sec. 4.3. However, differently from
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1. save state();
2. for(i = 1; i <N; i++) {
3. tmp = a[i− 1];
4. a[i] = a[i] + tmp;
5. }
6. save state();

3.1. LOAD a[i-1], R0

• First iteration: needs to target a read-only version
• Other iterations: needs to target a read-and-write version

7 Uncertain target version

4.1. LOAD a[i]ro, R1

4.2. STORE R2, a[i]rw

reads a read-only version

writes a read-and-write version

(a) Example of a compile-time uncertainty during the application of memory versioning.

1. save state();
2. a[0] = a[0];
3. for(i = 1; i <N; i++) {
4. tmp = a[i− 1];
5. a[i] = a[i] + tmp;
6. a[i] = a[i];
7. }
8. save state();

2.1. LOAD a[0]ro, R0

2.2. STORE R0, a[0]v creates a[0] volatile copy

4.1. LOAD a[i-1]v, R1 reads a[i] volatile copy

5.1. LOAD a[i]ro, R2

5.2. STORE R3, a[i]rw

reads a read-only version

writes a read-and-write version

6. STORE R3, a[i]v creates a[i] volatile copy

4 Uncertainty removed

(b) Normalization of the memory read causing the compile-time uncertainty.

Figure 19: Example of a compile-time uncertainty in loops

during the application of memory versioning to avoid inter-

mittence anomalies.

such a case, here the uncertainty arises only when memory read
and write operations access non-scalar data structures, as the nor-
malization described in Sec. 4.3 addresses the uncertainty of scalar
accesses.

In general, memory versioning introduces a compile-time uncer-
tainty in a loop 𝐿 whenever (i) 𝐿 contains no state-saving operation,
(ii) 𝐿 controls the execution of a memory read instruction 𝐼𝑟 tar-
geting a cell of a non-scalar data structure 𝑥 that previous loop
iterations may write, and (iii) the instructions executed during an
iteration of 𝐿 contain a WAR hazard on some memory cells of 𝑥 .
Normalization. We use a similar concept to the one of Sec. 4.3
to avoid such compile-time uncertainty. We rely on dummy-write
operations to create volatile copies of the memory cells of the non-
scalar data structure 𝑥 that 𝐼𝑟 reads.

Creating a volatile copy of a non-scalar data structure 𝑥 requires
𝑛 dummy-writes, where 𝑛 is the number of memory cells of 𝑥 .
This introduce a significant energy overhead that we reduce by
placing dummy-writes where they introduce the lowest possible
energy overhead. In the example of Fig. 19(a), we place a dummy-
write after the STORE of line 4, consisting in a STORE operation
targeting 𝑎[𝑖] volatile copy. Such dummy write can avoid to read
𝑎[𝑖] from non-volatile memory, as such value is already present in
a register. Hence, it consists only in a STORE instruction that writes
𝑎[𝑖] volatile copy. This not only minimizes the energy overhead
of such dummy-write, but also ensures that we create a volatile
copy only for the memory cells that the uncertain memory read 𝐼𝑟
targets. Note that in the example of Fig. 19(a), 𝐼𝑟 is the LOAD of line
3.

We now need to place before the loop one dummy-write for
each memory cell that 𝐼𝑟 targets, but the instructions in the loop
body do not write. In the example of Fig. 19(a), we insert a single
dummy-write before the loop, which creates a copy of the memory
cells of 𝑎 that the STORE of line 4 does not write, that is, 𝑎[0].

1. save state();

2.1. LOAD aro, R0

R0 > 0

3.1. LOAD aro, R1

3.2. STORE R2, arw

5.1. LOAD a?, R3

5.2. STORE R4, arw

6. save state();

TrueFalse

• Branch taken False :
needs to target a read-only version aro

• Branch taken True :
needs to target a read-and-write version arw

7 Uncertaint target version of a

(a) Example of a compile-time uncertainty during the application of
memory versioning.

1. save state();

2.1. LOAD aro, R0

R0 > 0

3.1. LOAD aro, R1

3.2. STORE R2, arw

N.1. LOAD aro, R3

N.2. STORE R3, arw

5.1. LOAD arw, R4

5.2. STORE R5, arw

6. save state();

TrueFalse

4 Uncertainty removed

(b) Normalization of the memory write causing the compile-time
uncertainty.

Figure 20: Example of a compile-time uncertainty during

the application of memory versioning to avoid intermittence

anomalies.

These transformations ensures that, when 𝐼𝑟 executes, a volatile
copy of the targeted memory cell is available. Hence, we can now
make 𝐼𝑟 target volatile memory, resolving the compile-time uncer-
tainty. Fig. 19(b) shows the results of the normalization applied to
the example of Fig. 19(a).

5.2.2 Compile-time Uncertainty →
Conditionally-executed First Writes

As we anticipate in Sec. 4.4, we need to address a particular case
of compile-time uncertainty that may arise when applying our
memory versioning technique to a conditionally-executed memory
write operation that targets non-volatile memory and that may
execute as first write.
Example. Fig. 20(a) exemplifies such situation, which arises when
we are to apply memory versioning to the example of Fig. 7. Note
that the STORE of line 3 targets non-volatile memory to address the
compile-time uncertainty that was present during the mapping of
memory read operations, for which we already provide a detailed
description in Sec. 4.4. When the 𝑖 𝑓 statement evaluates to 𝑡𝑟𝑢𝑒 , the
LOAD of line 5 needs to target 𝑎 read-only version, as it needs to read
the value of 𝑎 produced during a previous computation interval.
Instead, when the 𝑖 𝑓 statement evaluates to 𝑓 𝑎𝑙𝑠𝑒 , the LOAD of line
5 needs to target 𝑎 read-and-write version, as it needs to read the
value of 𝑎 that the STORE of line 3 writes.
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1. save state();
2. a[1] = a[1] + n
3. x = a[0] + 1;
4. ...
5. save state();
6. x = a[0];
7. x = a[1];
8. ...
9. save state();

2.1 LOAD a[1]ro, R0

2.2 STORE R1, a[1]rw

3.1 LOAD a[0]ro, R2

6.1 LOAD a[0]ro, R3

7.1 LOAD a[1]ro, R4

RW RO
a[0] 0 1
a[1] 2 1

NVM

Switch versions

RO RW
a[0] 0 1
a[1] 2 1

NVM

7 a[0] read-only version contains old data

Figure 21: Example of a compile-time uncertainty due to a

partial update of a non-scalar data structure.

This compile-time uncertainty shares the same pattern of the
one of the example of Fig. 7, described in Sec. 4.4. Moreover, it arises
as a consequence of the application of the conservative strategy to
deal with the compile-time uncertainty on the LOAD of line 5.

In general, such compile-time uncertainty arises whenever in a
computation interval (i) amemory location𝑥 requires two non-volatile
versions due to the presence of a WAR hazard, (ii) a memory write
operation 𝐼𝑤 that targets 𝑥 may execute as first write, and (iii) a
memory read operation 𝐼𝑟 can both read the result of 𝐼𝑤 or of
another operation. Note that 𝐼𝑟 is the same memory read instruc-
tion involved in the compile-time uncertainty that we describe in
Sec. 4.4.
Normalization. To avoid such uncertainty we need to apply the
non-conservative strategy, instead of the conservative one, when
dealing with the normalization of 𝐼𝑟 , as the uncertainty is a conse-
quence of the application of the conservative strategy. This ensures
that 𝐼𝑟 always reads the result of 𝐼𝑤 , removing the compile-time
uncertainty on the memory location it needs to target. Hence, when
we map the memory read and write operations in the example of
Fig. 20(a), instead of making the STORE of line 3 and the LOAD of
line 5 target non-volatile memory, that is, the conservative strategy,
we insert a dummy-write targeting 𝑎 in the 𝑓 𝑎𝑙𝑠𝑒 branch of the 𝑖 𝑓
statement of line 2, that is, the non-conservative strategy. Fig. 20(b)
shows the result.

5.2.3 Compile-time Uncertainty→ Partial Updates to

Non-scalar Data Structures

Partial updates to non-scalar data structures, such as arrays or
structs, may leave the read-and-write version of the data structure
in an uncertain state, as the non-updated memory cells may contain
old or invalid data. This introduces a compile-time uncertainty on
the version of the data structure that computation intervals need
to consider as read-only and read-and-write versions.
Example. Fig. 21 exemplifies this situation. Say that we already
mapped the memory read and write operations, as described in
Sec. 3, and that we are to apply memory versioning. We need to
create two versions of 𝑎, as there is a WAR hazard between the
LOAD and STORE instructions of line 2. We make the LOAD of line 2
target 𝑎 read-only version and the STORE of line 2 target 𝑎 read-and-
write version. Then, we make the LOAD of line 3 target 𝑎 read-only

version, as no prior instruction writes the memory cell of 𝑎 that it
targets. The instructions in the computation interval of lines 2-4
update only 𝑎[1] and the read-and-write version of 𝑎[0] contains a
previous value of 𝑎[0]. Before applying memory versioning to the
computation interval of lines 6-9, we need to switch the read-only
and read-and-write versions of 𝑎, so that the LOAD instructions of
lines 6 and 7 target the version that contains the most updated
value of 𝑎. However, being 𝑎[0] not modified in the computation
interval of lines 2-4, the LOAD of lines 6-7 need to target two different
versions of 𝑎. The LOAD of line 6 needs to read the data that is
now contained in the read-and-write version of 𝑎, whereas the
LOAD of line 7 needs to read the data that is now contained in
the read-only version of 𝑎. Note that this situation happens as,
in the computation interval of lines 6-8, 𝑎 read-only version does
not contain the updated value of each cell, as it is spread across 𝑎
read-only and read-and-write versions.

In general, such compile-time uncertainty happens whenever
the instructions of a computation interval 𝐶1 write a subset of a
non-scalar data structure 𝑥 and a computation interval 𝐶2, which
executes after 𝐶1, contains (i) a memory read instruction 𝐼𝑟1 that
reads a memory cell of 𝑥 that is updated in 𝐶1 and (ii) a memory
read instruction 𝐼𝑟2 that reads a memory cell of 𝑥 that is not updated
in𝐶1. Note that if𝐶1 is part of a loop and the instructions it contains
end up in writing all the cells of 𝑥 , no instruction of a computation
interval 𝐶2 outside the loop can read a not-updated memory cell of
𝑥 . In the example of Fig. 21, 𝐶1 (𝐶2) is the computation interval of
lines 2-4 (6-8). Moreover, the LOAD of line 7 (6) is 𝐼𝑟1 (𝐼𝑟2).
Normalization. To address this issue, we normalize the version of
the non-scalar data structure 𝑥 that a computation interval consid-
ers as read-only by copying from the other version the data that
it lacks. We consider two possible strategies: a copy forward and
copy back.

The copy forward strategy uses a set of dummy-write opera-
tions to copy the value of the non-updated memory cells from the
read-only version of 𝑥 to the read-and-write version of 𝑥 . In the
example of Fig. 21, we add a dummy-write after the computation
interval of lines 2-4 to copy the value of 𝑎[0] from 𝑎 read-only
version to 𝑎 read-and-write version. Fig. 22(a) shows the result.

Instead, the copy back strategy uses a set of dummy-write op-
erations to copy the value of the updated memory cells from the
read-and-write version of 𝑥 to the read-only version of 𝑥 . Note that
in such a case, we need not to switch the read-only and read-and-
write versions of 𝑥 , as the updated data resides in the read-only
version of 𝑥 . In the example of Fig. 21, we add a dummy-write af-
ter the computation interval of lines 2-4 to copy the value of 𝑎[1]
from 𝑎 read-and-write version to 𝑎 read-only version. Then, the
computation interval of lines 2-4 considers as 𝑎 read-only (read-and-
write) version the same read-only (read-and-write) version that the
computation interval of lines 6-8 considers. Fig. 22(b) shows the
result.

As Fig. 22 shows, idependently of the normalization strategy, we
place dummy-write operations in a custom computation interval
that execute after the computation interval𝐶1 that partially updates
the non-scalar data structure. This ensures that the dummy-write
operations required for the normalization (i) cannot introduce any
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1. save state();
2. a[1] = a[1] + n
3. x = a[0] + 1;
4. ...
5. save state();
6. a[0] = a[0];
7. save state();
8. x = a[0];
9. x = a[1];
10. ...
11. save state();

2.2 STORE R0, a[1]rw

6.1 LOAD a[0]ro, R1

6.2 STORE R1, a[0]rw

6.1 LOAD a[0]ro, R3

7.1 LOAD a[1]ro, R4

RW RO
a[0] 1 1
a[1] 2 1

NVM

Switch versions

RO RW
a[0] 1 1
a[1] 2 1

NVM

4 a[0] read-only version contains latest data

(a) Copy forward strategy

1. save state();
2. a[1] = a[1] + n
3. x = a[0] + 1;
4. ...
5. save state();
6. a[1] = a[1];
7. save state();
8. x = a[0];
9. x = a[1];
10. ...
11. save state();

2.2 STORE R0, a[1]rw

6.1 LOAD a[1]rw, R1

6.2 STORE R1, a[1]ro

6.1 LOAD a[0]ro, R3

7.1 LOAD a[1]ro, R4

RW RO
a[0] 0 1
a[1] 2 2

NVM

Do not switch versions

RW RO
a[0] 0 1
a[1] 2 2

NVM

4 a[0] read-only version contains latest data

(b) Copy back strategy

Figure 22: Normalization of the example of Fig. 21 to avoid

the compile-time uncertainty due to a partial update of a

non-scalar data structure.

intermittence anomaly, and (ii) cannot increase the energy con-
sumption of the computation interval where the execuute in such a
way that makes the program unable to reach the next state-saving
operation [17]. Note that the state-saving operation that ends the
custom computation interval introduces a low energy and computa-
tion overhead, as it needs only to save the program counter. In fact,
the general purpose register used by the dummy-write operations
does not contain data read by the program and consequently need
not to be preserved.
Strategy selection.We select the strategy that minimizes the over-
head of dummy-write operations, that is, the one that minimizes the
number of dummy-write operations. We identify as 𝑛 the number
of memory cells of a non-scalar data structure 𝑥 and as 𝑛𝑛𝑒𝑤 the
number of memory cells of 𝑥 that a computation interval writes.
When 𝑛𝑛𝑒𝑤 ≥ 𝑛

2 , we apply the copy forward strategy. Otherwise,
we apply the copy back strategy. In the example of Fig. 21, we apply
the copy forward strategy, as 𝑛 is 2 and 𝑛𝑛𝑒𝑤 is 1.

Note that when the updated memory cells are not predictable at
compile-time, we instrument the program to track the updatedmem-
ory cells, using a technique similar to differential checkpoints [3].

Then, at runtime, we evaluate and execute the strategy that intro-
duces the lowest overhead.

6 Evaluation

Our evaluation of ALFRED considers multiple dimensions. We
describe next the experimental setup and the corresponding results.

6.1 Setting

We opt for system emulation over hardware-based experimentation,
as it enables better control on experiment parameters and allows
us to carefully reproduce program execution and energy patterns
acrossALFRED and the baselines we consider. Because of the highly
non-deterministic behavior of energy sources, achieving perfect
reproducibility is extremely challenging using real devices [22].
Tool and implementation. We use ScEpTIC [38, 42], an open-
source extensible emulation tool for intermittent programs. ScEp-
TIC emulates the execution of the LLVM Intermediate Representa-
tion (IR) [33] of a source code and provides bindings for implement-
ing custom extensions to i) apply program transformations and ii)

map specific performance metrics of the IR to those of machine-
specific code, for example, to measure energy consumption.

ScEpTIC organizes the LLVM IR into a set of Abstract Syntax
Trees (ASTs), one for each function in source code. Each of these
ASTs is generated by augmenting the original LLVM AST with
dedicated ScEpTIC elements, which represent information on the
emulated instructions and architectural elements, such as I/O op-
erations and registers. We implement the pipeline of Fig. 1 from
stage ⟨3⟩ onwards as a set of further transformations of these ASTs.
An open-source prototype release of our ScEpTIC extension imple-
menting ALFRED transformations is available [39].

We create a ALFREDmodule inside ScEpTIC, which implements
part of the pipeline of Fig. 1 as a set of transformations and analysis
of these ASTs, each one contained in a dedicated submodule.

TheASTParser submodule reorganizes the instructions of ASTs
into basic blocks, and groups the basic blocks that represent a loop
(conditional statement) onto a LoopBlock (ConditionalBlock). Such
instruction organization ease the logic complexity of further trans-
formations and analysis passes, as not only conditional statements
and loops correspond to dedicated objects, but also the ASTs no
longer have backward edges or bifurcations. Next, the Computa-

tionIntervalsNormalizer submodule applies the normalization
techniques of Sec. 4.7 to all the instances of LoopBlocks and Condi-

tionalBlocks, removing the compile-time uncertainty in the span of
computation intervals. The ComputationIntervalsManager sub-
module now extracts the basic blocks contained in the instances of
LoopBlocks and ConditionalBlocks that include a state-saving opera-
tion, and then splits each ASTs into computation intervals. Then,
the MemoryTagParser submodule associates to each memory
read and write operation the memory tag of the targeted memory
location. Note that the memory tag is identified from the metadata

Dimension Possible instances

Memory configuration Volatile, NonVolatile
Checkpoint call placement Loop-Latch, Function-Return,

IdempotentBoundaries
Checkpoint execution Probe, Execute

Figure 23: Design dimensions for baselines.
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Figure 24: Energy consumption and number of clock cycles

comparing ALFRED with a baseline using Volatile, Probe,

and either Loop-Latch or Function-Return. For a baseline,

’ll’ or ’fr’ indicate Loop-Latch or Function-Return.

that ScEpTIC associates to each instruction, which consists in de-
bug symbols. The resulting ASTs represent stage ⟨3⟩ of the pipeline
shown in Fig. 1.

The VirtualMemoryTransformation submodule applies the
techniques of Sec. 3. First, it normalizes each computation interval,
using the techniques of Sec. 4.3, Sec. 4.4, and Sec. 4.6 to address
the compile-time uncertainty of loops, conditional statements, and
function calls, respectively. Then, it maps memory read and write
operations, as described in Sec. 3.2 and Sec. 3.3. Finally, it consoli-
dates memory reads operations, as described in Sec. 3.4, using the
iterative approach of Sec. 4.5 to address compile-time uncertainty.
Note that when normalizing the ASTs, the VirtualMemoryTrans-
formation module accounts also for the normalization extensions
of Sec. 5.2, necessary for memory versioning. The resulting ASTs
represent stage ⟨4⟩ of the pipeline shown in Fig. 1.

As ScEpTIC abstracts the emulated MCU memory, we need not
reproduce the memory layout and versioning of Sec. 5, applied
during stage ⟨5⟩ of Fig. 1. However, to differentiate volatile and non-
volatile memory accesses, we flag each memory read and write,
specifying whether it targets volatile or non-volatile memory. Fi-
nally, the VirtualMemoryTransformation submodule simply
joins the computation intervals of each AST, reaching stage ⟨6⟩ of
Fig. 1.

We also implement a machine-specific ScEpTIC extension to
map the execution of the IR to the energy consumption of the
MSP430-FR5969 [28], a low-power MCU that features an inter-
nal and directly-addressable FRAM as non-volatile memory. The
MSP430-FR5969 is often employed for intermittent computing [8,
34, 35, 45, 48]. Our extension takes as configuration parameters the
energy consumption per clock cycle of various operating modes of
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Figure 25: Memory accesses comparing ALFRED with a

baseline using Volatile, Probe, and either Loop-Latch or

Function-Return.

Benchmark

Baseline VM

(bytes)

Baseline NVM

(bytes)

ALFRED VM

(bytes)

ALFRED NVM

(bytes)

CRC (ll) 8Mhz 812 1688 6 850
CRC (ll) 16Mhz 812 1688 26 850
CRC (fr) 8Mhz 812 1636 26 810
CRC (fr) 16Mhz 812 1636 30 810
FFT (ll) 8Mhz 16708 33514 64 29082
FFT (ll) 16Mhz 16708 33514 2188 29082
AES (ll) 8Mhz 1276 2614 40 1334
AES (ll) 16Mhz 1276 2614 42 1334
AES (fr) 8Mhz 1276 2614 58 1338
AES (fr) 16Mhz 1276 2614 62 1338

Figure 26: Volatile memory (VM) and non-volatile memory

(NVM) in ALFRED against a baseline using Volatile, Probe,

and either Loop-Latch or Function-Return.

the MSP430-FR5969 [28], such as regular computation, (non-)vo-
latile memory read/write operations, and peripheral accesses.
Baselines and benchmarks.We compare ALFRED with check-
point mechanisms that instrument programs automatically [11, 36,
45, 48] by placing calls to a checkpoint library at specific places
in the code. We do not consider, instead, checkpoints mechanisms
that use interrupts to trigger the execution of checkpoints [7, 8, 29–
31], including TICS [31] and the work of Jayakumar et. al [30], as
checkpoints do not execute at pre-defined places in the code and
thus boundaries of computation intervals cannot be identified. The
latter is required for ALFRED to apply the transformations of Sec. 3.

Due to the variety of existing compile-time checkpoint systems,
we abstract the key design dimensions in a framework that allows
us to instantiate baselines that correspond to existing works, while
retaining the ability to explore configurations not strictly corre-
sponding to available systems. Fig. 23 summarizes these dimensions.

On such design dimension is the memory configuration. We con-
sider two possible instances, Volatile andNonVolatile. Volatile
allocates the entire main memory onto volatile memory. To ensure
forward progress, each checkpoint must therefore save the content
of mainmemory, register file, and special registers onto non-volatile
memory. This is the case, for example, in Mementos [45] and Har-
vOS [11]. Instead, the NonVolatile instance allocates the entire
main memory onto non-volatile memory. Here checkpoints may
be limited to saving the content of the register file and program
counter onto non-volatile memory, as main memory is already
non-volatile. This is the case of Ratchet [48].

A givenmemory configuration is typically coupled to a dedicated
strategy for placing checkpoint calls in the code. Systems that only
use volatile main memory, as in Volatile, may place checkpoints

19



Baseline computation

ALFRED computation

Baseline checkpoints

ALFRED checkpoints

Baseline restore

ALFRED restore

CRC (ll
) 8

Mhz

CRC (ll
) 1

6Mhz

CRC (fr
) 8

Mhz

CRC (fr
) 1

6Mhz

FFT (ll
) 8

Mhz

FFT (ll
) 1

6Mhz

AES (ll
) 8

Mhz

AES (ll
) 1

6Mhz

AES (fr
) 8

Mhz

AES (fr
) 1

6Mhz
0

1

2

3

4

5

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

10-4

x x

(a) Energy consumption

CRC (ll
) 8

Mhz

CRC (ll
) 1

6Mhz

CRC (fr
) 8

Mhz

CRC (fr
) 1

6Mhz

FFT (ll
) 8

Mhz

FFT (ll
) 1

6Mhz

AES (ll
) 8

Mhz

AES (ll
) 1

6Mhz

AES (fr
) 8

Mhz

AES (fr
) 1

6Mhz
0

5

10

15

C
lo

c
k

 c
y

c
le

s

105

xx

(b) Clock cycles

Figure 27: Energy consumption and number of clock cycles

comparing ALFRED with a baseline using NonVolatile,

Execute, and either Loop-Latch or Function-Return.

using the Loop-Latch or Function-Return placement strategies
of Mementos [45]. Systems that only use non-volatile main mem-
ory, as in NonVolatile, place checkpoints using the strategy of
Ratchet [48]. This entails identifying idempotent sections of the
code and placing checkpoint calls at their boundaries. We accord-
ingly call this strategy IdempotentBoundaries. This ensures that
intermittence anomalies are solved by construction, as re-execution
of code only occurs across idempotent sections of code.

Once checkpoint calls are placed in the code, the checkpoint ex-
ecution policy dictates the conditions that possibly determine the
actual execution of a checkpoint. Indeed, a checkpoint call may
systematically cause a checkpoint to be written on non-volatile
memory, or rather probe the current energy levels first, for ex-
ample, through an ADC query, and postpone the execution of a
checkpoint if energy is deemed sufficient to continue without it.
The former kind of behavior, which we call Execute, is the case of
Ratchet [48], Chinchilla [36], and TICS [31] when it relies on check-
points manually placed by developers; the latter kind of behavior
we call Probe and reflects HarvOS [11] and Mementos [45].

A combination of memory configuration, strategy for placing
checkpoint calls, and checkpoint execution policy represents the
single baseline. Note that not all combinations of these dimensions
are necessarily meaningful. For instance a NonVolatile memory
configuration necessarily requires checkpoints to behave in an Ex-
ecute manner, or the risk of intermittence anomalies would be too
high and the overhead to address them correspondingly prohibi-
tive [44]. As ALFRED requires as input a placement of state-saving
operations, when comparing with a certain baseline we use the
same such placement. Moreover, being the FRAM performance and
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Figure 28: Memory accesses comparing ALFRED with a base-

line using NonVolatile, Execute, and either Loop-Latch

or Function-Return.

energy consumption affected by the MCU operating frequency [28],
we consider both 8𝑀ℎ𝑧 and 16𝑀ℎ𝑧 clock configurations.

Applications deployed onto battery-less devices typically consist
in a sense-process-transmit loop [1, 13, 27]. Checkpoint techniques
and memory configurations mainly affect processing, whereas sens-
ing and transmissions impose the same overhead regardless of the
former. For this reason, similar to related literature, we focus on pro-
cessing functionality and consider a diverse set of benchmarks com-
monly used in intermittent computing [7, 8, 26, 29, 42, 45, 48]: Cyclic
Redundancy Check (CRC) for data integrity, Advanced Encryption
Standard (AES) for data encryption, and Fast Fourier Transform
(FFT) for signal analysis. We use Clang version 7.1.0 to compile their
open-source implementations, as available in the MiBench2 [25]
suite, using the default compiler settings. The binaries output by
the compiler never exceed 30𝑘𝐵.
Metrics and energy patterns.We focus on energy consumption

and number of clock cycles necessary to complete a fixed workload.
Being harvested energy scarce, the former captures how battery-
less devices perform when deployed and represents an indication
of the perceived end-user performance [1, 13, 27]. The latter al-
lows us to identify how the overhead of ALFRED affects perfor-
mance, as it mainly consists in the additional instructions required
to address the compile-time uncertainties, as described in Sec. 4.
Note that the two metrics are not necessarily proportional, because
non-volatile memory accesses may require extra clock cycles and
consume more energy than accesses to volatile memory [28]. AL-
FRED may also introduce an overhead in the form of additional
memory occupation, as the same data may need space in both
volatile and non-volatile memory. To measure this, we keep track
of the use of volatile/non-volatile memory spaces during the execu-
tion. To gain a deeper insight into the performance trends we also
record volatile/non-volatile memory accesses, and the execution of
checkpoint and restore operations.

Patterns of ambient energy harvesting may be simulated using
IV surfaces [21, 22] or by repetitively simulating power failures
after a pre-determined number of executed clock cycles [40, 48].
The former makes simulated power failures happen at arbitrary
points in times and provides little control on experiment executions,
making it difficult to sweep the parameter space. The latter may be
tuned according to statistical models, and offers better control on
experiment executions by properly tuning model parameters. The
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Figure 29: Energy consumption and number of clock cycles

comparing ALFRED with a baseline using NonVolatile,

Execute, and IdempotentBoundaries.

behavior of ALFRED is largely independent of the specific number
of executed clock cycles between consecutive power failures; we
therefore opt for the second option.

We model an RF energy source. To determine the number of
executed clock cycles between two power failures, we rely on the
existing measurements from ten real RF energy sources used for
the evaluation of Mementos [45], which features a MCU configu-
ration compatible with our setup. To evaluate multiple scenarios,
including the worst and best possible ones, we execute each bench-
mark considering the minimum, average, and maximum number
of executed clock cycles between power failures, modeled after
the aforementioned real measurements. We report on the results
obtained in the average scenario, as there is no sensible difference
among the three scenarios. Note that, when using the Probe strat-
egy, we make sure that the last checkpoint call before a power
failure is the one that does save a checkpoint, as this represents the
same behavior of real scenarios.

6.2 Results

We consider three combinations of the design dimensions of Fig. 23.
Checkpointing from volatile memory. We begin comparing
with a baseline configuration using Volatile, Probe, and either
Loop-Latch or Function-Return. This configuration represents
Mementos [45] and solutions inspired by its design [11, 36].

Fig. 24 shows the results we obtain. Fig. 24(a) shows how, de-
pending on the benchmark, ALFRED provides up to several-fold
improvements in energy consumption to complete the fixed work-
load. CRC computation is the simplest benchmark and has little
state to make persistent. The improvements are marginal here,
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Figure 30: Memory accesses comparing ALFRED with a base-

line using NonVolatile, Execute, and IdempotentBound-

aries.

Benchmark

Baseline VM

Size (Bytes)

Baseline NVM

Size (Bytes)

ALFRED VM

Size (Bytes)

ALFRED NVM

Size (Bytes)

CRC 8Mhz 0 826 6 854
CRC 16Mhz 0 826 16 854
FFT 8Mhz 0 16730 40 29074
FFT 16Mhz 0 16730 1116 29074
AES 8Mhz 0 1294 24 1342
AES 16Mhz 0 1294 40 1342

Figure 31: Volatile memory (VM) and non-volatile memory

(NVM) in ALFRED against a baseline using NonVolatile,

Execute, and IdempotentBoundaries

especially when using Function-Return as the checkpoint place-
ment strategy, which is unsuited to the structure of the code in
the first place. The improvements grow as the complexity of the
code increases. Computing FFTs is the most complex benchmark
we consider, and the improvements are largest in this case. These
observations are confirmed by the measurements of clock cycles,
shown in Fig. 24(b).

Fig. 25 provides a finer-grained view on the results in this specific
setting. The small state in CRC corresponds to the fewest number
of memory accesses, especially in volatile memory, as little data
is to be made persistent to cross power failures. In both AES and
FFT, ALFRED greatly reduces the number of memory accesses.
Checkpoint operations in these benchmarks must load a significant
amount of data from volatile memory and copy it to non-volatile
memory for creating the necessary persistent state. These accesses
are not necessary in ALFRED, as data is made persistent as soon as
it becomes final; therefore, checkpoint operations do not process
main memory, but only register file and program counter. As for the
nature of memory accesses, ALFRED can promote, on average, 65%
of the accesses the baseline executes on non-volatile memory to
volatile memory instead, with a minimum of 20% in 𝐶𝑅𝐶 at 8𝑀ℎ𝑧

with a Loop-Latch configuration and a maximum of 95% in 𝐶𝑅𝐶
with a Function-Return configuration. This is a key factor that
grants ALFRED better energy performance.

Fig. 26 reports on the use of volatile/non-volatile memory. In the
baseline, the state to be preserved across power failures includes
the entire volatile memory, the register file, and special registers.
Requiring to double-buffer the state saved to non-volatile mem-
ory, its use in the baseline amounts to more than double the use
of volatile memory. In both CRC and AES, ALFRED requires to
double buffer less than 4% of the program state to avoid intermit-
tence anomalies, resulting in a drastically lower use of non-volatile
memory. Interestingly, despite a significant improvement in energy
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(b) Baseline using NonVolatile, Execute, Loop-Latch
or Function-Return
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Figure 32: Restore operations to complete the fixed workload in ALFRED compared to the three baselines.

consumption, ALFRED promotes very few memory locations to
volatile memory. These correspond to the memory locations that
are most frequently accessed, as shown in Fig. 25.
Moving to non-volatile memory. Fig. 27 shows the results we
obtain comparingwith configuration usingNonVolatile, Execute,
and either Loop-Latch or Function-Return. This combination
represents a hybrid solution combining features of several existing
systems [11, 36, 45]. As Loop-Latch and Function-Return do not
necessarily guarantee that intermittence anomalies cannot occur,
we lend our versioning technique, described in Sec. 5, to the baseline.
The major difference between ALFRED and the baseline, therefore,
is in the use of volatile or non-volatile memory.

Fig. 27(a) shows that the program transformations we devise
are effective at improving the energy performance of intermittent
programs. Significant improvements are visible across all bench-
marks. Configurations exist where the baseline cannot complete
the workload using the energy patterns we consider, as in the case
of the CRC benchmark when using Function-Return to place
checkpoints. In contrast, ALFRED reduces energy consumption to
an extent that allows the workload to successfully complete.

The corresponding results in the number of executed clock cycles,
shown in Fig. 27(b), enables a further observation. When running
at 16𝑀ℎ𝑧, the baseline shows a significant increase of clock cycles,
at least 20% with respect to the same benchmark running at 8𝑀ℎ𝑧.
The cause of this increase is in the extra clock cycles required
to access the FRAM when the MCU is clocked at 16𝑀ℎ𝑧. In the
same scenarios, ALFRED shows a lower increase of clock cycles
when comparing the 8𝑀ℎ𝑧 and 16𝑀ℎ𝑧 configurations, especially
in the AES benchmark. Rather than massively employing non-
volatile memory, ALFRED switches to volatile memory whenever
possible within a computation interval. This not only reduces the
clock cycles spent waiting for non-volatile memory access, but also
enables energy savings in the operations that involve temporary
data or intermediate results that do not need persistency.

Fig. 28 confirms this reasoning, showing that ALFRED promotes
an average of 65% of the non-volatile memory accesses in the base-
line to the more energy-efficient volatile memory. This functionality
grants ALFRED the completion of the CRC benchmark when us-
ing the Function-Return configuration. As the baseline directs
all memory accesses to non-volatile memory, the resulting energy
consumption causes CRC to be stuck in a livelock, as energy is in-
sufficient to reach a checkpoint that would enable forward progress.
This situation is called “non-termination” bug [17]. Instead, in the
case of CRC, ALFRED promotes more than 95% of the non-volatile

memory accesses in the baseline to volatile memory. This signifi-
cantly reduces the energy consumption of memory accesses to an
extent that allows ALFRED to complete the workload.

Note that the use non-volatile memory in the baseline is the
same as ALFRED, shown in Fig. 26, as they employ the same tech-
nique to avoid intermittence anomalies. The difference in memory
occupation consists in the data that ALFRED allocates onto volatile
memory, which ultimately yields lower energy consumption.
Ruling out intermittence anomalies.We compare the perfor-
mance of ALFRED with a configuration using NonVolatile, Exe-
cute, and IdempotentBoundaries, as in Ratchet [48]. Because of
the specific placement of checkpoint calls and the Execute policy,
intermittence anomalies cannot occur by construction. ALFRED
and the baseline here only differ in memory management.

Fig. 29 shows the results. Fig. 29(a) illustrates the performance in
energy consumption; this time, the improvements of ALFRED are
generally less marked than those seen when using Loop-Latch or
Function-Return to place checkpoints. The results in the number
of executed clock cycles are coherent with these trends, as illus-
trated in Fig. 29(b). This is because IdempotentBoundaries tends
to create much shorter computation intervals, sometimes solely
worth a few instructions; therefore, ALFRED has fewer opportuni-
ties to operate on the energy-efficient volatile memory. ALFRED
still improves the energy efficiency overall, especially for the AES
benchmark and the configurations running at 16𝑀ℎ𝑧. At this clock
frequency, non-volatile memory operations induce higher overhead
due to the necessary wait cycles. Sparing operations on non-volatile
memory allows the system not to pay this overhead.

Fig. 30 and Fig. 31 provide an assessment on ALFRED’s ability to
employ volatile memory whenever convenient. ALFRED promotes
the use of volatile memory from the non-volatile use in the baseline
in up to 30% of the cases. The impact of this, however, is more limited
here because of the shorter computation intervals, as discussed
above. In this plot, it also becomes apparent that sometimes, the
total number of memory accesses in ALFRED is higher than in the
baseline. This is a combined effect of the program transformation
techniques of Sec. 3 and of the normalization passes in Sec. 4. The
increase in the total number of memory accesses, however, does
not yield a penalty in energy consumption, as a significant fraction
of these added accesses operate on volatile memory.

These results are confirmed in Fig. 31. Despite being the program
partitioned in non-idempotent code sections, our techniques to ad-
dress compile-time uncertainties introduce intermittence anomalies
that require ALFRED to double-buffer a portion of the program

22



state. This situation is particularly evident with FFT. Fig. 31 pro-
vides additional evidence of howALFRED employs volatile memory
for frequently-accessed data, which ultimately yields lower energy
consumption across all benchmarks executed at 16𝑀ℎ𝑧.
Restore operations.We complete the discussion by showing in
Fig. 32 the number of restore operations executed in ALFRED com-
pared to those in the three baseline configurations we consider.

The plots demonstrate that the better energy efficiency provided
by ALFRED allows the system to restore the state less times. This
trend is especially visible in Fig. 32(a) and Fig. 32(b). As a result,
ALFRED shifts the available energy budget to useful application
processing, leading to workloads that finish sooner compared to
the performance offered by the baselines.

7 Conclusion

ALFRED is a virtual memory abstraction for intermittent computing
that relieves programmers from the burden of explicitly managing
application state across memory facilities, and efficiently employ
volatile and non-volatile memory to improve energy consumption,
while ensuring forward progress across power failures. The map-
ping from virtual to volatile or non-volatile memory is decided at
compile time through a series of program transformations. These
aim at using volatile memory whenever possible because of the
lower energy consumption, resorting to non-volatile memorywhen-
ever necessary to ensure forward progress. In contrast to existing
works, the memory mapping is not fixed at variable level, but is
adjusted at different places in the code for the same data item,
based on read/write patterns and program structure. To apply the
transformations to arbitrary programs, we use code normalization
techniques, a dedicated memory layout, and a tightly integrated
solution to address possible intermittence anomalies. Our evalua-
tion indicates that, depending on the workload, ALFRED provides
several-fold improvements in energy consumption compared to the
multiple baselines we consider, leading to a similar improvement
in the number of restore operations required to complete a fixed
workload.
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