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Abstract

BATTERY-LESS devices represent a great opportunity to enable a sus-
tainable Internet of Things: ambient energy harvesting replaces bat-
teries, leading to zero-maintenance systems with a low environmen-

tal impact. However, despite potentially supplying unlimited free energy,
ambient energy is irregular, unpredictable, and usually insufficient to power
battery-less devices continuously. Therefore, battery-less devices experi-
ence frequent and unpredictable energy failures that lead to intermittent
computation, as devices compute only when sufficient energy is available.

The presence of energy failures introduces several connected challenges.
Unlike mainstream platforms, battery-less devices consist of highly con-
strained microcontroller units that run single non-concurrent programs and
lack an operating system to manage energy failures. Therefore, when battery-
less devices shut down due to energy failures, they lose the computational
state and, in the next power cycle, they restart the computation all over
again. To ensure battery-less devices progress in their programs, they peri-
odically need to save their program state onto a non-volatile memory loca-
tion, which is persistent across energy failures, to restore it when the energy
returns. Although this ensures program forward progress across energy fail-
ures, battery-less devices may experience unexpected behaviors, producing
results that differ from those of an equivalent continuous execution.

Ensuring program forward progress and avoiding unexpected behaviors
introduce energy and computation overhead detrimental to battery-less de-
vices’ performance. Therefore, efficient energy management becomes es-
sential to extract the most possible work from harvested energy, as it sup-
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plies an unpredictable, limited, and scarce amount of energy.
The PhD research described in this thesis tackles these challenges and

provides several contributions to the state of the art.
We first work on the first multi-year deployment of battery-less de-

vices [4] that monitor the structural conditions of an archeological site. We
devise three system design iterations, where we initially deploy battery-
powered systems. Due to the high maintenance efforts of frequent battery
replacements, we eventually switched to battery-less systems powered with
kinetic and thermal energy. Our final design achieves zero-maintenance
battery-less operations without compromising end-user requirements, as its
sensed data provides comparable insights to battery-powered systems.

We then target intermittence anomalies [75], consisting of unexpected
behaviors caused by energy failures. We classify intermittence anomalies
and identify new types of anomalies previously overlooked by existing liter-
ature, which may happen whenever devices interact with the environment.
We devise a set of techniques to analyze their occurrence, and we design
ScEpTIC [69], an open-source tool to test intermittent programs.

Building on our work on intermittence anomalies, we devise intermit-
tence awareness [72], a program design pattern that intentionally allows
the occurrence of specific intermittence anomalies to gain new information
regarding intermittent executions of programs. We show the potential of in-
termittence awareness by designing an intermittence-aware technique that
reduces the energy overhead required to preserve the computation achieved
inside loops. On average, our technique demonstrates a 35.2x lower energy
consumption and a 48.4x faster workload completion time.

Next, we focus on improving the energy efficiency of mixed-volatile
platforms, which feature a directly-addressable non-volatile memory loca-
tion where developers can manually allocate portions of the program state.
We design ALFRED [70, 73], a virtual memory abstraction and compila-
tion pipeline for mixed-volatile platforms that automatically identifies the
most efficient mapping of the program state across volatile and non-volatile
memory. Our experiments show that ALFRED reduces programs’ energy
consumption by up to two orders of magnitude.

Finally, we focus on ensuring that battery-less devices always operate in
the most efficient settings. We devise a system design to efficiently regulate
supply voltage and clock frequency in highly resource-constrained battery-
less devices. We then implement two hardware/software co-designs that
capture these features. Our designs reduce battery-less devices’ energy
consumption by up to 170% and workload completion time by up to one
order of magnitude.
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Riassunto

I DISPOSITIVI senza batteria rappresentano una grande opportunitá per
una nuova Internet of Things sostenibile. Le tecniche di energy har-
vesting permettono di utilizzare l’energia presente nell’ambiente come

unica fonte di alimentazione per i dispositivi dell’Internet of Things, elim-
inando l’utilizzo di batterie. I dispositivi senza batteria risultanti hanno un
basso impatto ambientale e potenzialmente non richiedono alcuna manuten-
zione.

Nonostante l’energia ambientale sia potenzialmente illimitata, essa é ir-
regolare, imprevedibile e di solito non sufficiente per alimentare continu-
amente i dispositivi senza batteria. Conseguentemente, i dispositivi senza
batteria subiscono frequenti ed imprevedibili interruzioni di energia, ed il
loro modello di computazione diventa intermittente, dato che possono es-
eguire i loro programmi solo quando é disponibile energia sufficiente.

La presenza di interruzioni di energia introduce nuove sfide connesse
tra di loro. A differenza dei dispositivi comuni alimentati con fonti ener-
getiche stabili, i dispositivi senza batteria consistono in microcontrollori ad
alto risparmio energetico e con bassa potenza di calcolo, eseguono singoli
programmi e non dispongono di un sistema operativo che gestisce le inter-
ruzioni di energia. Conseguentemente, quando i dispositivi senza batteria
si spengono a causa di un’interruzione di energia, perdono lo stato com-
putazionale e devono poi ricominciare la computazione da capo quando
l’energia torna disponibile. Per garantire che i dispositivi senza batteria
procedano nei loro programmi e producano risultati utili, devono periodica-
mente salvare lo stato del loro programma in una memoria non volatile, che
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non perde il suo contenuto quando il dispositivo si spegne. Questo permette
ai dispositivi senza batteria di ripristinare lo stato salvato quando l’energia
torna disponibile. Nonostante questo meccanismo garantisca l’avanzamento
del programma in caso di interruzioni di energia, i dispositivi senza batte-
ria potrebbero presentare comportamenti imprevisti, producendo risultati
diversi da quelli di un’esecuzione continua equivalente.

Le operazioni richieste per garantire l’avanzamento del programma ed
evitare comportamenti imprevisti incrementa il consumo energetico e la
computazione effettuata dai dispositivi senza batteria, riducendone le loro
prestazioni. Dato che queste operazioni sono necessarie per il corretto fun-
zionamento dei dispositivi senza batteria, diventa necessaria una gestione
efficiente dell’energia, in modo da poter estrarre il maggior quantitativo di
computazione possibile dall’energia presente nell’ambiente.

La ricerca di dottorato descritta in questa tesi affronta queste sfide e
fornisce diversi contributi allo stato dell’arte.

Per prima cosa, abbiamo lavorato alla prima implementazione plurien-
nale di dispositivi senza batteria che monitorano le condizioni strutturali
di un sito archeologico [4]. Abbiamo inizialmente utilizzato dei sensori
alimentati unicamente con le batterie. A causa degli sforzi elevati e period-
ici richiesti per la sostituzione di quest’ultime, abbiamo deciso di passare
a sistemi senza batteria alimentati unicamente con energia cinetica e ter-
mica. I dispositivi risultanti sono in grado di operare senza batterie, e non
richiedono alcuna manutenzione. Nei nostri risultati abbiamo appurato che
i dispositivi senza batteria da noi ideati forniscono informazioni compara-
bili ai sistemi alimentati a batteria, rispettando quindi i requisiti dell’utente
finale.

Successivamente, ci siamo focalizzati sulle anomalie da intermittenza [75],
che corrispondono a comportamenti imprevisti dei dispositivi senza bat-
terie, causati dalle interruzioni di energia. In questo lavoro, abbiamo clas-
sificato le anomalie da intermittenza e abbiamo identificato nuovi tipi di
anomalie, precedentemente trascurati dalla letteratura esistente, che pos-
sono verificarsi quando i dispositivi senza batteria interagiscono con l’ambiente
circostante. Abbiamo quindi ideato una serie di tecniche per verificare la
presenza delle anomalie da intermittenza e abbiamo progettato ScEpTIC [69],
uno strumento open source per testare i programmi intermittenti.

Partendo del nostro lavoro sulle anomalie da intermittenza, abbiamo
ideato un nuovo modello di programmazione per progettare i programmi
eseguiti sui dispositivi senza batterie [72]. Tale modello consente inten-
zionalmente il verificarsi di specifiche anomalie da intermittenza, al fine di
ottenere nuove informazioni sull’esecuzione intermittente del programma.
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Per dimostrare l’efficacia di questo modello, lo abbiamo utilizzato per creare
una tecnica che riduce il consumo energetico e il carico computazionale
richiesti per preservare il calcolo effettuato all’interno di cicli. In media,
la nostra tecnica dimostra un consumo energetico inferiore di 35.2 volte ed
riduce il tempo di computazione di 48.4 volte.

Successivamente, ci siamo concentrati sul miglioramento dell’efficienza
energetica delle piattaforme a volatilitá mista, che dispongono di una memo-
ria non volatile direttamente indirizzabile dal microcontrollore, dove é pos-
sibile allocare manualmente parti dello stato del programma. Abbiamo
quindi progettato ALFRED [70, 73], che consiste in un’astrazione di pro-
grammazione basata sul concetto di memoria virtuale e in una pipeline di
compilazione per piattaforme a volatilitá mista. ALFRED identifica auto-
maticamente qual é la mappatura piú efficiente dello stato del programma
tra la memoria volatile e non volatile. I nostri esperimenti mostrano che
ALFRED riduce il consumo energetico dei programmi fino a due ordini di
grandezza.

Infine, ci siamo concentrati sull’assicurare che i dispositivi senza batte-
ria funzionino sempre nelle impostazioni operazionali piú efficienti. Abbi-
amo individuato un insieme di caratteristiche necessarie a regolare in modo
efficiente la tensione di alimentazione e la frequenza di clock in disposi-
tivi senza batteria con risorse limitate. Abbiamo poi progettato due sistemi
che catturano queste caratteristiche. Nei nostri esperimenti, i nostri sistemi
riducono il consumo energetico dei dispositivi senza batteria fino al 170%
e il tempo di completamento dei fino a un ordine di grandezza.
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CHAPTER1
Introduction

Several billions of small-scale battery-powered embedded devices are de-
ployed in the Internet of Things and enable a variety of smart applications
such as environmental monitoring, industrial automation, and traffic con-
trol. However, batteries must be periodically recharged, replaced, and even-
tually disposed of, resulting in high maintenance costs and causing a sig-
nificant environmental impact.

To address these problems, systems rely on ambient energy harvest-
ing [15] to power battery-less devices, potentially yielding zero-maintenance
IoT systems with greater long-term sustainability [4,22,47,92,93,101]. Fig-
ure 1.1 depicts an example of battery-less devices’ architecture. The sensor
node is parallel connected to an energy harvester and an energy buffer. The
energy harvester is specific to the ambient energy source considered and
converts ambient energy into electrical energy, powering the sensor node
and recharging the energy buffer. The energy buffer consists of a capacitor
or a super-capacitor and smooths the fluctuations of harvested energy. More
complex designs exist, which use multiple energy harvesters [22], arrays of
energy buffers [27,42,102], or use voltage converters to operate the energy
harvester and the sensor node at different operating points [5, 10, 27, 39].
Throughout this thesis, we consider an architecture with a single energy
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Figure 1.1: Example of battery-less devices’ architecture.
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Figure 1.2: Voltage trace of various ambient energy sources measured in our lab.

harvester, a single energy buffer, and no voltage regulator between the en-
ergy harvester and the sensor node.

Ambient energy and intermittent computation. Ambient energy sources
vary from the most common solar energy to thermal energy, kinetic energy,
and the energy carried by RF signals [15]. Figure 1.2 shows an example
of the voltage trace of various ambient energy sources, which experience
frequent and unpredictable fluctuations. Due to its irregular nature [15],
harvested energy is unpredictable and usually insufficient to power these
devices continuously.

Despite using energy buffers, battery-less devices experience frequent
and unpredictable energy failures that cause an intermittent computation
throughout their entire lifetime, as Figure 1.3 depicts. A battery-less device
is initially powered off and harvests energy to recharge its energy buffer
(Charging). When the energy buffer stores sufficient energy, the device
powers on and starts computing (On). Note that the device energy con-
sumption is usually significantly higher than the ambient energy intake.
Consequently, throughout the computation, the device completely depletes
its energy buffer and eventually shuts down, experiencing an energy fail-
ure. The device goes back to recharging its energy buffer, and this behavior
repeats for the entire device’s lifetime.
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Figure 1.3: Example of the intermittent computation of battery-less devices.

1.1 Intermittent Computing Challenges

Ambient energy harvesting provides a limited energy throughput. Depend-
ing on the type of energy source, the supplied power ranges between hun-
dreds of µW and tens of mW [15]. Therefore, to operate under such
limited power throughput, battery-less devices consist of ultra-low-power
and highly resource-constrained Microcontroller Units (MCU) with a main
memory size in the order of tens of kilobytes, such as the ultra-low-power
MCUs from the MSP430 MCU family from Texas Instruments [51]. Battery-
less devices usually run single C applications, and, differently from main-
stream computers, they lack an operating system that manages the occur-
rence of energy failures. These limitations, in combination with the pres-
ence of energy failures and the erratic nature of ambient energy, introduce
several challenges that prevent using battery-less devices as mainstream
sensors for the Internet of Things [43, 63]. These challenges include en-
suring program forward progress, ensuring program consistency, program
testing, enabling efficient operations, enabling communications, enabling
peripheral accesses, keeping track of time, ensuring timely executions, and
deploying battery-less devices. These challenges are connected and affect
each other. We describe next some of the main challenges, whereas Sec-
tion 1.2 describes the challenges we tackle in this thesis.
Program forward progress. Energy failures harm program forward progress.
When devices shut down due to energy failures, they lose the computational
state, as the content of volatile memories (i.e., registers and main memory)
is preserved only when sufficient energy is available. Consequently, they
lose the computational state and must restart the computation from scratch
when the energy returns. This prevents devices from completing their pro-
grams or producing useful results.

As we describe in Chapter 3, ensuring program forward progress across
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Figure 1.4: Example of an intermittence bug [74]. An energy failure causes the re-
execution of portions of a program, leading to an unexpected result.

energy failures requires devices to periodically save their state onto a non-
volatile memory (NVM) location, which is persistent across energy fail-
ures. The saved state usually includes the content of the register file, spe-
cial registers such as the program counter and the stack pointer, and the
content of volatile main memory. Then, when the energy returns, restor-
ing the saved state from non-volatile memory allows devices to resume the
computation from where the state was saved.

Ensuring program forward progress across energy failures represents
one of the main challenges of intermittent computing. Researchers are ex-
ploring various ways to preserve the device state across energy failures.
Existing techniques [11, 12, 16, 52, 54, 64, 66, 68, 86, 100, 103] mainly dif-
fer on how devices save and manage their state, and at which point dur-
ing the program execution the state is saved [8]. Devices can explicitly
save their entire state onto non-volatile memory [11, 12, 16, 86] or rely on
mixed-volatile platforms [49, 50] to directly allocate portions of the pro-
gram state [54, 64, 66, 100] (e.g., single variables [64] or entire stack seg-
ments [54, 100]) onto a built-in non-volatile memory location. The latter
eases persistent state management. The program state directly allocated
onto non-volatile memory is excluded from state-saving operations, as it is
automatically retained across energy failures and thus implicitly preserved
Program consistency. Energy failures may cause battery-less devices to
produce results different than an equivalent continuous execution of the
same program. This makes battery-less devices prone to experience unex-
pected behaviors unattainable in a continuous execution, recognized in the
literature as intermittence bugs [64, 74, 85, 100].

Figure 1.4 shows an example. The program of Figure 1.4 runs on a
mixed-volatile MCU, and variable a is allocated onto non-volatile mem-
ory. Line 1 sets a to 0, and then the device saves its volatile state onto
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non-volatile memory. Note that the saved state does not include a, as it
is already non-volatile. Next, the execution of lines 2-4 increments a to
1, and then an energy failure occurs. When there is sufficient energy, the
device powers on, restores the saved state from non-volatile memory, and
resumes the computation from line 2. Variable a is not restored, as it was
not included in the saved state. As such, a retained the effects that line 4
produced during the previous power cycle, that is, a future operation with
respect to where the computation resumes [85]. Here is where the inter-
mittence bug happens. Lines 2-4 re-execute and further increment a to 2.
This result differs from an equivalent continuous execution of the program
of Figure 1.4, which would instead set a to 1.

Existing forward progress techniques avoid intermittence bugs by saving
the program state more frequently [74, 100], or by including portions of
non-volatile memory into state-save operations [64, 66].
Testing intermittence programs. The presence of intermittence bugs re-
quires developers to test the intermittent executions of their programs to
verify they are free of unexpected behaviors. However, energy failures
create new requirements for testing the behaviors of programs. Existing
testing techniques for mainstream computation are not suited to analyze in-
termittent executions, as they do not account for energy failures. Testing
intermittent programs requires the possibility of reproducing energy fail-
ures [74], allowing developers to reproduce specific patterns of intermittent
executions. Moreover, testing intermittent programs may require repeat-
able reproductions of energy harvesting sources, which is non-trivial and
require custom hardware solutions [41].
Energy Optimization. Energy harvesting sources are unpredictable and
supply limited energy [15]. Therefore, battery-less devices must efficiently
manage harvested energy to maximize the work achieved in each power
cycle. However, all the operations required to address the challenges intro-
duced by energy failures introduce an energy overhead that may harm de-
vices’ performance. For example, the state-save operations required to en-
sure program forward progress introduce an energy overhead [8,12,16,86],
as the device pauses the program execution to save the program state. A
similar case applies to the operations that ensure correct peripheral ac-
cesses [14, 17, 87]. Using mixed-volatile platforms [49, 50] may increase
devices’ energy consumption, as non-volatile memory is slower and less
efficient than volatile memory [49, 50]. Moreover, avoiding intermittence
bugs [74] requires additional state-save operations, further increasing the
energy overhead of state-save operations. Therefore, extracting the max-
imum possible computation from harvested energy is non-trivial and may
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require complex optimizations [55, 66, 72, 73, 103] or custom hardware de-
signs [5].
Peripherals accesses. Embedded sensing devices periodically monitor and
interact with the environment using peripheral devices, such as sensors
and actuators. The presence of energy failures challenges peripheral ac-
cesses [14, 17, 67, 87].

Peripheral devices may have a volatile internal state that, similarly to the
program state, requires to be preserved across energy failures. Otherwise,
peripherals may be left in an inconsistent or non-initialized state when de-
vices shut down due to energy failures. Consequently, when energy returns
and the device resumes the computation, access to peripheral devices may
fail or produce unexpected results [14,17,87]. Addressing this challenge re-
quires representing peripherals’ state inside the device’s main memory [87],
writing custom restore routine for peripheral states [14], postponing periph-
eral operations when sufficient energy is available [27], or using custom
program abstractions that capture peripheral states [17, 67].
Network and communication. Embedded sensing devices may need to
communicate sensed data to other devices. Being peripherals, radios and
communication devices experience the same problems as peripheral ac-
cesses. Moreover, energy failures harm radio communications and net-
working. Energy failures cause nodes to disappear from networks, failing
to transmit or receive data. Further, the energy cost of data transmission
may be prohibitive using the severely limited energy budget of battery-
less devices, as it has a higher energy consumption than normal computa-
tion [4]. Addressing these problems requires the design of dedicated proto-
cols [62, 79] or custom communication devices [57, 89].
Tracking time. Energy failures cause battery-less devices to lose track
of time. Being battery-less devices highly resource-limited, they usually
lack real-time clocks. Therefore, battery-less devices can track time only
when active, using timers and counters internal to the MCU [51]. Although
counters can be preserved with the program state, devices are unable to
track the time elapsed while they were powered off due to energy failures.
Addressing this problem requires relying on physical phenomena, such as
capacitor charge decay [45] or volatile memory cells decay [45], to estimate
the time elapsed since the energy failure.
Timely Executions. Energy failures may prevent programs from execut-
ing tasks within their time-based deadlines [52, 59, 68]. Embedded sensing
devices may need to periodically execute time-sensitive sensing operations
within a given deadline [52, 59, 68]. Similarly, sensed data may expire
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after a given period, requiring programs to process it within a given dead-
line [59, 97].

Energy failures during task execution prevent the task to complete. As
energy failures can last for long periods, interrupted tasks may fail to meet
their deadlines. Moreover, the inability of battery-less devices to track the
time elapsed while powered off may prevent them from identifying when
tasks cannot meet their deadlines. Addressing this problem requires dedi-
cated scheduling strategies [52], reserving portions of energy buffers only
for the execution of time-sensitive tasks [68], or custom program semantics
for binding time requirements to energy failures [59].
Usability and deployments. The proposed solutions to the various chal-
lenges introduced by power failures mainly target researchers, and their
application requires a broad knowledge of intermittent computing. This
prevents the spread and adoption of this technology and results in the lack
of significative examples of battery-less device deployments. Unlike the
various examples of deployments of battery-powered sensors [13, 19–21,
30, 34, 46, 60, 77, 80, 82, 98], existing deployments of battery-less devices
only demonstrate specific techniques [22,37,47,84,91] without accounting
for actual end-user requirements and real-world scenarios. Deployments
that meet end-user requirements are necessary to identify this technology’s
possible pitfalls and demonstrate its potential.

1.2 Research Challenges

This section describes the challenges we tackle in this thesis as directions
of the PhD research. Note that, as we later show in this section, these chal-
lenges are all interconnected and the way we tackle one challenge affects
the others.

1.2.1 Real Use Cases

As we anticipate in Section 1.1, the literature provides several examples
of deployments of battery-powered sensors in various environments and at
different scales [13,19–21,30,34,46,60,77,80,82,98]. These deployments
show how the need for battery replacement introduces significant mainte-
nance costs and usually leads to unreliable operations. In contrast, battery-
less systems require almost zero maintenance, as there is no longer the
need to periodically recharge, replace, and eventually dispose of batteries.
This potentially unlocks a deploy-and-forget scenario, where battery-less
devices can be left untouched for years, while still providing useful data.
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Although researchers actively tackle the various challenges created by
the instabilities of harvested energy [43,63,85], the literature provides very
few examples of long-term deployments [22,37,47,84,91] that demonstrate
the potential of this research field. As we discuss in Chapter 2, existing
deployments of battery-less devices are relatively short, where the longest-
running one has just a 3 months lifetime [22]. Further, they aim only at
demonstrating specific and isolated techniques, and do not account for real
applications or end-user needs.

Long-lasting real-world deployments of battery-less devices targeting
real application scenarios are necessary to understand and demonstrate the
potential of this technology. The lessons learned from such deployments
would provide valuable experiences from which researchers can identify
new possible pitfalls and further improve this technology.

The absence of many deployments of battery-less devices also indicates
that this technology is not ready for a mainstream audience. Deploying
battery-less devices should be as easy as uploading the firmware to devices
and placing them in the deployment zone. However, existing techniques re-
quired to ensure safe and reliable intermittent operations target researchers
and assume skilled developers with a deep knowledge of this research field.
Moreover, only a subset of the techniques available in the literature is open-
source and available for end users or researchers to use. This prevents the
widespread adoption of this technology and hardens the possibility of new
long-lasting deployments.

For these reasons, deployments of battery-less devices are a great re-
search opportunity that may open new research directions and provide use-
ful experiences to the community. Therefore, researchers should focus on
deploying battery-less devices and provide more accessible techniques to
enable battery-free computations, improving the advancement and adop-
tion of this technology.

1.2.2 Intermittent Program Consistency

As we anticipate in Section 1.1, energy failures may cause battery-less de-
vices experience unexpected behaviors unattainable in a continuous execu-
tion, recognized in the literature as intermittence bugs [64, 74, 85, 100].

As we later describe in Chapter 4, the cause of the intermittence bug
described in Figure 1.4 stands in the non-idempotent re-execution of a se-
quence of non-volatile memory read (line 2) and write (line 4) operations
caused by energy failures [64,74,100]. Existing literature avoids the occur-
rence of intermittence bugs by (i) saving the state more frequently [74,100]
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Figure 1.5: Examples of unexpected behaviors happening when battery-less devices in-
teract with the environment [75].

to break the sequence of hazardous non-volatile memory accesses, or (ii) in-
cluding portions of non-volatile memory onto the saved state [64, 66] to
ensure data consistency when resuming the computation after an energy
failure.
Environment interactions. Although current literature identifies intermit-
tence bugs characterizing mixed-volatile platforms [64,74,85,100], it over-
looks cases of unexpected behaviors that may occur whenever battery-less
devices interact with the environment. Figure 1.5 depicts two examples of
such unexpected behaviors.

Figure 1.5(a) shows an example with a pattern similar to the intermit-
tence bug described in Figure 1.4. The device saves its state onto non-
volatile memory, moves a servo by 45◦ and then the device shuts down due
to an energy failure. When there is sufficient energy, the device restores the
saved state from non-volatile memory and resumes the computation from
line 1, which is re-executed. Consequently, the servo is moved by an addi-
tional 45◦, reaching a position of 90◦. Such servo position differs from the
one of an equivalent continuous execution of the program of Figure 1.5(a),
where the servo would be at 45◦. This example has a pattern similar to the
example of Figure 1.4, where an energy failure causes the re-execution of a
non-idempotent sequence of instructions and leads to unexpected behavior.
However, despite such a similar pattern, existing solutions to avoid inter-
mittence bugs do not work in this case, as more frequent state saves would
not prevent the re-execution of line 1.
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Let us now focus on Figure 1.5(b). This example demonstrates a dif-
ferent and previously-unseen pattern that leads to unexpected behavior due
to energy failures. The device measures the environment temperature, say
10◦C, and then the program state is saved onto non-volatile memory. The
execution continues until there is no energy left. Here the device imme-
diately shuts down, and a long energy failure occurs. While the device
is powered off, the environment temperature rises to 25◦C. When there
is sufficient energy, the device powers on, restores the saved state from
non-volatile memory, and resumes the computation from line 2. Here the
device considers the environment temperature to be 10◦C, that is, the en-
vironment temperature measured during the previous power cycle found in
the saved state. Consequently, although the current environment tempera-
ture is higher than 20◦C, the if statement of line 2 evaluates to false.

The unexpected behavior described in Figure 1.5(b) occurs for different
reasons than the ones shown in Figure 1.4 and Figure 1.5(a). In the example
of Figure 1.5(b), an energy failure causes the device to execute portions of a
program in different power cycles, leading to a desynchronization between
the actual environment state and the environment state held in the device’s
main memory.

The literature lacks an analysis of unexpected behaviors that may hap-
pen when devices interact with the environment, such as the one described
in Figure 1.5. Consequently, there is no technique that ensures battery-less
devices avoid these cases of unexpected behaviors.
Testing intermittent programs. In general, battery-less devices must avoid
intermittence bugs and guarantee that the intermittent executions of a pro-
gram produce the same results of an equivalent continuous execution. Oth-
erwise, their behavior may be unpredictable or incorrect with respect to pro-
gram specifications. However, ensuring programs are free of intermittence
bugs or other unexpected behaviors is still an open problem. Although
the literature analyzes intermittence bugs happening in mixed-volatile plat-
forms [64, 74, 100], it still lacks practical ways to test intermittent execu-
tions of programs and to verify whether the program behaves as intended.

As we describe in Chapter 4, ensuring intermittent programs are free of
unexpected behaviors introduced by energy failures is non-trivial. Testing
intermittent programs requires the ability to reproduce energy failures and
trigger state-saving operations at arbitrary points during testing, allowing
developers to reproduce specific patterns of intermittent executions. There-
fore existing program testing techniques cannot be used to test intermittent
programs, as they are designed for continuous programs and do not account
for energy failures or state-saving operations.

10



1.2. Research Challenges

The literature provides very few techniques [24,41] to debug battery-less
devices while they operate. However, due to the complexity of intermittent
program testing, hardware-based debugging is not practical.

Compared to continuous techniques, the complexity and magnitude of
operations involved in testing intermittent programs are drastically higher.
Energy failures and state-saving operations can happen at any instant dur-
ing program execution. Therefore, to verify that intermittent programs are
free of unexpected behaviors, developers should test all the possible com-
binations of energy failures and state-saving operations, comparing the re-
sults of each combination against an equivalent continuous execution [74].
For instance, given a program with n machine-code instructions, we need
to simulate the occurrence of n different energy failures, one after the ex-
ecution of every instruction, thus generating n2 possible intermittent ex-
ecutions [74]. This complexity further increases [74] when state-saving
operations are not statically-fixed in the program’s code [11, 12, 54].

Therefore, due to the complexity of intermittent program testing, emula-
tion testing [35, 38, 74] seems to be the only practical approach. However,
existing tools that emulate intermittent executions [38, 74] are not suited
to exhaustively test intermittence programs, as either they only reproduce
specific energy sources [38] or limit their analysis to memory-based inter-
mittence bugs [74].

This challenge introduced by energy failures is still open, as current lit-
erature lacks (i) an extensive analysis of unexpected behaviors introduced
by energy failures, and (ii) program analysis and testing techniques for
intermittent programs. This poses severe limitations to the adoption of
battery-less devices, as developers cannot verify the absence of unexpected
behaviors.

1.2.3 Energy Efficiency

As we anticipate in Section 1.1, battery-less devices must efficiently man-
age harvested energy to maximize the work achieved in each power cy-
cle, as energy harvesting sources are unpredictable and supply limited en-
ergy [15]. This requires focusing on two different aspects: (i) the operations
required to ensure safe and reliable intermittent computations, namely, en-
suring forward progress and avoiding intermittence bugs, and (ii) the device
operating setting.
Ensuring intermittent computations. The operations required to ensure
program forward progress across energy failures and to avoid unexpected
behaviors are detrimental to device performance due to the execution of
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state-save and restore operations. As we describe in Section 1.1, ensuring
program forward progress requires devices to save their state onto a non-
volatile memory location periodically. Similarly, avoiding unexpected be-
haviors requires devices to save their state more frequently, as we point out
in Section 1.2.2. Saving the device state introduces a significant computa-
tional and energy overhead, as the device pauses the program execution and
saves its state onto non-volatile memory. Further, non-volatile memory ac-
cesses are significantly slower and less energy efficient than volatile mem-
ory [49, 50, 72, 73]. For example, in mixed-volatile platforms, non-volatile
memory accesses may require up to 247% more energy than volatile mem-
ory accesses and twice the number of clock cycles [50,72]. These numbers
further increase when non-volatile memory is connected as a peripheral ex-
ternal to the MCU [2, 61].

To reduce the overhead of state-save and restore operations, existing
techniques [54, 55, 64, 66, 100] rely on mixed-volatile platforms to allo-
cate portions of main memory onto non-volatile memory. However, this
approach has two main drawbacks. First, the program execution now ac-
cesses the slower and less energy-efficient non-volatile memory, poten-
tially increasing the overall energy consumption. Second, as we describe in
Section 1.2.2, mixed-volatile platforms may experience intermittence bugs,
whose avoidance requires devices to save the state more frequently, further
increasing the energy consumption.

For these reasons, identifying the optimal and most efficient trade-off
between a reduced volatile state against an increased energy overhead with
the possibility of unexpected behaviors due to non-volatile memory oper-
ations is non-trivial, as it also depends on multiple factors, including the
execution flow, workload, memory accesses, and energy patterns. As we
point out in Chapter 3 and Chapter 5, the literature includes several solu-
tions [7, 16, 55, 59, 66] that aim at reducing battery-less devices energy
consumption while ensuring forward progress and avoiding intermittence
bugs.

The focus of these solutions varies from identifying the most energy-
efficient placement and execution strategy of state-saving operations [16],
enabling differential state saving to reduce the size of the state saved onto
non-volatile memory [7], disabling unnecessary state-saving operations at
runtime to reduce their overhead [66], and dynamically relocating program
sections across volatile/non-volatile memory to optimize the energy con-
sumption [55]. However, these solutions reduce the volatile device state at
the expense of increased computational complexity of state-saving opera-
tions or their execution frequency, potentially leading to sub-optimal per-
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formance.
Device operating settings. Another factor affecting devices’ energy con-
sumption is their operating setting, including the operating voltage and the
MCU operating clock frequency, which affect the energy consumed to exe-
cute each clock cycle. The energy cost ecc of executing a single clock cycle
can be calculated as ecc =

Imcu·Vop

fmcu
[72], where Imcu is the current draw of

the MCU, Vop is the operating voltage of the MCU, and fmcu is the oper-
ating frequency. Hence, to minimize ecc, we need to operate the highest
possible frequency supported by the MCU at the minimum possible oper-
ating voltage.

Battery-less devices usually lack input voltage regulation and are con-
nected parallel to their energy sources and energy buffers. Therefore, battery-
less devices operating voltage depends on the energy buffer level and har-
vested energy. As such, to minimize ecc, we can mainly act on the operating
clock frequency fmcu, selecting the highest possible one, as higher operat-
ing clock frequencies demonstrate a lower energy consumption per clock
cycle than lower operating clock frequencies [6]. However, fmcu limits the
minimum operating voltage Vop at which devices can operate; the higher
the operating clock frequency, the higher the minimum voltage required
to operate such frequency. For example, let us focus on Figure 1.6, which
depicts the energy consumption per clock cycle and the operating voltage
range of four factory-calibrated frequencies of the MSP430-G2553 [48], a
MCU from the popularly used [6,11,54,55,65,66] MSP430 family [51] of
ultra-low-power MCUs. Here we notice that the operating clock frequency
of 16MHz leads to a 68% lower energy consumption than 1MHz. How-
ever, 16MHz requires a minimum operating voltage of 3.3V , whereas the
less efficient 1MHz requires a minimum operating voltage of 1.8V .

Due to the reduced voltage range of higher operating frequencies, iden-
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tifying the most efficient settings of battery-less devices is non-trivial. The
most efficient operating clock frequency constantly changes throughout the
computation, as it strictly depends on the voltage of the energy buffer,
which limits the usable operating clock frequencies. When energy sources
exceed or provide sufficient energy to match the device energy computa-
tion, the highest operating clock frequency represents the most efficient
setting due to its lower energy consumption per clock cycle. In contrast,
when devices’ energy consumption exceeds harvested energy, the reduced
operating voltage range of higher operating clock frequencies pones a se-
vere disadvantage against lower frequencies.

In this last scenario, Vop eventually decreases throughout the consump-
tion, as the device also draws the energy previously stored in the energy
buffer. Consequently, higher operating clock frequencies execute fewer
clock cycles before experiencing an energy failure due to their reduced op-
erating voltage range. In contrast, less efficient lower operating clock fre-
quencies can sustain the computation for longer periods. For example, let
us focus on Figure 1.7, which depicts the number of clock cycles executed
by the MSP430-G2553 [48] in a single discharge of a 100µF capacitor with
no new incoming harvested energy. Despite a higher energy consumption,
when the MCU operates at a frequency of 1MHz, it executes 6.1x more
clock cycles than at 16MHz.

Therefore, due to the lower number of executed clock cycles in their
active periods, higher operating clock frequencies may require more power
cycles to complete a given workload than lower operating frequencies. This
increases the workload completion time and the number of energy failures
required by higher operating frequencies. Moreover, the higher number of
energy failures experienced by higher operating clock frequencies further
increases the workload completion time and the energy consumed due to
state-save and state-restore operations [5], resulting in a worse performance
than slower and less-efficient operating clock frequencies [5].

For these reasons, statically configuring battery-less devices with a fixed
operating clock frequency leads to sub-optimal performance. To extract the
best possible performance from harvested energy, battery-less devices must
dynamically adapt their operating clock frequency to ensure they always
select the most efficient operating clock frequency among the ones sustain-
able at a given energy buffer level. This technique is similar to the Dynamic
Voltage and Frequency Scaling (DVFS) technique commonly used in main-
stream processors.

However, applying DVFS to battery-less devices is challenging. Un-
like mainstream processors, battery-less devices lack hardware support to
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dynamically adapt the system operating voltage and frequency, and an op-
erating system that manages such operations. Adding such capabilities may
increase energy consumption, resulting in worse performance than a static
frequency configuration. Further, battery-less devices’ power supply is un-
stable and outputs an operating voltage subject to frequent changes. This
requires constantly checking the energy buffer level to identify the avail-
able operating frequencies, which may further increase devices’ energy
consumption.

As we point out in Chapter 5, very little research is available that ex-
plores the application of DVFS to battery-less systems [5]. The litera-
ture mainly focuses on applying DVFS to achieve power-neutral opera-
tions [9, 10, 36], where devices’ energy consumption matches harvested
energy within a given time period. However, these works target multi-core
processors that already have the required hardware capabilities. Their en-
ergy consumption usually exceeds the energy harvestable from the environ-
ment, making these devices unsuited for intermittent applications.

For the reasons we identified in this section, the challenge of improving
the energy efficiency of battery-less devices is still open and provides a
broad range of opportunities as a research direction.

1.3 Contributions

The PhD research focuses on various faces of the challenges we describe in
Section 1.2. This section summarizes the contributions of the PhD research.

Figure 1.8 depicts how our contributions map to the research challenges,
and shows the connection among our contributions. We mainly focus on
intermittent program consistency and energy efficiency. Throughout the
PhD research, we explore new designs to interface hardware and software,
aiming to increase system efficiency while transparently ensuring program
forward progress and avoiding unexpected behaviors.

1.3.1 Deployment of Battery-less Devices

This work tackles the real use case challenges described in Section 1.2.1.
We work on the first multi-year deployment of battery-less devices that
sense the structural and environmental conditions of an underground ar-
chaeological site [40, 99] in Rome (Italy).

The unique and extreme conditions of this site require unattended opera-
tions. Accesses to the site are strictly regulated and need to be as minimum
as possible to avoid the deterioration of environmental conditions. Further,
the site lacks a stable power source, and only kinetic and thermal energy
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is available. These requirements represent a perfect use case example for
battery-less devices.

We design three different iterations of battery-less systems, evaluating
the use of multiple existing techniques for intermittent computing. The
archaeologists using the sensed data confirmed that our deployment pro-
vides insight into environmental conditions comparable to one of battery-
powered systems, despite providing fewer data due to energy failures. More-
over, our deployment is still been running with zero maintenance for over
4 years, demonstrating the potential of battery-less devices.

We published a paper summarizing the experiences and lessons learned
from this deployment to the ACM Conference on Embedded Networked
Sensor Systems (SenSys 2020) [4]. We describe the contributions of this
work to the state of the art in Chapter 6, and we attach the paper in Chap-
ter 12.

1.3.2 Analysis and Testing of Intermittence Anomalies

This work tackles the intermittent program consistency challenge described
in Section 1.2.2. We provide an in-depth analysis of intermittence anoma-
lies, consisting of unexpected behaviors characterizing battery-less devices,
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and we devise a set of techniques to test all the possible intermittent execu-
tions of a program.

We expand the concept of intermittence bugs and extend our previously
published work [74] on this topic with multiple new contributions. In par-
ticular:

• we identify new types of unexpected behaviors that energy failures
may cause when devices interact with the environment;

• we provide a set of techniques to identify and analyze environment-
related intermittence anomalies, and we provide a set of guidelines
that allow developers to avoid their occurrence;

• we design a new technique to identify memory-related intermittence
anomalies, which demonstrates a higher efficiency than our previous
technique

We design ScEpTIC, an emulation environment to test intermittence
programs, and we implement a prototype of our analysis techniques for in-
termittence anomalies. ScEpTIC code and documentation are available
as open-source [69]. Note that we constantly update ScEpTIC through-
out the PhD research, and we used it as an evaluation environment for our
works.

We published this work at the 2021 International Conference on Embed-
ded Wireless Systems and Networks (EWSN 2021) [75]. We describe the
contributions of this work to the state of the art in Chapter 7, and we attach
the paper in Chapter 12.

Finally, as Figure 1.8 shows, the knowledge we build from this contri-
bution leads to precious insights that we later use to devise intermittence
awareness design pattern [72] and our virtual memory abstraction [70, 73].
Further, throughout the research, we constantly update ScEpTIC with new
features and we use it in multiple contributions to explore and evaluate our
techniques design.

1.3.3 Intermittence-awareness Program Design Pattern

This work tackles the intermittent program consistency and energy effi-
ciency challenges described in Section 1.2.2 and in Section 1.2.3, respec-
tively. Note that this work builds on the knowledge we have developed
during our work on intermittent anomalies [75], as Figure 1.8 shows.

We consider a new perspective on intermittence anomalies: we inten-
tionally allow the occurrence of specific intermittence anomalies to gain
new information regarding energy failures and intermittent executions of
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programs without introducing unexpected behaviors. We call this concept
intermittence awareness.

Intermittence awareness allows developers to consider intermittence as a
new input for their programs. Developers can use this previously-unavailable
information to make their programs react to energy failures, unlocking new
program design patterns.

To demonstrate one of the many possibilities that intermittence-awareness
unlocks, we design an intermittence-aware technique that reduces the en-
ergy overhead required to preserve the computation achieved inside loops.
Our experiments show that, compared to existing forward progress tech-
niques, our intermittence-aware technique shows, on average, a 32.5x lower
energy consumption and a 48.4x lower workload completion time.

We published this work at the International Workshop on Energy Har-
vesting & Energy-Neutral Sensing Systems (ENSsys ’20) [72], where it
received the Best Paper award. We describe the contributions of this work
to the state of the art in Chapter 8, and we attach the paper in Chapter 12.

Finally, as Figure 1.8 shows, the knowledge we build from this contri-
bution leads to precious insights that we later use to avoid intermittence
anomalies in our virtual memory abstraction [70, 73].

1.3.4 Virtual Memory for Intermittent Computing

This work tackles the intermittent program consistency and energy effi-
ciency challenges described in Section 1.2.2 and in Section 1.2.3, respec-
tively. Note that this work builds on the knowledge we have developed
during our works on intermittent anomalies [75] and intermittence aware-
ness [72], as Figure 1.8 shows.

We design ALFRED, a virtual memory abstraction and compilation pipeline
for mixed-volatile platforms that automatically identify the most efficient
mapping of the program state across volatile and non-volatile memory. Our
technique is completely transparent to developers and works on top of ex-
isting forward progress techniques.

ALFRED virtual memory abstraction relieves developers from mapping
the program state across volatile and non-volatile memory, as they need not
to specify a mapping for their programs. ALFRED compilation pipeline an-
alyzes the input program and automatically maps virtual memory to volatile
and non-volatile memory, identifying the most efficient mapping for each
memory slice and code region.

The key behind ALFRED compilation pipeline is a set of program trans-
formation techniques that decide what slice of the memory must be allo-
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cated onto non-volatile memory and at what point in the program execu-
tion. The resulting mapping is not fixed, and it is automatically adjusted at
different places in the program based on read/write patterns and program
structure.

We implement a prototype of ALFRED in ScEpTIC [69, 70, 75], which
we use as an evaluation environment. Moreover, we update ScEpTIC
enabling simulations of devices’ energy consumption and energy sources.
Our experiments show that ALFRED improves the energy consumption by
up to two orders of magnitude, with a comparable reduction of the workload
completion time due to a significant decrease in the number of experienced
energy failures.

We published this work at the ACM Conference on Embedded Net-
worked Sensor Systems (SenSys 2021) [73]. A prototype of ALFRED
code and documentation are available as open-source release [70] along
with an extended technical report of ALFRED program transformation tech-
niques [71]. We describe the contributions of this work to the state of the
art in Chapter 9, and we attach the paper in Chapter 12.

1.3.5 DVFS for Intermittent Computing

This work tackles the energy efficiency challenges described in Section 1.2.3.
Following early-stage research on DVFS for battery-less devices [5], we
identify key functionalities required to efficiently enable DVFS in resource-
constrained embedded MCUs that lack a dedicated DVFS controller.

The key functionality of our system design stands in identifying avail-
able MCU performance windows, consisting of the most efficient combina-
tions of voltage and frequency settings. Low-power MCUs feature several
factory-calibrated frequencies, where the MCU datasheet reports their cor-
responding minimum operating voltage. We then partition the energy buffer
voltage into discrete energy levels and map each level to the most efficient
performance windows supported at that level.

The system runtime identifies changes in the discrete energy level and
applies the corresponding frequency and voltage. This removes the over-
head introduced by periodic measurement of the energy buffer voltage, as
the system tunes its operating settings only upon changes in the discrete
energy level.

We use our system design rationale to implement two hardware/soft-
ware co-designs for the MSP430-G2553 [48], one of which we materially
fabricated.

As Figure 1.8, we rely on ScEpTIC to evaluate our system designs.
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For doing so, we extend ScEpTIC with the ability of simulating devices’
energy consumption, energy buffers, energy sources, circuitry external to
the MCU, and custom hardware designs. Compared to static frequency
configurations, our evaluation shows a reduction of the device energy con-
sumption by up to 170% and a reduction of the workload completion time
by up to one order of magnitude.

A paper summarizing this work was submitted to the ACM Transactions
on Sensor Networks, and we are awaiting the reviews. We describe the
contributions of this work to the state of the art in Chapter 10, and we attach
the paper in Chapter 13.
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CHAPTER2
Deployments

The literature provides several examples of long-term deployments of battery-
powered systems [3,19–21,23,28,30,31,33,60,77,78,80,82,98], whereas
very few deployments exist of battery-less systems [22, 37, 47, 53, 84, 91].
Section 2.1 briefly introduces various deployments for battery-powered sys-
tems, showing common pitfalls and various techniques to improve battery
lifetime. Instead, Section 2.2 describes existing deployments of battery-less
devices.

2.1 Battery-powered Systems

The literature demonstrates several deployments of battery-powered em-
bedded sensing systems in various environmental scenarios and at different
scales [3,19–21,23,28,30,31,33,60,77,78,80,82,98]. Common to these de-
ployments is the requirement of periodic user intervention due to frequent
battery replacements and limited performance due to battery depletion.
Battery-powered systems. Navarro et al. [82] demonstrate a two-year-
long deployment of a 42-nodes wireless sensors network that monitors the
temperature and humidity of a forested nature reserve. The average life-
time of batteries was 38 days, requiring periodic user intervention for their
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replacement.
Szewczyk et al. [98] show a four-month-long deployment of a 150-nodes

wireless sensor network that monitors seabirds’ habitats during their breed-
ing season. They try to design sensing nodes whose battery lifetime equals
the required deployment time by designing a firmware that manages tasks
execution, ensuring that batteries last for an entire breeding season. How-
ever, due to varying environmental conditions, deployed nodes show a 50%
lower lifetime than expected, demonstrating that estimating battery deple-
tion is non-trivial and may be erratic. Further, systems designed to last for
a limited time still require user intervention to recollect the nodes for new
deployments or to replace their batteries to extend the deployment period.

Marfievici et al. [77] report on a 17-month-long deployment of 30 nodes
that monitor a data center’s temperature, humidity, and airflow. This de-
ployment demonstrates that battery replacement is required to ensure sys-
tem operations and to grand a required level of performance. Despite achiev-
ing an extended battery lifetime of 15 months, the authors identify that
nodes’ performance depends on the remaining battery charge, as the system
experienced a decrease in packet rate that returned to normal after replacing
the batteries.

Other deployments [19–21,30,60,80] show similar experiences, requir-
ing periodic user interventions to keep nodes active and maintain their per-
formance level.
Energy-harvesting and rechargeable batteries. Several deployments ex-
tend battery life and reduce user intervention using ambient energy harvest-
ing and rechargeable batteries [3, 23, 28, 31, 33, 78] for their sensing nodes.
Common to these deployments is the requirement of large batteries to sus-
tain the computation for periods longer than systems with no rechargeable
batteries. Therefore, these deployments demonstrate that energy harvesting
alone does not extend batteries’ lifetime enough to ensure nodes can sustain
the computation for long periods.

Adkins et al. [3] show a city-scale deployment of six months where they
deploy 12 nodes that monitor weather conditions, TV whitespace spectrum
usage, and vehicular traffic at a university campus. Each node harvests
solar energy through a solar panel and has a large 100Wh Li-ion battery
pack. Although energy harvesting increases sensor nodes’ battery life, this
deployment shows that battery replacement is still required for long-term
deployment scenarios.

Other deployments [23, 78] improve nodes’ lifetime by using energy
sources correlated with the monitored events. Martin et al. [78] report on
a four-week deployment of 6 nodes monitoring showers’ water flow and
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usage. Sensing nodes are equipped with rechargeable batteries and harvest
thermal energy from hot water pipes. The authors design each node to
wake up only when hot water flows, leading to a 10-year estimated battery
lifetime. Chiang et al. [23] target a similar application scenario and report
on a two-week-long deployment of 23 nodes equipped with rechargeable
batteries and electromagnetic generators that harvest kinetic energy from
the water flow. The authors estimate that a single shower increases the
device battery lifetime by 23 hours.
Battery alternatives. Deployments exist [28, 31] that validate system de-
signs that consider battery alternatives to improve nodes’ lifetime further.

Dutta et al. [31] use a four-month-long deployment of 557 sensor nodes
to demonstrate a hybrid system design that combines batteries and super-
capacitors for improved battery life. The authors equip each node with a
small-sized solar cell to harvest solar energy, a 22F super-capacitor, and a
200mAh lithium polymer battery. The battery cannot sustain a 100% duty
cycle, and each node uses the super-capacitors as a secondary energy buffer
to ensure system operation when the battery is depleted, improving system
lifetime.

Corke et al. [28] show a two-year-long deployment of 15 nodes powered
with solar energy, comparing two different system designs: one using a
rechargeable battery as an energy buffer and one using a super-capacitor.
Although super-capacitors store 250x less energy than batteries, the system
design using a super-capacitor lasted up to 27 hours without solar energy.
This result demonstrates that super-capacitors can be a battery replacement
for solar-powered sensor nodes.

2.2 Deployments of Battery-less Devices

The literature provides fewer examples of deployments for battery-less de-
vices [22,37,47,84,91], where only a small fraction of them are real-world
deployments that account for end-user needs [22, 47]. These deployments
use single (super-)capacitors as energy buffers. Although the literature pro-
vides several architectures [27,42,102] that use arrays of (super-)capacitors
as energy buffers, no real-world deployment exploits such architectures.
Super-capacitors. Following the examples of previous super-capacitor in-
vestigations [28, 31], other deployments [22, 37, 84] demonstrate system
designs that rely on super-capacitors as the only energy buffer.

Fraternali et al. [37] report on a 15-day-long deployment of 20 sensor
nodes for indoor smart building applications. Each node harvests solar en-
ergy and stores it into a 1F super-capacitor. During the computation, a
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power-management algorithm increases the node lifetime by changing the
BLE advertising rate and scaling the number of used sensors, depending on
available energy. The results show that this system design maintained con-
tinual operations at the cost of a significantly reduced throughput when no
solar energy was available. The authors suggest using bigger energy buffers
and solar panels for an improved lifetime when no energy can be harvested
from the environment.

Petrariu et al. [84] demonstrate a node design that harvests solar energy
and stores it into a 4F super-capacitor using a 4-month-long deployment of
a single node. The node periodically monitors the environment’s tempera-
ture and humidity and uses the energy stored in the super-capacitor for data
transmission over night-time when no solar energy is available. The au-
thors report that the proposed system power supply is sufficient to achieve
the expected level of performance.

Chen et al. [22] report on a 3-month-long deployment to monitor the
water quality of a river. They deploy a gateway and 5 wireless sensor nodes
that periodically measure the water temperature, dissolved oxygen concen-
tration, and pH. The gateway harvests solar energy using a 20W solar panel,
whereas each sensor node uses a microbial fuel cell (MFC) to harvest bioen-
ergy from the river. MFCs supply a severely limited amount of energy,
preventing the system from sustaining the lowest possible duty cycle that
yields the data rate requirements of water quality measurement applica-
tions. Moreover, MFCs output voltage is up to 0.33V , well below the sys-
tem operating voltage of 1.8V . To ensure system operations and periodic
measurements of water quality, the authors equip each node with a custom
power module, which features (i) a charge pump that boosts the MFC out-
put voltage, (ii) a 200mF super-capacitor that acts as an energy buffer and
stores harvested energy, and (iii) an RF switch that turns on the system by
harvesting the energy carried by specific RF signals. The gateway transmits
the RF signal, deciding when and for how long the sensor nodes collect and
transmit data. The deployment shows that the achieved data rate meets the
need of regular water quality monitoring applications, demonstrating unat-
tended operations and better performance than manually-operated systems
that require manually collected samples to measure water quality.
Capacitors. The literature provides very few examples of deployments that
use capacitors as energy buffers [47, 91].

Saoda et al. [91] report on a week-long deployment of 38 sensor nodes
that provide indoor tracking through BLE, harvest solar energy and use
a capacitor as an energy buffer. The author’s main objective is to evalu-
ate how physical and design variables, such as node placement and energy
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buffer size, affect system performance. From this deployment, the authors
identify that a capacitor of 200uF stores sufficient energy for transmitting a
single packet containing indoor tracking information. Further, the authors
argue that prioritizing light intensity for node placement does not lead to
higher system availability, which instead requires deployment schemes and
runtime optimization strategies specifically designed for battery-less de-
vices.

Ikeda et al. [47] report on three two-month-long deployments of a sin-
gle node that monitors farm fields’ temperature and soil moisture in Japan
and India. The node uses a thermoelectric generator (TEG) to harvest en-
ergy from the temperature difference between air and underground soil and
uses a 500µF capacitor as an energy buffer. These deployments allow the
authors to evaluate the efficacy of the TEG and the system design, demon-
strating that the TEG supplies more than sufficient energy to drive periodic
temperature and soil moisture sensing.
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CHAPTER3
State Retention and Forward Progress

The literature provides several forward progress mechanisms [11, 12, 16,
25, 54, 59, 64–66, 76, 86, 88, 100, 103] that allow battery-less devices to
achieve program forward progress across energy failures. All these tech-
niques share the same underlying idea: they ensure devices periodically
save their program state onto a non-volatile memory location, which is per-
sistent across energy failures. When restarting after energy failures, devices
restore their program state from non-volatile memory and resume the com-
putation from where the state was saved. Note that the saved state must
include all the information required to resume the computation, including
the content of the main memory, register file, and special registers, such
as the program counter and the stack pointer. These elements are usually
volatile and need to be preserved across energy failures. Moreover, non-
volatile memory can be either a peripheral external to the MCU and used
only as program state storage [11, 12, 86], or a directly-addressable loca-
tion internal to the MCU also used to allocate slices of main memory onto
it [54, 64, 100], as in mixed-volatile platforms [51].

Forward progress, program consistency, and energy efficiency challenges
are connected, and how we tackle one challenge affects the others, as we
point out in Chapter 1.2. The existing forward progress mechanisms ex-
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plore various approaches to ensure program forward progress across energy
failures while reducing the energy and computational overhead introduced
by state-saving operations and the ones introduced to avoid unexpected be-
haviors caused by energy failures, such as intermittence bugs [64, 74, 85,
100]. In this chapter, we provide basic knowledge on various forward
progress mechanisms, whereas we later describe in Chapter 4 and Chap-
ter 5 how they avoid intermittence bugs and how they improve the energy
consumption, respectively.

The differences between the forward progress mechanisms available in
the literature reside in four key aspects:

1. how the program state is saved onto non-volatile memory
2. when the program state is saved onto non-volatile memory
3. what slices of the program state are saved onto non-volatile memory
4. the mapping of program state across volatile and non-volatile memory
Considering these aspects, we can differentiate forward progress mech-

anisms into checkpoint-based [11,12,16,54,66,86,100] and task-based [25,
64, 65, 76, 88, 103] mechanisms. Checkpoint-based mechanisms rely on a
special routine to save the program state, namely, a checkpoint. Instead,
task-based mechanisms require developers to partition their program onto
tasks and save the program state on task completion. We describe next
the differences and characteristics of these two classes of forward progress
mechanisms, along with examples of existing techniques.

3.1 Checkpoint-based Forward Progress Mechanisms

Checkpoint-based mechanisms ensure program forward progress with the
help of two routines: (i) a checkpoint routine that saves the program state
onto non-volatile memory and (ii) a restore routine that restores a previous-
ly-saved program state from non-volatile memory.

Checkpoint routines can execute in fixed places inside the program or
at any instant during the program execution. The former case identifies a
static checkpoint mechanism [16,66,86,100] whereas the latter identifies a
dynamic or just-in-time checkpoint mechanism [11, 12, 54].

3.1.1 Static Checkpoint Mechanisms

Static checkpoint mechanisms place calls to checkpoint routines inside the
program’s code during compile-time, accordingly to a pre-defined place-
ment strategy. Hence, checkpoint routines execute at fixed program loca-
tions decided at compile-time.
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Checkpoint routines can either directly save the state or verify device
runtime information, such as the energy buffer level, and consequently de-
cide whether to save the state. In the former case, the checkpoint mecha-
nism is in a direct configuration [100], whereas the latter is in a conditional
configuration [16, 66, 86].

We describe next some static checkpoint mechanisms that introduce rel-
evant concepts necessary to understand the contributions of the PhD.
Direct - Ratchet. Ratchet [100] is a static checkpoint mechanism with a
direct configuration. Ratchet instruments the program code with function
calls to the checkpoint routine, whose execution immediately saves the pro-
gram state.

Ratchet checkpoint placement strategy is specifically designed to avoid
intermittence bugs, as we later describe in Chapter 4. Ratchet analyzes the
program’s code and places function calls targeting the checkpoint routine to
partition the program into idempotent code sections. An idempotent code
section consists of sequences of operations that alter the program state only
during their first execution. Further re-executions due to energy failures do
not produce a different program state.

Ratchet targets mixed-volatile platforms, and its default configuration
maps the entire content of main memory onto non-volatile memory, includ-
ing global variables and the stack segment. As such, Ratchet checkpoint
routine needs to save only the register file and special registers onto non-
volatile memory, as the program’s main memory is already persistent. This
reduces the energy and computation overhead of the checkpoint routine.

However, as we later describe in Chapter 5, such overhead decrease
comes at the cost of an increased program energy consumption due to ac-
cesses to the slower and less efficient non-volatile memory, which is used
as main memory. Further, Ratchet checkpoint placement strategy produces
frequent execution of the checkpoint routine, increasing the energy and
computation overhead due to the executions of the checkpoint routine. Note
that Ratchet also supports other memory mapping configurations, which,
however, increase the checkpoint routine overhead.
Conditional - Mementos. Mementos [86] is a static checkpoint mecha-
nism with a conditional configuration. Instead of inserting calls to check-
point routines, Mementos instruments the program code with trigger calls
that verify when the program state needs to be saved. When the execution
reaches a trigger call, Mementos probes the energy buffer level by mea-
suring its voltage through an ADC. If the measured voltage falls below a
pre-defined threshold, Mementos saves the program state onto non-volatile
memory by executing its checkpoint routine.
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Mementos provides two different placement strategies to automatically
instrument programs: loop-latch and function-return. The loop-latch place-
ment strategy inserts a trigger call at the back edge of each loop, that is, the
loop latch. This strategy ensures the execution of trigger calls at the end
of each loop iteration. Instead, the function-return placement strategy in-
serts a trigger call after each function call inside the program. This strategy
ensures the execution of trigger calls after the return of every function. Fi-
nally, Mementos also allows developers to insert trigger calls inside their
programs manually.

Mementos maps main memory to volatile memory and uses non-volatile
memory only to store the saved program state. As such, Mementos check-
point routine saves the entire content of the main memory, the register file,
and special registers, resulting in a significant energy and computation over-
head.

To avoid unnecessary state saves and reduce checkpoints overhead, Me-
mentos relies on probing the energy buffer level to decide when to save the
state. However, as we later argue in Chapter 5, ADC probing may introduce
a significant energy overhead.
Conditional - HarvOS. HarvOS [16] is a static checkpoint mechanism
with a conditional configuration. Similarly to Mementos [86], HarvOS au-
tomatically places trigger calls inside programs to verify when the program
state needs to be saved.

As we later describe in Chapter 5, HarvOS trigger calls placement strat-
egy aims at minimizing the overhead of checkpoints and trigger calls. Har-
vOS splits the program into blocks of instructions and places a single trig-
ger call within each block, where the allocated memory is minimum. This
minimizes checkpoints overhead, as they execute where the amount of data
to save onto non-volatile memory is minimum. Further, HarvOS sizes these
blocks to minimize the number of trigger calls while ensuring the instruc-
tions between two trigger calls do not consume more energy than the device
can buffer. Note that this prevents devices from being stuck at re-executing
the same portion of a program due to insufficient energy to reach the next
trigger call that saves a checkpoint [26].

Differently from Mementos [86], which uses a fixed voltage threshold
to save the program state, HarvOS uses an adaptive threshold based on the
energy remaining in the energy buffer. Whenever a trigger call executes,
HarvOS probes the energy buffer level and executes the checkpoint routine
only if there is insufficient energy to reach the next trigger call and to save
the state next. Note that HarvOS identifies this information at compile-time,
where it associates with each trigger call the energy necessary to reach the
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next trigger call and save the state.

Finally, HarvOS maps main memory to volatile memory and uses non-
volatile memory only to store the saved program state. As such, HarvOS
checkpoint routine saves the entire content of the main memory, the register
file, and special registers.

Conditional - Chinchilla. Chinchilla [66] is a static checkpoint mecha-
nism with a conditional configuration. Similarly to Mementos [86] and
HarvOS [16], Chinchilla aims at reducing checkpoints overhead. However,
unlike Mementos [86] and HarvOS [16], which probe the energy buffer
level, Chinchilla uses a timer to decide when to execute a checkpoint rou-
tine.

Chinchilla automatically places function calls to the checkpoint routine
at the end of each basic block of a program. To minimize the execution
of checkpoints, Chinchilla considers each checkpoint initially disabled and
skips its execution when encountered. On system startup, Chinchilla sets
a timer whose expiration dynamically enables the execution of checkpoint
routines. When a checkpoint routine terminates its execution, Chinchilla
dynamically disables checkpoint routines and resets the timer. Note that
the timer interval is initially set at compile time and dynamically adjusted
during runtime.

Chinchilla targets mixed-volatile platforms and maps main memory to
both volatile and non-volatile memory. Global variables are mapped onto
non-volatile memory, whereas the stack segment is shared among volatile
and non-volatile memory. Chinchilla relies on program analysis techniques
to map stack elements across volatile and non-volatile memory. Chinchilla
maps to volatile memory the stack elements whose read and write opera-
tions do not cross any checkpoint, consisting in the elements whose write
and read operations happen within the same basic block. All the other stack
elements are mapped to non-volatile memory.

Chinchilla checkpoint routine saves the register file and special regis-
ters. However, it does not save the volatile portion of main memory, as it
contains data that need not to be preserved across energy failures. Along-
side with checkpoints, Chinchilla logs the write operations targeting non-
volatile memory and avoids intermittence bugs [74, 85] by reverting these
operations when restoring a checkpoint. We further describe this technique
in Chapter 4.

33



Chapter 3. State Retention and Forward Progress

3.1.2 Dynamic / Just-in-time

Dynamic or just-in-time checkpoint mechanisms rely on hardware inter-
rupts to trigger the execution of checkpoint routines whenever the energy
buffer level drops below a certain threshold. Hence, checkpoint routines
can execute at any instant during the program computation.

We describe next some dynamic checkpoint mechanisms that introduce
relevant concepts necessary to understand the contributions of the PhD.
Hibernus. Hibernus [11, 12] is a system design of a dynamic checkpoint
mechanism.

Hibernus maps main memory to volatile memory and uses non-volatile
memory only to store the saved program state. Hence, state-saving opera-
tions need to save the entire content of main memory, the register file, and
special registers.

Hibernus targets the MSP430 platform [51] and relies on its dedicated
hardware capabilities, consisting in (i) an on-chip comparator to generate
interrupts and (ii) an on-chip variable voltage generator to set the com-
parator reference voltage (iii) the MCU low-power mode, which enters a
deep-sleep state that keeps the content of volatile memory alive.

Hibernus considers two voltage thresholds to trigger state-save and state-
restore operations: the hibernation voltage Vh and the resume voltage Vr.
On system startup, Hibernus sets the on-chip comparator reference voltage
to Vh. When the energy buffer voltage drops below Vh, the on-chip com-
parator triggers an interrupt that causes the execution of Hibernus hibernate
routine. Here Hibernus saves the program state onto non-volatile memory,
sets the on-chip comparator reference voltage to Vr, and sets the MCU into
hardware deep sleep. The system is now in a low-power mode, waiting for
new harvested energy, and retains its volatile state, including the content of
main memory and registers.

If the energy buffer voltage raises to Vr, the on-chip comparator triggers
an interrupt that wakes up the MCU. Hibernus sets the on-chip comparator
reference voltage back to Vh, and the computation resumes without restor-
ing the saved state. In fact, the MCU volatile state was not lost, as no
energy failure happened. This allows Hibernus to reduce the overhead due
to state-restoring operations.

Instead, if an energy failure occurs while Hibernus is in hibernation
mode, the MCU volatile state is lost. Consequently, when sufficient energy
is available, Hibernus restores the saved state from non-volatile memory,
and the computation resumes.

Hibernus functionality relies on the voltage threshold values Vh and
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Vr, whose optimal value changes during runtime, as it depends on energy
harvesting and workload patterns [11]. Hibernus calculates and statically
sets Vh and Vr at compile-time, potentially resulting in sub-optimal perfor-
mance. To account for this limitation, Balsamo et al. [11, 12] propose an
updated system design, Hibernus++ [11], which dynamically updates Vh

and Vr accordingly to energy failure patterns and runtime system behavior.
QuickRecall. QuickRecall [54] is a system design of a dynamic checkpoint
mechanism that shares some similarities with Hibernus [11, 12]. The main
difference among these systems is that QuickRecall targets mixed-volatile
platforms and maps the entire program’s main memory onto non-volatile
memory. Hence, QuickRecall checkpoints need only to save the content of
the register file and special registers.

Similarly to Hibernus [11, 12], QuickRecall relies on an on-chip com-
parator to trigger interrupts that cause the execution of checkpoint and re-
store routines. However, unlike Hibernus [11,12], QuickRecall considers a
single voltage threshold Vtr, called trigger voltage.

When the energy buffer voltage drops below Vtr, the on-chip comparator
triggers an interrupt that causes the execution of the checkpoint routine.
Similarly to Hibernus [11, 12], QuickRecall saves the volatile portion of
the program state and puts the MCU into hardware deep sleep. The system
is now in a low-power mode, waiting for new harvested energy, and retains
its volatile state, consisting of registers.

If the energy buffer voltage raises back to Vtr, the on-chip comparator
triggers an interrupt that wakes up the MCU. Here QuickRecall resumes
the computation without restoring the saved state, as no energy failure hap-
pened, and the volatile state was not lost. Otherwise, the MCU will even-
tually power off due to an energy failure. When sufficient energy is avail-
able, QuickRecall restores the saved state from non-volatile memory and
resumes the computation.

QuickRecall uses non-volatile memory as main memory. Therefore, the
computation must not continue after the program state is saved. Otherwise,
an intermittence anomaly [74, 85] may happen.

3.2 Task-based Forward Progress Mechanisms

Task-based mechanisms require developers to design their programs as se-
quences of tasks, where each task consists of an atomic unit of computation.
A runtime scheduler ensures program forward progress by automatically
saving the state on task completion and ensures tasks always execute in the
specified order, even in the presence of energy failures.
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The literature provides several system supports and programming ab-
stractions to partition programs into tasks [25, 64, 65, 76, 88, 103]. We de-
scribe next some task-based mechanisms that introduce relevant concepts
necessary to understand the contribution of the PhD.
DINO. DINO [64] represents one of the first attempts to task-based for-
ward progress mechanisms. DINO provides a novel view of checkpoints,
considering them as task boundaries that specify the end of a task and the
beginning of a new one.

DINO defines a programming model that requires developers to partition
their programs into tasks by placing task boundaries into their programs,
consisting of function calls to a routine of the DINO runtime library. DINO
considers each sequence of instructions executed between two task bound-
aries as a task, granting atomicity and data consistency for each task. Task
boundaries are statically defined at compile-time, whereas tasks are formed
dynamically at runtime, depending on the placement of task boundaries and
program control flow.

DINO ensures program forward progress across energy failures using
the same technique of checkpoint mechanisms [11, 12, 16, 54, 86, 100].
When a task boundary executes, DINO saves the program state onto non-
volatile memory, The saved program state includes the content of the main
memory, the register file, and special registers, such as the program counter
and the stack pointer. When resuming after energy failures, DINO restores
the saved state from non-volatile memory and resumes the computation
from the latest task boundary.

DINO targets mixed-volatile platforms and allows developers to allocate
global variables onto non-volatile memory. Non-volatile variables may ex-
perience intermittence bugs [64,74,85,100], which DINO avoids by ensur-
ing a consistent program state through the inclusion of non-volatile vari-
ables into the saved state. We describe this aspect in Chapter 4.
Chain. Chain [25] is a task-based forward progress mechanism for mixed-
volatile platforms. Unlike DINO [64], Chain provides a programming ab-
straction to design programs as collections of tasks, where developers de-
fine each task as a C function. Developers define task execution order di-
rectly in each task function, specifying the task to execute after the current
task completion.

Tasks exchange data through dedicated non-volatile memory locations
called channels, which developers explicitly define. Each channel is shared
among two tasks, and Chain ensures an access pattern that avoids intermit-
tence bugs [64,74,85,100]. In general, a task can access a channel either in
write mode to store its results or in read mode to access other tasks’ results,
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but not in both modes. This exclusive read-only or write-only access pattern
ensures a consistent program state. We focus on this aspect in Chapter 4.

Chain considers tasks atomic units of computation and preserves for-
ward progress at task granularity. On task completion, Chain saves a refer-
ence of the next task to execute onto a non-volatile memory location, called
global execution context. Tasks explicitly save their results onto channels.
On system startup, Chain resumes the computation by starting the execu-
tion of the task whose reference is saved in the global execution context.
This ensures forward progress as long as each task can execute within a
single charge of a capacitor [26].

Chain maps tasks runtime state onto volatile main memory and needs not
to preserve task state across energy failures, as it considers tasks execution
atomic. Either a task completes its execution before an energy failure, or
Chain re-executes the task from the beginning. Therefore, Chain needs not
to preserve the content of volatile memory, as task results are saved onto
channels, and the global execution context holds the necessary information
to resume the computation.
Alpaca. Alpaca [65] is a task-based forward progress mechanism for mixed-
volatile platforms that simplifies data sharing and communication across
tasks. Similarly to Chain [25], Alpaca provides a programming abstrac-
tion that allows developers to define tasks as C functions. However, unlike
Chain [25], Alpaca allows tasks to communicate directly through global
variables allocated onto non-volatile memory.

Alpaca memory model divides variables into task-local and task-shared
variables. Task-local variables contain private task information and cannot
be accessed outside the task where they are created. Instead, task-shared
variables contain task results and data shared among tasks.

Similarly to Chain [25], Alpaca ensures program forward progress at
task granularity. Either a task completes its execution before an energy
failure, or Alpaca re-executes it from the beginning. Consequently, Alpaca
maps task-local variables onto volatile main memory, as they contain in-
termediate task results that need not to be preserved across energy failures.
Instead, Alpaca maps task-shared variables onto non-volatile main mem-
ory, as they contain data accessible by any task.

Alpaca ensures task atomicity and avoids intermittence bugs [64, 74,
85, 100] by creating task-specific private local copies of task-shared vari-
ables. Alpaca allocates these copies onto non-volatile memory. Tasks ac-
cess task-shared variables through their private local copies, and Alpaca
updates task-shared variables on task completion. This ensures that energy
failures cannot cause unexpected task-shared values, as tasks cannot mod-
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ify task-shared variables unless their execution is complete. We focus on
this aspect in Chapter 4.

Alpaca preserves program forward progress with a two-phase commit
mechanism, consisting of a pre-commit and commit phase. Alpaca starts
the pre-commit phase on task completion and saves the references of task-
shared variables’ local copies onto a non-volatile commit buffer. Next, Al-
paca saves the next task identifier onto a dedicated non-volatile memory
location and sets the pre-commit bit, which specifies that the pre-commit
phase is completed. Note that an energy failure happening before the com-
pletion of the pre-commit phase causes the re-execution of the task from
the beginning when energy returns. Alpaca now starts the commit phase.
For each reference in the commit buffer, Alpaca updates the correspond-
ing task-shared variable and removes the reference of its private local copy
from the commit buffer. Note that an energy failure happening during this
phase does not cause the re-execution of the task from the beginning, as
Alpaca checks the pre-commit bit on system startup. If the commit bit is
set, Alpaca resumes the commit phase from where it stopped. When the
commit buffer is empty, Alpaca unsets the pre-commit bit and executes the
next task, whose reference was saved into a dedicated non-volatile memory
location during the pre-commit phase.
Other systems. The literature provides other system designs that enrich
the capabilities of existing task-based forward progress mechanisms.

Coati [88] extends Alpaca [65] programming and execution models,
adding support for interrupts. Interrupts may happen at any instant during
task execution, potentially violating task atomicity and causing inconsis-
tent program states [88]. Coati requires developers to define the interrupt
service routine (ISR) associated with interrupts as two distinct functions: a
top function and a bottom function. We can consider the top function as
the ISR that executes when the associated interrupt fires. The top function
preempts task execution, collects time-sensitive input data, schedule the ex-
ecution of the bottom function, and resumes the interrupted task. Instead,
the bottom function consists of a task that processes the data collected by
the top function and only executes after the interrupted task terminates.

InK [103] enriches the semantics of task-based systems by adding sup-
port for event-driven and time-sensitive tasks, unlocking new multi-application
program designs. InK allows developers to group tasks into task threads,
which essentially specify an application. Developers can specify a priority
level for each task thread, which InK then uses to schedule task execution.
Further, InK allows developers to conditionally enable task threads depend-
ing on specific events, such as energy levels, interrupts, and timers. InK
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interrupts handling is conceptually similar to the one of Coati [88], where
the ISR only gathers time-sensitive data and then schedules the execution
of a task that processes such data. Interrupts can preempt task threads at
task granularity, whereas single tasks cannot be interrupted.

Coala [76] improves task-based systems efficiency by providing an adap-
tive task execution model that allows tasks coalescing and downscaling.
Coala coalescing strategy postpones state-saving operations and executes
them after completing multiple tasks, effectively reducing the overall en-
ergy consumption of state-saving operations and tasks transition. Similarly,
Coala downscaling strategy uses a timer to save the partial progress of large
tasks that are unable to complete due to multiple energy failures, effectively
avoiding being stuck at executing non-terminating tasks [26]. We focus on
this aspect in Chapter 5. Coala memory handling technique avoids inter-
mittence bugs [64,74,85,100] and ensures that coalescing and downscaling
operations do not invalidate tasks’ atomicity. Coala allocates tasks state
onto a working buffer mapped onto volatile memory. Coala splits the ad-
dress space of non-volatile memory into (i) a private partition that holds
tasks committed data and (ii) a shadow partition that holds non-commit-
ted data modified by tasks. Coala takes the same approach as Alpaca [65]
to ensure task atomicity and to avoid intermittence bugs [64, 74, 85, 100].
Coala creates copies of variables from the private partition of non-volatile
memory onto tasks working buffers. Coala saves the modified copies of
the working buffer into the shadow partition of non-volatile memory when
each task completes. Then, Coala uses a two-phase commit mechanism to
update the private partition from the shadow partition when coalesced tasks
commit.
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CHAPTER4
Analysis of Intermittent Program Behaviors

Energy failures may cause battery-less devices to experience unexpected
behaviors that lead to results unattainable in a continuous execution [26,64,
74, 85, 97, 100]. The literature analyzes two types of unexpected behaviors
specific to intermittent computing: intermittence bugs [64, 74, 85, 97, 100]
and non-terminating path bugs [26].

Intermittence bugs [64, 74, 85, 97, 100] cause an inconsistent program
state and lead devices to produce results unattainable in a continuous ex-
ecution. Section 4.1 provides basic knowledge of intermittence bugs, de-
scribing current analysis techniques and ways to avoid their occurrence.

Non-terminating path bugs [26] cause devices to be forever stuck at re-
executing the same portion of the program, leading to starvation and pre-
venting program forward progress. Section 4.2 provides basic knowledge
of non-terminating path bugs, describing current analysis techniques and
ways to prevent their occurrence.

Verifying the absence of intermittence bugs and non-terminating path
bugs from programs requires new techniques and tools specifically de-
signed for intermittent computing. Testing techniques for mainstream com-
putation cannot reproduce specific patterns of intermittent executions [24,
26,39,41,74]. Section 4.3 provides basic knowledge of the available testing
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Figure 4.1: Example of a data access bug [74, 75]. An energy failure causes the re-
execution of program portions, causing an unexpected result.

techniques and tools for intermittent programs.

4.1 Intermittence Bugs

This section describes the literature targeting intermittence bugs, consist-
ing of unexpected behaviors specific to mixed-volatile platforms [49–51]
and caused by energy failures. Section 4.1.1 describes available analysis
of causes and effects of intermittence bugs [64, 74, 85, 100], whereas Sec-
tion 4.1.2 describes existing techniques to avoid their occurrence [25, 64–
66, 74, 100].

4.1.1 Intermittence Bugs Characterization

Mixed-volatile platforms [49–51] simplify persistent state management by
allowing developers to directly map portions of program state onto non-
volatile memory. However, instructions directly reading or writing non-
volatile memory are non-idempotent [100], as their re-execution produces
different program states. Consequently, when such instructions are re-
executed due to energy failures, the device may produce results different
than an equivalent continuous execution of the same program. This un-
expected behavior is recognized in the literature as non-volatile memory
inconsistency [85] or intermittence bug [64, 74, 100]. Further, the litera-
ture [74, 97] classifies intermittence bugs into data access bugs [74], acti-
vation record bugs [74], memory map bugs [74], and I/O-dependent idem-
potence bugs [97]. They all share the same underlying causes but have
different consequences.
Data access bugs. Data access bugs [74] are intermittece bugs that affect
generic non-volatile memory locations, such as global or local variables,
causing unexpected memory results. When a data access bug occurs, the
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Figure 4.2: Example of an activation record bug [74, 75]. An energy failure causes the
re-execution of portions of a program, causing an unexpected jump.

program produces results different than the ones of an equivalent continu-
ous execution.

Figure 4.1 depicts an example of a data access bug, which we previously
describe in Chapter 1.2.2. Variable a is allocated onto non-volatile mem-
ory. After the execution of line 1, the device saves a snapshot of its program
state onto non-volatile memory. Note that variable a is not included in the
saved program state, as it is already persistent. The execution continues,
line 4 modifies a, and then an energy failure eventually occurs. When there
is sufficient energy, the device restores the saved state and resumes the com-
putation from line 2. The restored program state is inconsistent, as the value
of variable a differs from when the program state was saved in the previous
power cycle. In fact, being a non-volatile, it retained the value that line 4
produced in the previous power cycle, that is, a future instruction compared
to where execution resumes after the energy failure [85]. Consequently, the
re-execution of lines 2-4 leads to a result that differs from an equivalent
continuous execution.

Current literature [85] compares non-volatile memory to a broken time
machine that travels back in time while maintaining the effects of changes
done in the future. In general, the literature recognizes write-after-read
(WAR) hazards [64, 74, 97, 100] as the cause of all types of intermittence
bugs. WAR hazards consist of sequences of non-volatile memory read
and write operations whose re-execution due to energy failures is non-
idempotent. In the example of Figure 4.1, such operations are the ones
of lines 2 and 4: line 2 reads the non-volatile variable a, and line 4 writes
the same non-volatile variable a. The re-execution of lines 2 and 4 due to
energy failures is non-idempotent, as each re-execution produces different
results.
Activation record bugs. Activation record bugs [74] are particular cases
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of data access bugs that may happen whenever the stack segment is non-
volatile and affect functions activation record. The activation record of a
function is created onto the stack upon function calls. It contains all the
information necessary to execute the function, including its parameters, the
return address, and local variables. When an activation record bug occurs,
a function accesses information from the activation record of a function
to be executed in the future, leading to the computation of wrong results,
unexpected jumps, or program crashes.

Figure 4.2 depicts an example of an activation record bug. Line 6 calls
function f1, and f1 activation record is created on the stack. During the
execution of f1, the device saves its state onto non-volatile memory. Note
that the saved state does not include the stack, as it is already persistent.
f1 eventually returns and pops its activation record from the stack. Note
that this operation updates the stack pointer register and does not delete the
stack content. The execution continues from line 7, which calls function f2.
Here f2 activation record is created on the stack, overwriting the memory
cells where the activation record of f1 was. During the execution of f2,
an energy failure happens. When sufficient energy is available, the device
restores the saved state and resumes the computation from line 2, inside the
context of the function f1. Note that the activation record in the stack is the
one of f2, and not the one of f1. Line 3 executes a return from f1, reading
a wrong return address from the stack. Consequently, the device executes
line 8, skipping the execution of line 7.

In general, the effects of activation record bugs depend on the activation
record size of involved functions, and may also affect the values of local
variables and function parameters [74]. Moreover, in the example of Fig-
ure 4.2, if f2 overwrites f1 return address with an invalid address due to a
larger activation record, the program would crash [74].

Similarly to data access bugs, activation record bugs happen due to WAR
hazards involving memory read and write operations sequences that target
functions’ activation records. In the example of Figure 4.2, the return op-
eration of line 3 reads f1 activation record, and the function call of line 7
writes the same memory cells where f1 activation record resides.
Memory map bugs. Memory map bugs [74] are intermittence bugs that
may happen whenever the heap segment is non-volatile and affect accesses
to dynamically-allocated memory blocks. When a memory map bug oc-
curs, the program accesses memory blocks that were dynamically allocated
or de-allocated by future operations, leading to memory access failures,
program crashes, or memory leaks.

Figure 4.3 depicts an example of a memory map bug. The malloc in-
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Figure 4.3: Example of a memory map bug [74, 75]. An energy failure causes the re-
execution of portions of a program, causing access to an unavailable memory location.
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Figure 4.4: Example of an I/O-dependent idempotence bug [97]. An energy failure causes
the re-execution of portions of a program, causing a wrong memory state.

struction of line 2 allocates a new memory block in the heap and saves its
address in the pointer p. After the execution of line 3, the device saves its
state onto non-volatile memory. Note that the saved state does not include
the heap, as it is already persistent. The execution continues, the free in-
struction of line 5 de-allocates the previously-allocated memory block, and
then an energy failure happens. When sufficient energy is available, the
device restores the saved state and resumes the computation from line 4.
Line 4 tries to read the memory block pointed in p. However, this memory
block was de-allocated by line 5 during the previous power cycle, and the
memory access fails, potentially leading to a program crash.

Similarly to data access bugs and activation record bugs, memory map
bugs happen due to WAR hazards involving sequences of operations that
access dynamically allocated memory blocks and then alter the block state.
In the example of Figure 4.3, line 4 reads a dynamically-allocated mem-
ory block that the free instruction of line 5 de-allocates. A similar problem
happens with instructions that dynamically relocate memory blocks, such
as realloc. Moreover, multiple re-executions of instructions that dynami-
cally allocate new memory blocks lead to memory leaks.
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I/O-dependent idempotence bugs. I/O-dependent idempotence bugs [97]
are intermittence bugs that happen whenever external input data controls
the execution of memory write operations that target non-volatile memory.
When an I/O-dependent idempotence bug occurs, the program state reflects
a control flow where multiple branches of the same conditional statement
simultaneously execute, leading to unexpected behaviors or wrong results.

Figure 4.4 depicts an example of an I/O-dependent idempotence bug.
Variables alert and signal_ok are non-volatile. The device saves the pro-
gram state onto non-volatile memory. Note that the saved state does not
include alert and signal_ok, as they are already non-volatile. Line 2 mea-
sures the environment temperature and sets t to 10. The condition of the if
statement of line 3 evaluates to false, as t is 10, and line 6 executes next,
setting signal_ok to 1. The execution continues until an energy failure oc-
curs. While the device is powered off, the environment temperature rises
to 25◦C. When sufficient energy is available, the device restores its state,
and the execution resumes from line 2, which measures the environment
temperature and sets t to 25. The condition of the if statement of line 3
now evaluates to true, as t is 25, and line 4 executes next, setting alert to
1. Although the program now entered the true branch of the if statement
of line 3, the memory also has the effects that the execution of the false
branch produced during the previous power cycle. Consequently, the exe-
cution continues with an inconsistent program state, reflecting a case where
both branches were taken simultaneously. This may lead to unexpected and
unpredictable results that are not possible in a continuous execution of the
same program.

Similarly to other intermittence bugs, I/O-dependent idempotence bugs
happen due to WAR hazards involving sequences of operations that read
external input data and, depending on such data, conditionally write non-
volatile memory. In the example of Figure 4.3, line 2 reads external input
data and controls the execution of lines 4 and 6, which write non-volatile
memory.

4.1.2 Avoiding Intermittence Bugs

The literature identifies WAR hazards [64, 74, 85, 100] as the cause of the
intermittence bugs described in Section 4.1.1, as they all share the same un-
derlying read-write patterns [74, 97]. Consequently, avoiding intermittence
bugs requires ensuring that programs are free of WAR hazards [74].

In our previous research [74], we point out that a program contains a
WAR hazard if it executes a sequence of operations I1, ..., In such that:
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1. I1 reads a non-volatile memory location at address x
2. In writes the same non-volatile memory location at address x
3. state-saving operations may not execute in the sequence I1, ..., In

In the example of Figure 4.1, I1 and In are the instructions of lines 2 and 4,
respectively. We refer to these conditions as WAR hazard condition.

Note that this sequence of operations mainly targets data access bugs,
but it can be easily adapted to target any other type of intermittence bug. For
example, WAR hazards that lead to I/O-dependent idempotence bugs hap-
pen if I1 is an instruction that reads an external input and In is a conditionally-
executed instruction that writes non-volatile memory. For simplicity, this
section refers to this formalization as WAR hazards.

There are several techniques [25,64–66,74,100] to ensure programs are
free of WAR hazards. They share similar principles and ensure a consistent
program state through specific checkpoint placement strategies [100], ver-
sioning of non-volatile memory locations [65], specific memory access pat-
terns [25], or restoring specific portions of non-volatile memory [64,66].We
describe next the differences between these approaches.
Checkpoint placement strategy. Ratchet [100] avoids intermittence bugs
with its checkpoint placement strategy, which ensures that the execution
of the instructions between two checkpoints is idempotent. We recall that
Ratchet is a checkpoint-based forward progress mechanism that automat-
ically instruments programs with checkpoints. Ratchet analyzes the pro-
gram code and identifies all the sequences of instructions that satisfy the
WAR hazard condition. For each identified sequence, Ratchet places a
checkpoint between instructions I1 and In of the WAR hazard condition,
consisting respectively in the instructions that read and write the same non-
volatile memory location. Such placement ensures that if In writes a non-
volatile memory location and an energy failure occurs, the execution re-
sumes after I1. This removes the WAR hazard and prevents the occurrence
of intermittence bugs, as no instruction can read the value modified by In
during the previous power cycle.

Ratchet checkpoint placement ensures that the instructions between two
checkpoints cannot simultaneously read and write the same non-volatile
memory location. This makes the sequence of instructions between two
checkpoints idempotent, as re-executions due to energy failures always pro-
duce the same non-volatile memory state.
Versioning. Alpaca [65] avoids intermittence bugs by creating task-specific
private local copies of task-shared variables. We recall that Alpaca is a
task-based forward progress mechanism that allows task communication
through non-volatile task-shared variables. Alpaca initializes private local
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copies of task-shared variables at the beginning of task execution and allo-
cates them onto non-volatile memory. Tasks access task-shared variables
through their private local copies, and Alpaca updates task-shared variables
only on task completion. This ensures that, if power fails during task ex-
ecution, task-shared variables retain their initial state, as tasks only read
and write their private local copies. Consequently, energy failures cannot
cause tasks to access values of task-shared variables produced by partial ex-
ecutions of tasks, as tasks cannot modify task-shared variables unless their
execution completes. Moreover, Alpaca’s technique ensures that private lo-
cal copies of task-shared variables are not involved in any WAR hazard. In
fact, if a task modifies its private local copy of a task-shared variable and
an energy failure occurs, Alpaca reinitializes the private local copy when
the execution resumes, and the task cannot access the value produced dur-
ing the previous power cycle. Finally, the two-phase commit mechanism
of Alpaca described in Chapter 3.2 ensures that task-shared variables are
atomically updated only after task completion.
Memory access pattern. Chain [25] avoids intermittence bugs by ensur-
ing that each task can exclusively read or write any non-volatile memory
location. We recall that Chain is a task-based mechanism that allows tasks
to exchange data through channels, consisting of developers-specified non-
volatile memory locations. Each channel is shared among two tasks: one
task can only read data from the channel, whereas the other can only write
data onto the channel. This ensures no WAR hazard is present, as tasks
cannot read and write data onto the same non-volatile memory location.

However, tasks may need to read and write data from the same channel.
This may introduce WAR hazards. To address this problem, Chain allows
tasks to read and write data from the same channel using self-channels.
A self-channels is a channel with two buffers: one used as a read-only
buffer and the other as a write-only buffer. Chain manages accesses to self-
channels as normal channels: a task can only read data from the read-only
buffer of the channel and can only write data onto the write-only buffer of
the channel. Similarly to normal channels, this ensures no WAR hazard
is present, as tasks cannot read and write data onto the same non-volatile
memory location. Upon task completion, Chain swaps the read-only buffer
with the write-only buffer, ensuring that tasks re-executions due to normal
control flow access correct self-channel information.
Restoring non-volatile memory. DINO [64] and Chinchilla [66] avoid
intermittence bugs by restoring the content of non-volatile memory when
resuming after energy failures.

DINO [64] avoids intermittence bugs by restoring the state of global
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variables involved in WAR hazards when resuming after energy failures.
We recall that DINO is a task-based forward progress mechanism that al-
lows tasks to communicate through non-volatile global variables and re-
quires developers to define tasks by placing task boundaries in their pro-
grams. DINO identifies the global variables involved in WAR hazards for
each task using the WAR hazard condition. Then, DINO instruments the
task boundary at the beginning of the considered task with instructions that
copy the identified global variables onto volatile memory. This ensures that
state-save operations also save the state of global variables that task exe-
cution modifies. When resuming after energy failures, DINO restores the
saved global variables along with the program state. This ensures that if a
task alters the value of a global variable and an energy failure occurs be-
fore task completion, no instruction can read the modified value, as DINO
restores the memory to a consistent state when the computation resumes.

Chinchilla [66] avoids intermittence bugs with an undo-logging tech-
nique that logs changes to non-volatile memory and restores it to a consis-
tent state when resuming after energy failures. We recall that Chinchilla is a
checkpoint-based forward progress mechanism that maps global variables
onto non-volatile memory. Chinchilla uses a log buffer to keep track of all
the changes to non-volatile memory since the last checkpoint. When Chin-
chilla saves a checkpoint, it invalidates the entry of the log buffer. Before
each instruction that writes a global variable x, Chinchilla inserts a call to
uLog, a special function that takes as a parameter the address of the variable
x. uLog saves the current value and the address of x onto a log buffer allo-
cated onto non-volatile memory. Note that if a valid entry already exists for
x, uLog skips this operation, as a previous execution of uLog already saved
the value that x had before any change since the last checkpoint. When
Chinchilla resumes the computation after an energy failure, it executes the
undo-logging. Chinchilla iterates over the log buffer and restores the value
of each global variable saved in it. After restoring a global variable, Chin-
chilla removes the corresponding entry from the log buffer, ensuring that
undo-logging happens only once for each global variable. Undo-logging
ensures that changes to global variables are rolled back to a previous and
consistent state as if no operation modified them. This ensures that, when
devices resume the computation, non-volatile memory is in the same state
as when a checkpoint was saved. Consequently, undo-logging prevents in-
termittence bugs, as no instruction can access results produced by future
operations during previous power cycles.
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4.2 Non-terminating Path Bugs

Non-terminating path bugs [26] consist in program paths whose instruc-
tions consume more energy than the device can buffer and do not include
any state-save operation. The execution of such paths requires all the en-
ergy stored in the energy buffer and additional energy from the energy
source. During the execution of such paths, the device may be unable to
harvest sufficient energy, and an energy failure may occur. When the energy
buffer stores sufficient energy, the device restarts the computation from the
first instruction of the non-terminating path. However, if the device is un-
able to harvest energy fast enough to sustain the computation until the next
state-save operation, it will experience other energy failures. This same
process may be repeated indefinitely, leading to starvation: devices are for-
ever stuck at re-executing the same portion of a program, as they cannot
reach the next state-save operation before experiencing an energy failure.

This bug can happen with both static checkpoint-based forward progress
mechanisms [16,66,86,100] and task-based forward progress mechanisms [25,
44,52,64,65,68,76,88,103]. The instructions between two checkpoints or
inside tasks may contain a non-terminating path.

The presence of non-terminating paths does not necessarily lead to star-
vation, as energy bursts from the harvesting source may eventually allow
the execution of the next state-save operation. However, programs should
be free of non-terminating paths, as they may prevent program forward
progress despite the use of a forward progress mechanism.
Avoiding non-terminating paths. Identifying non-terminating paths re-
quires modeling the energy consumption of program instructions and iden-
tifying the cost of each possible path in each task or each sequence of in-
structions between two checkpoints [26]. If the energy consumption of a
path exceeds the maximum energy that the energy buffer can store, the path
is non-terminating.

To remove non-terminating paths, developers need to split the tasks con-
taining non-terminating paths into smaller sub-tasks or place additional
checkpoints in the sequences of instructions that contain non-terminating
paths [26].

4.3 Tools for Intermittent Computing

This section describes the tools [24, 26, 38, 39, 41, 97] available in the liter-
ature to test battery-less device behavior. Section 4.3.1 describes tools [24,
39, 41] that enable real-hardware testing, whereas Section 4.3.2 describes

50



4.3. Tools for Intermittent Computing

tools [26, 38, 97] that simulate battery-less devices behavior and analyze
intermittent programs.

4.3.1 Real-hardware testing tools

The literature provides very few tools that enable repeatable in-lab ex-
periments on real hardware: EDB [24], EKHO [41], and Shepherd [39].
EDB [24] unlocks devices debugging without interfering with their energy
consumption. EKHO [41] allows recording and reproducing the energy
characteristics of ambient energy sources. Shepherd [39] enables testing
networks of distributed battery-less devices through synchronous recording
and reproducing of ambient energy sources across multiple points in space
and time.
EDB. Debugging battery-less devices is non-trivial. Debugging operations
may alter devices’ energy consumption, interfering with the device energy
buffer and intermittent behavior, or may be unable to retrieve data before
devices shut down due to energy failures.

EDB [24] tackles these problems, providing an energy-interference-free
debugging system with energy-oriented debugging capabilities specific to
intermittent computing. EDB consists of two components, a hardware de-
bugger and a runtime library.

The hardware debugger is electrically isolated from the device under test
(DUT) and connects to the developer workstation. EDB hardware debug-
ger supports two modes of operations, passive and active. In passive mode,
EDB passively monitors the DUT, collecting its energy level, I/O events,
and program events marked using watchpoints of EDB runtime library. In
active mode, EDB allows developers to interact with the DUT by manipu-
lating its energy level, executing specific debugging operations through the
operations of EBD runtime library, or by providing an interactive debug-
ging console.

EDB runtime library allows developers to monitor or interact with the
DUT at specific points of the program execution using programming primi-
tives. EDB compensates for the energy consumed by the execution of these
programming primitives by measuring the energy buffer level and supply-
ing constant energy to the DUT during their execution, ensuring the energy
buffer level remains constant. EDB runtime library provides breakpoints,
assertions, watchpoints, and energy guards.

EDB supports three types of breakpoints that pause the program execu-
tion and open an interactive debugging console on the developer worksta-
tion, switching EDB to active mode. Program breakpoints trigger whenever
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reached during the program execution; energy breakpoints trigger when-
ever the energy buffer level drops below a specified threshold; combined
breakpoints combine program and energy breakpoints and trigger whenever
reached, and the energy buffer level meets a specified condition. Similarly,
assertions verify developer-specified conditions and open an interactive de-
bugging console on the developer workstation if they fail.

EDB watchpoints signal specific program events while maintaining EDB
in passive mode.

Finally, EDB energy guards indicate sections of programs that EDB
needs to run under constant energy to keep the energy buffer level constant.
EKHO. Reproducing energy harvesting sources is non-trivial, as harvested
energy has an unpredictable pattern and depends on environmental condi-
tions and device runtime behavior. EKHO [41] tackles this problem and
enables repeatable experiments of energy-harvesting scenarios, allowing
developers to record and reproduce energy-harvesting sources.

Harvested energy depends on the energy buffer voltage, which affects
the energy buffer charge current. EKHO uses I-V curves to express this
relationship between the energy buffer voltage and its charge current. An
I-V curve captures the variation of the energy buffer charge current (I) at a
given supply voltage (V). Note that different programs have different loads,
which results in different energy consumptions that occupy different areas
of an I-V curve. EKHO represents energy-harvesting sources using I-V
surfaces, which capture the variation of I-V curves over time.

EKHO comprises a surface manager, an I-V curve controller, and a
front-end device. The surface manager and I-V curve controller run on a
workstation, whereas the front-end device is a custom system that provides
current and voltage sensing capabilities.

EKHO records I-V surfaces using the I-V curve controller and the sur-
face manager. The I-V curve controller measures an I-V curve by varying
a 100kω potentiometer with a high frequency of up to 1kHz. The fast
variations of the potentiometer resistance simulate multiple program loads,
allowing EKHO to capture an entire I-V curve at a specific time instant.
The surface manager then aggregates multiple I-V curve measures to create
the I-V surface characterizing the energy harvesting source.

EKHO front-end device can reproduce energy-harvesting sources using
I-V surfaces as lookup tables. At any instant, EKHO measures the energy
buffer voltage, loads the current I-V curve, and outputs the charge current
corresponding to the measured energy buffer voltage.
Shepherd. Reproducing the same ambient energy source across multiple
distributed battery-less devices is non-trivial, as energy harvesting patterns
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change throughout time and depend on the devices’ deployment locations.
Shepherd [39] tackles this problem and enables synchronized recording and
emulation of ambient energy sources across multiple battery-less devices
deployed at different locations.

Shepherd assumes an architecture where a DC/DC converter connects
the energy harvester to the MCU, allowing them to operate at different
voltages. Such decoupling of operating voltages allows converter-based ar-
chitectures to operate energy harvesters at fixed points independently from
the load of the MCU. Therefore, Shepherd represents energy-harvesting
sources only using I-V curves, as changes in the load do not affect the har-
vester voltage. This results in a faster sampling time and a lower collected
data size than EKHO [41], which instead assumes no DC/DC converter and
must collect entire I-V surfaces by varying the load multiple times.

Shepherd consists of multiple identical nodes attached to each distributed
battery-less device we consider. Shepherd nodes have a modular architec-
ture consisting of an observer and multiple capelets. Shepherd’s observer
consists of a single-board computer that drives an analog front-end device
and a DC/DC converter. The analog front-end device comprises an ADC
to record I-V data of energy-harvesting sources and a DAC to reproduce it.
Shepherd allows developers to reproduce various battery-less devices hard-
ware configurations using three types of capelets, which can be stacked
together: (i) the harvester capelet, which contains the energy harvester,
(ii) the storage capelet, which contains the energy buffer, and (iii) the sen-
sor node capelet, which contains the sensor node. Note that the harvester
capelet connects to Shepherd’s observer DC/DC converter, which regulates
the voltage between the energy harvester and the sensor node. In contrast,
the storage capelet connects in parallel to the sensor node.

Shepherd supports two operating modes: recording and emulation. Dur-
ing recording, Shepherd’s observers sample the output voltage and cur-
rent of the energy harvesters at a sampling frequency of 100kHz. Each
Shepherd observer timestamps the recorded data and sends it to a cen-
tral database. During emulation, Shepherd’s observers emulate the output
voltage and current of the energy harvesters by reproducing previously-
recorded voltage and current data, setting them as input of the DC/DC con-
verter. When emulating energy sources, Shepherd also collects GPIO and
serial data of each node. Shepherd synchronizes each node’s clock using
GPS and PTP, ensuring that all its nodes target the same time-instant when
recording and reproducing energy sources.
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4.3.2 Simulation and analysis tools

The literature provides multiple tools [26, 38, 97] that allows developers
to simulate battery-less devices behaviour [38], and verify the presence of
intermittence bugs [97] and non-terminating path bugs [26].
Siren. SIREN [38] is a simulator of intermittently-powered devices built on
top of MSPSim [35], a timing-accurate instruction-level simulator for the
MSP430 platform [51], which runs unmodified target platform firmware.
SIREN extends MSPSim with support for realistic energy simulations and
new debugging capabilities.

SIREN energy simulation relies on (i) EKHO I-V surfaces to simulate
the pattern of energy-harvesting sources and (ii) a capacitor model to sim-
ulate energy buffers and energy failures. During the simulation of program
execution, SIREN simulates the device energy consumption and updates
the capacitor voltage. Then, SIREN loads the current I-V curve from the
I-V surface of the simulated energy-harvesting source, identifies the ca-
pacitor charge current corresponding to the updated capacitor voltage, and
recharges the capacitor accordingly.

SIREN enables debugging capabilities through a special C function that
developers can insert into their programs, called siren_command, which
takes a string specifying a SIREN debugging command as a parameter.
SIREN supports two debugging commands: watchpoints and print. Sim-
ilarly to EDB watchpoints, SIREN watchpoints signal program events to
developers. Instead, SIREN print provides printf capabilities, outputting
the content of given variables.
IBIS. IBIS [97] is a tool that allows developers to identify I/O-dependent
idempotence bugs [97] in their programs. IBIS identifies an I/O-dependent
idempotence bug whenever a branch condition is input-dependent and the
branches following the condition include divergent updates to non-volatile
memory.

IBIS consists of two analysis techniques, IBIS-S and IBIS-D. Both anal-
ysis requires developers to annotate variables that contain input-dependent
data. IBIS refers to these variables as tainted variables.

IBIS-S relies on static compile-time analysis to identify I/O-dependent
idempotence bugs. IBIS-S analyzes a program and propagates the uses
of tainted variables. When it identifies a branch condition that includes a
tainted variable, it analyzes all the memory write operations included in the
branches following the condition. If the write operations in the branches
do not target the same non-volatile memory locations, IBIS-S finds an I/O-
dependent idempotence bug and signals it to the developer.
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IBIS-S analysis is unaware of information available only at runtime,
such as non-volatile memory addresses and pointer locations. To over-
come this limitation, IBIS-D executes a given program and identifies I/O-
dependent idempotence bugs at runtime. IBIS-D instruments the program
with bookkeeping information that tracks the propagation of tainted vari-
ables, applying a similar analysis strategy to IBIS-S.

IBIS-S and IBIS-D analysis returns a report that includes the variables
involved in the I/O-dependent idempotence bugs, the tainted branches, and
the involved non-volatile memory locations. IBIS provides a validator that
allows developers to evaluate the effects of the I/O-dependent idempotence
bugs found by executing programs and simulating energy failures accord-
ingly to IBIS-S or IBIS-D reports.
CleanCut. CleanCut [26] is a tool that allows developers to verify the
presence of non-terminating path bugs [26]. CleanCut comprises two com-
ponents, a checker that verifies the presence of non-terminating path bugs
and a placer that instruments programs with checkpoints [64] to prevent
non-terminating path bugs.

CleanCut analysis relies on a statistical model of the device energy con-
sumption to estimate the energy consumption of program instructions. Clean-
cut shows how to build such a model using the debugging capabilities of
EDB [24]. Developers need to insert EDB watchpoints inside their pro-
grams and measure the level of the energy buffer whenever a watchpoint
executes during program execution. CleanCut then uses these measure-
ments to generate a statistical model of the program energy consumption,
which then uses to estimate the energy consumption of program paths.

CleanCut checker takes as input (i) a program already instrumented
with a forward progress mechanism, (ii) the size of the energy buffer, and
(iii) the statistical model of the device energy consumption. CleanCut sup-
ports static checkpoint-based mechanisms or task-based mechanisms. Note
that CleanCut mainly targets DINO, whose task boundaries can be consid-
ered both checkpoints and boundaries for task formation. CleanCut checker
considers each possible path in the instructions executed between two state-
saving operations and verifies the energy consumption of each path. When-
ever a path energy consumption exceeds the maximum level of the energy
buffer, CleanCut finds a non-terminating path bug and signals it to the de-
veloper.

CleanCut placer uses DINO [64] task boundaries to place state-saving
operations and avoid non-terminating path bugs. CleanCut placer analyses
the program energy consumption and uses an iterative algorithm to place
DINO [64] task boundaries. The iterative algorithm starts analyzing each
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program path and estimates its energy consumption. Whenever a program
path exceeds the maximum level of the energy buffer, CleanCut placer splits
the path in half with respect to the energy consumption of the instructions
included in the path. CleanCut placer repeats this step until no path exceeds
the maximum level of the energy buffer.
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CHAPTER5
Energy Efficiency

Battery-less devices must operate efficiently to extract the most possible
work out of harvested energy. In this chapter, we describe existing strate-
gies to improve devices’ energy efficiency. Two key factors affect the en-
ergy consumption of battery-less devices: the used forward progress mech-
anism and the device operating settings.

Forward progress mechanisms periodically save the device state onto a
non-volatile memory location to ensure program forward progress across
energy failures. As we anticipate in Chapter 1.2.3, this introduces a com-
putation and energy overhead proportional (i) to the frequency of state-save
operations, and (ii) to the size of the saved program state.. The literature
provides several strategies [7, 11, 12, 16, 25, 54, 55, 59, 64–66, 76, 86] to re-
duce the frequency and size of state-saving operations. These strategies
save only differential updates [7], save the state only when there is no suf-
ficient energy left to continue the computation [11, 12, 16, 54, 66, 86], place
the least possible amount of state-saving operations [16] at program points
where the state to be saved is minimum [16, 86], or map slices of program
state onto non-volatile memory [25,54,55,59,64–66,76]. We discuss these
strategies in Section 5.1.

Devices operating settings, such as the operating frequency and volt-
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age, directly affect the energy consumption. The literature provides several
approaches to improve devices’ energy consumption by tuning their op-
erating setting. These approaches vary devices duty cycles [83, 94, 96],
use maximum power point tracking techniques to maximize harvested en-
ergy [10,90], or dynamically tune devices operating voltage and frequency
to ensure optimal performance [5, 9, 36]. We discuss these approaches in
Section 5.2.

5.1 Improving Forward Progress Efficiency

This section describes how forward progress mechanisms reduce the en-
ergy overhead of state-save operations. Section 5.1.1 describes existing ap-
proaches to reduce the frequency of state-save operations, whereas Sec-
tion 5.1.2 describes existing approaches to reduce the size of the saved pro-
gram state.

5.1.1 Reducing State-save Operations Frequency

The literature provides several approaches to reduce the frequency of state-
save operations. There is a limit in reducing the frequency of state-save
operations, as a too aggressive reduction of state-save operations frequency
may result in non-terminating path bugs [26], where devices are unable to
reach the next state-save operation and are forever stuck at re-executing the
same portion of programs. Forward progress techniques save the program
state only when the level of the energy buffer drops below a given thresh-
old [11,12,16,54,86], use specific checkpoint placement strategies to place
the minimum possible number of checkpoints inside programs [16], dis-
able checkpoints at runtime [66], or skip saving the state after task comple-
tion [76].
Probe-before-save. Mementos [86] and HarvOS [16] postpone the exe-
cution of state-save operations, saving the program state only when the
energy buffer does not store sufficient energy to continue the computation.
As we describe in Chapter 3, they instrument programs with trigger calls
that probe the energy buffer level and proceed to save the program state
only when it is below a given threshold.

Mementos trigger calls probe the energy buffer voltage through an ADC
and save the program state only if the measured voltage falls below a given
threshold. However, ADC accesses are expensive both in terms of energy
consumption and access latency [50], introducing an energy overhead that
may worse performance [16, 50, 73]. Instead, HarvOS trigger calls decide
to save the program state by comparing the energy buffer level against an
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energy-based threshold, which indicates the energy cost to reach the next
trigger call and save the state. This allows HarvOS trigger calls to iden-
tify the remaining energy in the energy buffer using software [18, 95] or
hardware solutions [29, 81] that introduce very little overhead compared to
Mementos ADC probing. Unlike Mementos, HarvOS compile-time analy-
sis computes a threshold specific to each trigger call, providing better con-
trol on the execution of state-save operations that lead to better forward
progress than Mementos [16].

Compared to forward progress mechanisms that directly execute state-
save operations [25,64,65,100], Mementos and HarvOS reduce the number
of states save, as not all trigger calls end up saving the program state [16,
86].
Save at specific voltage threshold. Hibernus [11,12] and QuickRecall [54]
save the program state only when the energy buffer voltage drops below a
given threshold. Although this approach is in principle similar to Memen-
tos [86] and HarvOS [16], Hibernus and QuickRecall rely on hardware
interrupts to trigger state-save operations instead of trigger calls statically
placed inside programs. This allows Hibernus and QuickRecall to save the
program state at any instant during the program execution instead of spe-
cific program locations.

As we describe in Chapter 3, Hibernus and QuickRecall use voltage
comparators external to the MCU [11, 12, 51, 54] to compare the energy
buffer voltage against a pre-defined voltage threshold. Whenever the volt-
age comparator detects that the energy buffer voltage drops below the given
threshold, it triggers an interrupt whose handler saves the program state.

This interrupt-based solution introduces a lower overhead than statically
placed trigger calls, as no additional computation is necessary to detect
when to save the program state. Further, it allows the device to save the
state at the latest possible instant, potentially leading to higher progress in
the program execution than solutions with statically placed trigger calls [16,
86]. However, this came at the cost of additional hardware components,
which may not be available in the target system and may increase the overall
device energy consumption.
Disabling state-save operations. Unlike previous approaches that save the
state depending on the energy buffer level [11,12,16,54,86], Chinchilla [66]
uses a timer to decide when to save the program state.

Chinchilla instruments programs with calls to a checkpoint routine at the
end of every basic block of the program. At runtime, Chinchilla considers
state-save operations disabled by default and relies on a timer to dynami-
cally enable them. When state-save operations are disabled and Chinchilla
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executes a call to a checkpoint routine, the device continues the computa-
tion. When the timer fires, Chinchilla enables state-save operations. Then,
when Chinchilla executes a checkpoint, it saves the program state, disables
state-save operations, and resets the timer.

Similarly to forward progress mechanisms that save the state depending
on the energy buffer level [11,12,16,54,86], Chinchilla strategy reduces the
frequency of state-save operations, providing better forward progress [66]
than mechanisms that instrument programs with direct calls to state-save
operations [25, 64, 65, 100].
Checkpoints placement strategy. HarvOS [16] placement strategy mini-
mizes the number of trigger calls placed inside programs. Combined with
the probe-before-save approach, this allows HarvOS to reduce the frequency
of state-save operations.

The key behind HarvOS placement is the Cuse parameter, which spec-
ifies the maximum number of clock cycles a device can execute within a
single power cycle. Cuse refers only to program instructions and does not
include the cost of state-save and stat-restore operations: HarvOS com-
putes Cuse considering as available energy the one stored in a fully charged
energy buffer, at which it removes the cost of executing one state-restore
and one state-save. Note that Cuse also represents the maximum distance
between two state-save operations. Otherwise, a non-terminating path bug
arises [26].

HarvOS compile-time analysis splits the program into chunks that exe-
cute Cuse

2
instructions and place one trigger call inside each chunk, where

the allocated program state is the lowest. This ensures that the distance
between state-save operations does not exceed Cuse while ensuring that the
number of trigger calls placed inside programs is minimum.

HarvOS placement reduces the number of trigger calls placed in pro-
grams, resulting in a lower energy overhead than more frequent placements,
such as the one of Mementos [86] or Ratchet [100].
Task coalescing. Task-based forward progress mechanisms [25, 64, 65]
save the program state on task completion as if state-save operations are
placed at the end of each task. To reduce the frequency of state-save op-
erations in task-based mechanisms, Coala [76] coalesces the execution of
tasks, skipping state-save operations at the end of single tasks and saving
the state only after the completion of a group of tasks. This approach shares
a similar principle with the one of Chinchilla [66]: Coala considers state-
save operations at the end of tasks to be initially disabled and dynamically
enables them depending on the number of executed tasks.

On startup, Coala sets the initial number of coalesced tasks, that is, the
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number of tasks to execute before saving the program state. Whenever
Coala saves the program state, it also decrements the number of coalesced
tasks. The rationale behind such decrement is that the more tasks execute,
the more likely an energy failure will occur. Note that Coala supports vari-
ous strategies to set and decrement the number of coalesced tasks [76].

As we previously mention, a too-aggressive reduction of state-save op-
erations frequency may result in non-terminating path bugs [26]. To void
this situation, Coala keeps track of the number of tasks completed during
a power cycle and uses such a number to update the number of coalesced
tasks on startup. This ensures that Coala does not set the coalesced tasks
parameter too high and that such a parameter will eventually converge to
a number of tasks that the device is able to execute within a single power
cycle. Moreover, Coala detects if a task cannot complete within a single
power cycle, verifying if multiple energy failures occur with no task com-
pleted in previous power cycles. Whenever this situation happens, Coala
applies a checkpoint-like strategy: Coala sets a timer whose expiration
saves the task intermediate results, allowing the failing task to complete
over multiple power cycles. The combination of these two strategies al-
lows Coala to always ensure program forward progress across energy fail-
ures [26, 76].

The coalescing strategy of Coala results in a lower number of executed
state-save operations than task-based mechanisms that save the program
state on task completion [65, 76].

5.1.2 Reducing Saved State Size

The literature provides several approaches to reduce the size of the program
state that needs to be saved onto non-volatile memory. Forward progress
techniques execute state-save operations where the program state is mini-
mum [16, 25, 65, 76, 86], use differential state-save operations that update
the saved state with only modified portions of the program state [7, 59], or
directly allocate slices of main memory onto non-volatile memory [54, 55,
66, 100].

Executing State-save Operations at Specific Locations

Various forward progress techniques [16, 25, 65, 76, 86] execute state-save
operations at points where the program state is minimum.
Mementos. Mementos [86] supports two placement strategies, loop-latch
and function-return. The loop-latch placement strategy inserts a trigger call
at the back edge of each loop, ensuring that state-save operations execute
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at the end of loop iterations. This strategy allows state-save operations
to ignore temporary variables used in single loop iterations, as they are
iteration-specific and need not to be preserved [73]. Note that Mementos
does not take full advantage of this strategy, as it saves the entire program
state [73, 86]. The function-return placement strategy inserts a trigger call
after each function calls inside the program, ensuring that state-save op-
erations only execute after functions return. This reduces the size of the
program state to be saved: when a function returns, it pops its stack frame
from the stack, reducing the size of the allocated main memory.
HarvOS. HarvOS [16] ensure state-save operations execute at points where
the allocated memory size is minimum. As we describe in Section 5.1.1,
HarvOS splits the program into chunks and inserts a trigger call inside each
chunk. When doing so, HarvOS analyses the memory footprint of each ba-
sic block in the chunk and inserts a trigger call at the end of the basic block
whose allocated memory is minimum. This ensures that state-save opera-
tions execute where the size of the program state is the minimum possible.
Tasks. Task-based forward progress mechanisms [25, 65, 76] save the pro-
gram state only after task completion. Tasks are atomic by design [25, 65],
which means that tasks are either completed in a single power cycle or are
entirely re-executed after energy failures. Therefore, tasks’ intermediate re-
sults, such as tasks’ local variables, need not to be preserved across energy
failures, and state-save operations need not to save them. Consequently,
the size of the program state saved by state-save operations of task-based
mechanisms is always the minimum possible, as they need only to save
executed task results and a reference to the next task to execute [25,65,76].

Differential Updates of Saved State

The literature provides two systems that save differential updates of the
program state, reducing the saved state size: DICE [7] and TICS [59].
DICE. DICE [7] is a technique that uses differential updates to save only
the portion of the program state that was modified since the latest state-save
operation. DICE instruments programs to track write operations to main
memory and works on top of existing checkpoint-based forward progress
mechanisms. When checkpoints execute, they save only the slices of main
memory modified since the latest checkpoint, overwriting the correspond-
ing non-volatile memory location that holds the saved program state. DICE
relies on three elements to track changes to main memory: a stack tracker,
a record() function, and a record_p() function.

The stack tracker allows DICE to identify the stack portion that was
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modified since the latest checkpoint. We recall that the stack grows from
high to low memory addresses. Moreover, programs use two special reg-
isters to track the stack growth: the stack pointer, which contains a refer-
ence to the first free memory cell on top of the stack, and the base pointer,
which contains a reference to the first memory cell of the currently active
stack frame, that is, the base of the stack frame used by the executing func-
tion. Function calls set the base pointer equal to the stack pointer, whereas
function returns revert the base pointer to its previous value. The memory
region between the base pointer and the stack pointer indicates the active
stack frame.

DICE sets the stack tracker equal to the base pointer whenever a check-
point executes or after startup. Similarly, whenever a function returns and
increases the base pointer to a value higher than the stack tracker, DICE up-
dates the stack tracker to the base pointer’s new value. This allows the stack
tracker to track the base of the modified portion of the stack. When a check-
point executes, DICE saves the stack portion between the stack tracker and
the stack pointer, overwriting the corresponding non-volatile memory loca-
tion that holds the saved program state.

DICE tracks change to global variables using a modification record,
a data structure that tracks the global variables modified since the latest
checkpoint. DICE updates the modification record using a record() func-
tion, which takes as inputs the address and size of global variables and
inserts them into the modification record. DICE pre-compiler inserts calls
to record() before each instruction that modifies a global variable. When
checkpoints execute, they save the global variables inside the modification
record, overwriting the corresponding non-volatile memory location that
holds the saved program state.

DICE handles memory accesses through pointers using a record_p()
function, which takes as inputs the address x and size of the memory lo-
cation referenced by a pointer, and verifies x location. If x is the address
of a global variable, record_p() follows the logic of record(). Otherwise,
x targets a memory cell in the stack, and record_p() verifies where x re-
sides. If x is lower than the stack tracker, checkpoints operations already
save x and record_p() returns, as x resides between the stack tracker and
the stack pointer. Otherwise, record_p() updates the stack tracker to x,
ensuring that checkpoints will save its content. DICE pre-compiler inserts
calls to record_p() before any instruction that modifies a memory location
by reference.
TICS. TICS [59] is a checkpoint-based forward progress mechanism that
reduces the size of the program saved state using a differential strategy
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similar to DICE [7]. TICS partitions the stack into fixed-size segments and
identifies the segments used as a working stack. TICS compile-time anal-
ysis instruments the program to support stack segmentation and to track
the working stack segments. Upon function calls, TICS allocates the func-
tion frame into the first free stack segment and considers it as working
stack. When a checkpoint executes, TICS achieves differential state saves
by saving only the stack segments of the working stack onto a dedicated
non-volatile memory location, called segment checkpoint.

Unlike DICE [7], TICS also achieves differential state restoration. TICS
maps main memory onto non-volatile memory. This enables TICS to re-
store only the stack segments saved in the segment checkpoint instead of
the entire stack content.

Non-volatile Main Memory Allocation

The literature provides several forward progress techniques [25, 54, 55, 65,
66,100] that exploit mixed-volatile platforms [49,50] to directly map slices
of main memory onto non-volatile memory. State-save operations need
only to save volatile main memory, as slices allocated onto non-volatile
memory are already persistent. This reduces the size of the saved program
state at the expense of an increased program energy consumption and in-
termittence bugs [64,74,85,100], as the computation now directly accesses
the slower and less energy-efficient [49,50,72,73] non-voltile memory. We
describe next how existing forward progress techniques use mixed-volatile
platforms to reduce the size of the saved program state.
Task-based mechanisms. Task-based forward progress mechanisms [25,
65,76] require developers to partition programs into tasks, which are atomic
by design [25, 65, 76]. As we describe in Chapter 3.2, tasks are either com-
pleted in a single power cycle or re-executed from the beginning. Therefore,
state-save operations of task-based forward progress mechanisms need only
to save task results and shared variables, as they hold results that other
tasks may need to access. Instead, tasks’ intermediate results and tasks’
local variables need not to be preserved across energy failures, as tasks re-
execute from the beginning after energy failures and recompute such data.

Task-based forward progress mechanisms map tasks’ intermediate re-
sults and local variables onto volatile memory. In contrast, variables hold-
ing task results and variables shared among tasks are mapped onto non-
volatile memory. This memory allocation minimizes the size of the saved
program state: state-save operations need only to save the reference to the
next task to execute, as tasks result are non-volatile and already persistent.
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Further, this mapping has a minimal impact on the program energy con-
sumption due to non-volatile memory accesses. Tasks access non-volatile
memory only to write their results or to read shared variables.
Checkpoints-based mechanisms. Checkpoint-based forward progress mech-
anisms [11, 12, 16, 54, 66, 86, 100] do not take advantage of developers-
partitioned tasks and need to preserve the content of volatile main memory,
the register file, and special registers, such as the program counter and the
stack pointer.

Ratchet [100] maps the entire content of main memory onto non-volatile
memory, allowing checkpoints to save only the register file and special reg-
isters, as main memory is already non-volatile. However, using a non-
volatile main memory introduces intermittence bugs, which Ratchet avoids
by frequently saving the program state. As a result, the high frequency
of state-save operations, in combination with the increased program en-
ergy consumption due to non-volatile main memory, lead to poor perfor-
mance [55, 66].

Similarly to Ratchet [100], QuickRecall [54] maps the entire content
of main memory onto non-volatile memory, allowing checkpoints to save
only the register file and special registers. Unlike Ratchet, QuickRecall
needs not to save the program state frequently to avoid intermittence bugs.
As we describe in Chapter 3, QuickRecall uses hardware interrupts to save
the program’s volatile state when the level of the energy buffer drops below
a pre-defined threshold. QuickRecall avoids intermittence bugs by pausing
the program computation after saving the program state and waiting for
new harvested energy. Despite improving system performance due to a
lower checkpoint frequency than Ratchet, QuickRecall uses a non-volatile
main memory that increases programs energy consumption, lowering the
system performance [55].

Chinchilla [66] uses an approach similar to task-based mechanisms [25,
65]. As we describe in Chapter 3, Chinchilla maps onto volatile memory all
the memory locations whose accesses do not cross any checkpoint. Sim-
ilarly to intermediate task results, these memory locations hold interme-
diate results computed in the instructions between two subsequent check-
points and not accessed elsewhere. Chinchilla mapping demonstrates bet-
ter performance than an entirely non-volatile main memory [66]. Further,
as we describe in Chapter 4.1, Chinchilla efficiently avoids intermittence
bugs using an undo-logging technique that introduces a lower overhead
than Ratchet frequent checkpoints placement [66, 100].
Optimal Program Sections Mapping. Jayakumar et al. [55] propose a
system that identifies the optimal memory mapping of program segments
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at the granularity of individual functions. They consider the program code
(.text segment), global variables (.data segment), and stack frames (.stack
segment).

The system has a warm-up phase, where it tries every possible memory
configuration for every function and saves the most efficient configuration
onto a lookup table that associates to each function a memory configura-
tion and its energy consumption. A memory configuration is an ordered
triplet {text, data, stack}, where each element indicates the allocation of
the corresponding program section. S stands for SRAM and indicates that
the segment is allocated onto volatile memory; F stands for FRAM and in-
dicates that the segment is allocated onto non-volatile memory. Note that
every function has a default configuration of {F, F, F}, where every seg-
ment is allocated onto non-volatile memory.

Before executing a function f , the system selects a memory configura-
tion c that was never applied to the function f . Then, it measures the initial
voltage Vi, applies the memory configuration c by copying the necessary
segments onto volatile memory, and executes the function f . Once the
function terminates, the system saves the volatile state onto non-volatile
memory, measures the final voltage Vf , and calculates the configuration
c energy consumption as V 2

i − V 2
f . The system updates f record in the

lookup table if c energy consumption is lower than one of the configura-
tions already present in the lookup table. The system repeats the previous
operations for every function and memory configuration, populating the
lookup table for every function.

Note that the system discards the configuration c if an energy failure
occurs during the execution of the function f , as f is unable to complete
it within a single power cycle using the configuration c. Functions that fail
to execute with any configuration fall back to a configuration where all the
segments are allocated onto non-volatile memory, that is, {F, F, F}.

When the warm-up phase completes, the system starts the normal pro-
gram execution. Before executing a function, the system loads the opti-
mal memory configuration c and the corresponding energy consumption
from the lookup table. Then, it measures the energy buffer voltage, and
if it stores sufficient energy to execute the function, the system applies the
memory configuration c and executes the function. Otherwise, the system
shuts down and waits for new harvested energy. Note that this execution
strategy ensures programs are free of intermittence bugs, as functions ei-
ther complete their execution or stops and wait for new harvested energy
after saving the program state.

For functions whose configuration is {F, F, F}, the system falls back
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to a mode similar to QuickRecall [54]. The system configures a hardware
interrupt that triggers whenever the energy buffer voltage drops below a
pre-defined threshold and save the program state, consisting of the register
file and special registers.

This system identifies the optimal mapping of program sections for each
function, increasing programs’ efficiency. When the mapping allows func-
tions to complete within a single power cycle, the system demonstrates up
to a 20% lower energy consumption and up to a 2x faster execution time
than QuickRecall [54]. Otherwise, it follows the same operating mode of
QuickRecall [54], providing similar performance.

5.2 Device Operating Setting

This section describes various approaches that improve battery-less de-
vices’ efficiency by tuning their operating settings. We focus on techniques
that introduce relevant concepts necessary to understand the contributions
of the PhD. Most of the available techniques [9, 10, 36, 83, 94] tune devices
operating settings to reach energy-neutrality or power-neutrality, where de-
vices operate perpetually, without any power interruption, using only the
energy harvested from the environment. Energy-neutral systems tune their
operating settings to ensure their energy consumption matches harvested
energy at any time instant, while power-neutral systems match harvested
energy over a time period. Section 5.2.1 describes techniques that tune
devices duty cycles whereas Section 5.2.2 describes dynamic voltage and
frequency scaling techniques.

5.2.1 Duty Cycling

The literature provides various techniques that tune devices’ duty cycle to
ensure efficient operations [11, 12, 54, 55, 96].

Kinetisee [96] provides a system design of a battery-less wearable cam-
era that operates perpetually, harvesting kinetic energy and varying the
MCU duty cycle. When the device does not collect images, Kinetisee puts
the MCU into a low-power mode to save energy.

Similarly, dynamic checkpoint-based forward progress mechanisms [11,
12,54] enter a low-power mode after saving the program state due to a low
energy buffer and wait for new harvested energy. This allows devices to
avoid executing state-restore operations if they are able to harvest sufficient
energy while waiting in low-power mode.

Jayakumar et al. [55] propose a system design that verifies if the energy
buffer stores sufficient energy to execute a computation unit. Whenever this
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condition is not verified, the system enters a low-power mode and waits
until the energy buffer stores sufficient energy to execute the computation
unit.

Other techniques [56, 83, 94] improve systems throughput and ensure
devices achieve energy-neutrality by tuning sensors sampling rate [83] and
data transmit rate [94]. However, they do not target battery-less devices and
require batteries to operate.

5.2.2 Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) techniques tune the de-
vice’s operating voltage and frequency to make it operate in the most ef-
ficient condition. We recall that higher operating clock frequencies have
a higher power consumption but also demonstrate a higher efficiency [48–
50], as they have a faster execution speed and a lower energy consumption
per clock cycle than lower operating clock frequencies. Further, devices’
energy consumption directly depends on their operating voltage: the lower
the operating voltage, the lower the energy consumption. We describe next
the DVFS techniques applied to battery-less devices.
DFS for Power Neutrality. Balsamo et al. [9] propose a system design
that uses dynamic frequency scaling (DFS) to achieve power-neutrality in
battery-less MCUs. The proposed system runs a DFS algorithm that keeps
the level of the energy buffer constant by dynamically adjusting the operat-
ing frequency whenever the energy buffer level changes.

The DFS control algorithm uses two voltage thresholds to decide when
to decrease or increase the MCU operating frequency, Vdec and Vinc, respec-
tively. These thresholds are fixed at compile-time and depend on capacitor
size and current draws of available operating clock frequencies. When Vcap

falls below Vdec, the system raises a hardware interrupt, and the DFS algo-
rithm sets a timer that expires after a pre-defined number of clock cycles.
When the timer expires, the DFS algorithm decreases the operating clock
frequency. Then, if Vcap is still below Vdec, the DFS algorithm resets the
timer and repeats these last steps until either Vcap exceeds Vdec or the MCU
is at the lowest operating frequency. The DFS algorithm follows a simi-
lar behavior for the case when Vcap exceeds Vinc, increasing the operating
frequency until Vcap no longer exceeds Vinc.

Compared to a configuration that uses a static clock frequency, this sys-
tem design extends the computation achieved in a single power cycle by up
to 88% [9] and shows a 21% faster execution time.
DVFS for Power Neutrality. Balsamo et al. [36] propose a similar sys-
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tem design for multi-core processors with big and LITTLE cores, which
adapts its instantaneous power consumption to match instantaneous har-
vested power. The proposed system achieves power neutrality using DFS
to scale the system operating frequency and core hot-plugging to alter the
number of active CPU cores. DFS allows the system to react to micro-
variations of harvested energy, whereas core hot-plugging allows the sys-
tem to react to macro-variations of harvested energy.

Similarly to their power-neutral system design for MCUs [9], the sys-
tem detects changes to the energy buffer voltage Vcap using two voltage
thresholds, Vhigh and Vlow, which are equally distant from Vcap. Note that
Vhigh > Vcap > Vlow. Whenever Vcap falls below Vlow or raises above Vhigh,
the system fires a hardware interrupt that runs the DFS algorithm first and
the core hot-plugging algorithm next.

The DFS algorithm uses a linear control similar to the authors’ previous
system design [36]. When Vcap < Vlow (Vcap > Vhigh), the DFS algorithm
decreases (increases) the operating clock frequency and then decreases (in-
creases) Vhigh and Vlow by a parameter Vq.

The core hot-plugging algorithm uses a derivative control that compares
the Vcap gradient variation against uses two gradient thresholds, α and β.
Whenever Vcap gradient exceeds α (β), the core hot-plugging algorithm
adjusts the number of active big (LITTLE) cores accordingly to the event
that triggered the interrupt.

Compared to other static approaches, this system design allows devices
to execute up to 69% more instructions in a single power cycle.
DVFS and MPPT. Balsamo et al. [9, 36] use their system designs to con-
ceive Momentum [10], a system that uses software-based maximum power
point tracking to ensure devices operate at the maximum power point of
the energy harvesting source, further improving system efficiency and per-
formance. Momentum identifies the voltage Vopt that maximizes harvested
power, that is, the maximum power point of the energy harvesting source.
Momentum sets Vlow and Vhigh of previous system designs [9, 36] to be
equally distant from Vopt. Similar to the previous system designs [9, 36],
the system adjusts its operating frequency and the active number of cores
to achieve power-neutrality while maintaining Vopt as operating voltage.
D2VFS. D2VFS [5] is a system design for battery-less devices that enable
dynamic voltage and frequency scaling in ultra-low-power MCUs with-
out dedicated hardware support for DVFS operations. D2VFS targets the
MSP430-G2553 [48], an ultra-low-power MCU from Texas Instruments.
D2VFS considers four discrete system configurations, consisting of four
factory-calibrated clock frequencies and their minimum operating voltage:
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1MHz at 1.8V , 8MHz at 2.2V , 12Mhz at 2.7V , and 16MHz at 3.3V .
High operating clock frequencies have a higher efficiency but a reduced op-
erating voltage range. In contrast, lower operating clock frequencies have
higher energy consumption but a broader operating voltage range.

During runtime, D2VFS sets the MCU at the maximum possible op-
erating clock frequency available at the current level of the energy buffer
while keeping the MCU operating voltage equal to the minimum possible
operating voltage of the set frequency. This ensures that the MCU always
operates using the most efficient configuration.

When the energy buffer voltage drops below the minimum operating
voltage of the current operating frequency, that is, a changepoint, D2VFS
reduces the operating clock frequency and sets the MCU operating volt-
age equal to the minimum operating voltage supported by set frequency,
extending the operations executed in a power cycle. D2VFS behaves sim-
ilarly when the energy buffer voltage increases above the minimum oper-
ating voltage of a higher operating clock frequency. However, in such a
case, D2VFS offsets the increase of the operating clock frequency by one
changepoint to avoid instabilities around changepoints.

D2VFS consists of a hardware-software co-design. D2VFS hardware
components consist of (i) a circuit that tracks changes in the energy buffer
and fires an interrupt whenever a new changepoint is reached, and (ii) a
step-down voltage regulator placed between the energy buffer and the MCU,
which allows the regulation of the MCU operating voltage. Note that D2VFS
tracks change in the energy buffer with a dedicated circuit to keep the over-
head of periodic probing of the energy buffer level at a minimum through
an ADC. D2VFS software components react to interrupts and adjust the
MCU operating configuration accordingly.

Compared to static frequency configurations, D2VFS reduces the work-
load completion time by up to 300% and requires a smaller capacitor size
to achieve comparable performance.
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CHAPTER6
Deployment of Battery-less Devices

This chapter describes our contribution to battery-less devices deployments [4].
We eventually achieve the first multi-year deployment of battery-less de-
vices that sense the structural and environmental conditions of an under-
ground archaeological site [40, 99] in Rome (Italy). Structural engineers
and archaeologists need to monitor the environmental and structural condi-
tions of the site, requiring periodic measurements of ambient temperature,
humidity, and vibrations. We published a paper summarizing the experi-
ences and lessons learned from this deployment at the ACM Conference
on Embedded Networked Sensor Systems (SenSys 2020) [4]. The paper is
attached in Chapter 12.
Deployment challenges. As we describe in Chapter 2, the literature is rich
in experiences of deployments for battery-powered devices. However, the
target site has unique conditions that pose severe limitations to the use of
battery-powered devices. Access to the site is regulated, must be booked
in advance, and must be kept as minimum as possible to avoid deteriorat-
ing the site conditions. This increases the difficulty of battery replacement
logistics.

Further, the site lacks high-power ambient energy sources, such as so-
lar energy, and only thermal and kinetic energy are available, preventing
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Figure 6.1: Time evolution of the deployment of our three design iterations [4].

on-site battery recharge during device operations. This also poses severe
limitations to the possible use of battery-less devices, as ambient energy
is severely limited and may not suffice to provide periodic and reliable
measures of environmental conditions. As we describe in Chapter 2, the
literature lacks experiences of deployments for battery-less devices that are
long-running, meet end-user requirements, and do not use high-power solar
energy. Note that, to the best of our knowledge, the duration of the longest
deployment of battery-less devices that does not rely on solar energy is
three months [22].
Our deployment. To address end-user requirements, we design two types
of sensors to measure environmental and structural conditions: T/H sensors
and I/A sensors. T/H sensors periodically record environmental tempera-
ture and humidity, whereas I/A sensors also record vibrations through an
inclinometer and accelerometer. We deploy 18 T/H sensors and 6 I/A sen-
sors at specific site locations.

Our deployment undergoes three different system design iterations, as
Figure 6.1 shows, which we name KINGDOM, REPUBLIC, and EMPIRE.
Each iteration aims at improving system reliability and uptime, using the
experience from previous system designs. In the remainder of this chapter,
we report on the main aspects of each design iteration, whereas a more
detailed analysis is available in the published paper [4].
First design iteration. KINGDOM is our first design iteration and uses
battery-powered sensors. We ensure that T/H sensors and I/A sensors effi-
ciently manage the energy available in their batteries. T/H sensors activate
every 20 minutes to sense the environment, and every hour send a radio
signal to a gateway containing the average and standard deviation of these
measurements. Instead, I/A sensors activate every minute to collect vi-
bration data, and every hour send a radio signal to a gateway containing
compressed information of these measurements.

Despite the efforts to ensure efficient battery management, KINGDOM
experiences several failures due to battery depletion and undergoes long
downtime periods waiting for battery replacements, leading to a 71% up-
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Figure 6.2: Task-based software design of T/H and I/A sensors in EMPIRE [4].

time. Therefore, we devise REPUBLIC, a new system design that uses
battery-less sensors. Note that we decide to keep KINGDOM active to col-
lect baseline data for comparing the performance of battery-less devices
against battery-powered ones.
Second design iteration. REPUBLIC is our second design iteration, where
we swap batteries with an energy harvester and energy buffers. T/H sensors
use thermoelectric generators to harvest thermal energy from the tempera-
ture difference between air and ceiling, whereas I/A sensors use a piezo-
electric transducer to harvest kinetic energy from vibrations. T/H and I/A
sensors use a 20µF capacitor as an energy buffer, which we carefully size
to achieve an optimal balance between charging time and available energy.
We rely on the same code base of KINGDOM and ensure program forward
progress across energy failures by instrumenting sensors programs with
HarvOS [16].

The severely limited energy supply from ambient energy sources causes
REPUBLIC sensors to collect 22% of the data that KINGDOM sensors col-
lect. Despite such lower data yield compared to KINGDOM, REPUBLIC
provides sufficient information to analyze ambient temperature and humid-
ity. However, REPUBLIC fails to capture relevant vibration events due to
insufficient energy while the events are occurring. REPUBLIC I/A sen-
sors periodically activate to randomly sense vibration data instead of wait-
ing for events of interest. This results in a waste of energy that makes
REPUBLIC I/A sensors unable to provide relevant information to analyze
the site’s structural integrity.
Third design iteration. REPUBLIC poor performance is a consequence
of using design techniques that (i) are conceived for systems with a sta-
ble power source, and (ii) assume there is always sufficient energy to cap-
ture events of interest. To overcome these limitations, we design EMPIRE,
a new system design iteration where we co-design sensors’ software and
hardware to work with the unstable energy sources of the archaeological
site.

We design T/H and I/A sensing programs using a task-based approach [25,
64, 65], and we divide tasks into sensing tasks, local processing tasks, and

75



Chapter 6. Deployment of Battery-less Devices

harvester

boost
charger

capacitor

comparator

m
u

lt
ip

le
xe

r

buck 
converter

sensing
device

memory

comparator

comparatorenergy flow
digital signal

threshold selection

enable

comparator

power
good

2-bits

Figure 6.3: Hardware design of T/H sen-
sors in EMPIRE [4].

boost
charger

buck 
converter

sensing
device

energy flow
digital signal 

capacitorharvester
trigger
circuit

trigger
harvester

V > Vt
energy
level 

power 
good

en
ab

le

2-bits

Figure 6.4: Hardware design of I/A sensors
in EMPIRE [4].

data transmission tasks. Figure 6.2 decpits the control flow of EMPIRE
sensors. Sensing tasks have the highest priority, as they collect important
environmental information and must execute periodically.

Figure 6.3 depicts the key aspects of the hardware design of T/H sen-
sors. We design T/H sensors hardware with a dedicated circuit that enables
software-driven system shutdown and turns on the MCU when the energy
buffer level exceeds a software-selectable activation threshold. T/H sensors
support three activation thresholds: for the execution of sensing tasks, one
for the execution of sensing and local processing tasks, and one for the ex-
ecution of sensing, local processing, and data transmission. At runtime, the
MCU decides the tasks to execute in the next power cycle by selecting the
corresponding activation threshold. This ensures that tasks are always able
to complete, as they execute only when sufficient energy is available.

Figure 6.4 depicts the key aspects of the hardware design of I/A sensors.
We design I/A sensors hardware with an additional piezoelectric transducer
that turns on the MCU only when vibrations occur. This ensures that the
MCU does not waste energy randomly sensing vibration data and instead
powers on only when an event of interest occurs. Further, I/A sensors hard-
ware features a 2-bit line that, on startup, signals the MCU with the energy
buffer level. After executing the sensing task, the MCU decides the tasks
to execute next using such information.
Key results. Similarly to REPUBLIC, EMPIRE sensors collect up to 30%
of the data that KINGDOM sensors collect. However, EMPIRE design pro-
vides better energy management and ensures that events of interest are
recorded.

Figure 6.5 shows an example of vibrations spectral density of the data
sensed by I/A sensors of KINGDOM and EMPIRE. Despite a lower num-
ber of collected samples, EMPIRE data provide similar quality to the one
of KINGDOM, allowing engineers to analyze the structural integrity of the
archaeological site. Moreover, the information provided by EMPIRE I/A
sensors was sufficient to estimate the magnitude of an earthquake that hit
north of Rome on May 11th, 2020, at 3.03 AM UTC. Using the data sensed
by EMPIRE I/A sensors, for which Figure 6.6 shows the spectral density,
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Figure 6.6: Vibrations spectral density of
an earthquake captured by EMPIRE [4].

we calculated a Richter magnitude of 3.14 using existing computational
methods [58]. Our estimate is close to the official report of a Richter mag-
nitude in the interval (3.2, 3.7) from the Italian Institute of Geophysics [32],
which uses several professional seismographs deployed around Rome.

EMPIRE is still running without any maintenance since June 2018. In-
stead, KINGDOM is deployed since January 2017 and the overall mainte-
nance efforts required to replace KINGDOM batteries were double the de-
velopment effort of EMPIRE.

A more detailed analysis of the three deployed systems is available in
the published paper [4]. These results demonstrate that battery-less sensors
are a viable alternative to battery-powered ones.
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CHAPTER7
Testing and Analyzing Intermittent

Programs

This chapter describes our contribution to intermittent program consistency
and testing [69, 75]. We provide an in-depth analysis of the unexpected
behaviors characterizing battery-less devices, which we call intermittence
anomalies. We extend the concepts of intermittence bugs and WAR haz-
ards [64,74,85,97,100], and we identify new types of intermittence anoma-
lies previously overlooked by current literature that may happen whenever
battery-less devices interact with the environment. Next, we devise a set
of techniques to test intermittent execution, and we implement them into
ScEpTIC, a tool that enables developers to test their intermittent programs.
We published this work at the 2021 International Conference on Embed-
ded Wireless Systems and Networks (EWSN 2021) [75] and we release
ScEpTIC as an open-source project [69].
Open problems. As we describe in Chapter 4, energy failures cause battery-
less devices to re-execute portions of programs, potentially leading to the
computation of unexpected results unattainable in a continuous execution,
which we recognize as intermittence anomalies. The literature recognizes
only intermittence anomalies happening in non-volatile memory locations
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< save state() >
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Figure 7.1: Example of a data access anomaly [75]. An energy failure causes the re-
execution of portions of a program, causing an unexpected result.

of mixed-volatile platforms [64, 74, 85, 100], such as the one of Figure 1.5.
We recall that, in the example of Figure 1.5, variable a is non-volatile and
an energy failure causes the re-execution of lines 2-4, leading to a result
that differs from the one of an equivalent continuous execution.

As we point out in Chapter 1.2.2, the literature overlooks intermittence
anomalies that may happen whenever devices interact with the environ-
ment, failing to provide concepts to analyze this new type of intermittence
anomaly, which is not specific to mixed-volatile platforms. Further, the lit-
erature lacks tools to verify the presence of intermittence anomalies and to
test intermittent executions of programs.

To address these open problems, we extend our early work on inter-
mittence bugs [74], dividing intermittence anomalies into memory-related
anomalies and environment-related anomalies. We then provide (i) new
techniques to test memory-related intermittence anomalies, which demon-
strate a higher efficiency than existing techniques [74], and (ii) a set of tech-
niques to identify and analyze environment-related intermittence anoma-
lies. In the remainder of this chapter, we report on the main aspects of our
contribution, whereas a more detailed analysis is available in the published
paper [75].

Memory-related anomalies. Following our previous classification of in-
termittence bugs [74], we classify memory-related anomalies into data ac-
cess anomalies, activation record anomalies, and memory map anomalies.
We already discuss these anomalies in Chapter 4.1.1. We recall that data
access anomalies cause the computation of a wrong result, as Figure 7.1
shows. Activation record anomalies and memory map anomalies follow a
similar pattern to data access anomalies. However, they respectively af-
fect functions activation records and dynamic memory mappings leading to
unexpected program jumps, crashes, or memory leaks.
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We determine a general pattern among the three types of memory-related
anomalies, which allows us to identify the minimum amount of informa-
tion necessary to verify their occurrence. We call producer a machine-
code instruction that alters a non-volatile memory location and consumer a
machine-code instruction that accesses a non-volatile memory location. In
the example of Figure 7.1, the instruction at line 4 is a producer for variable
a, and the instruction at line 2 is a consumer for variable a.

A program contains a memory-related anomaly if it executes a sequence
of instructions where a producer executes after a consumer of the same
memory location. An energy failure after the execution of the producer
causes the consumer to read data that a future instruction wrote in the pre-
vious power cycle, that is, the producer. This is the case in the example
of Figure 7.1, where the consumer at line 2 eventually reads data that the
producer at line 4 wrote during the previous power cycle. This generalizes
the existing concept of WAR hazards [64, 74, 85, 100], applying it to any
memory-related anomaly. A more detailed description of this consumer-
producer pattern is available in the published paper [75].

We use this producer-consumer pattern to devise a technique that locates
where memory-related anomalies may happen inside programs. Unlike ex-
isting literature [74], we locate memory-related anomalies without simu-
lating energy failures. We search for consumer-producer patterns inside
a trace of non-volatile memory accesses collected from a continuous exe-
cution of a program. This reduces the time required to analyze programs
from several minutes to a few seconds. We provide further details of our
technique and its evaluation in the published paper [75].
Environment-related anomalies. We analyze unexpected behaviors that
may happen whenever battery-less devices interact with the environment,
classifying them as input-related anomalies and output-related anomalies.
As we argue in Chapter 1.2.2, these cases of unexpected behaviors were
previously overlooked by existing literature.

Figure 7.2 recalls the examples of environment interactions that we de-
scribe in Chapter 1.2.2. Figure 7.2(a) shows an example of an input-related
anomaly. An energy failure causes the program to access temperature data
sensed in a previous power cycle, which continues the execution consider-
ing an old environment state. Deciding if this behavior is unexpected de-
pends on the application requirements. For example, programs that record
long-term trends may still value data sensed in previous power cycles.

We define two access models that identify how programs access previously-
sensed environment states. A most-recent access model indicates that pro-
grams must access and sense environment data during the same power cy-
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Figure 7.2: Examples of unexpected behaviors happening when battery-less devices in-
teract with the environment [75].

cle. A long-term access model indicates that programs can access environ-
ment data sensed in previous power cycles. The program in the example
of Figure 7.2(a) accesses the environment temperature using a long-term
access model.

The correct access model depends on application requirements and is
application-specific. Therefore, an input-related anomaly occurs whenever
the program behavior does not reflect the required access model.

We devise a program analysis technique that identifies the access model
of accesses to input-related data. Our technique sequentially executes pro-
grams and keeps track of access to input-related data by propagating variable-
specific metadata, which we then use to identify access models. We sig-
nal an input-related anomaly if the identified access model does not reflect
developer requirements. A more detailed description of this technique is
available in the published paper [75].

Output-related and input-related anomalies follow a similar pattern. Fig-
ure 7.2(b) shows an example of an output-related anomaly. An energy fail-
ure causes the program to execute duplicate operations, altering the envi-
ronment state multiple times.

Similarly to input-relate anomalies, deciding if this behavior is unex-
pected depends on the application requirements. Therefore, our analysis
of output-related anomalies is dual to input-related anomalies. We provide
further details in the published paper [75].
ScEpTIC. We design and implement ScEpTIC, a tool written in Python
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that simulates and analyses programs’ intermittent executions. ScEpTIC
emulates the execution of LLVM IR [1], an intermediate representation of
programs’ source code close to machine code. This makes ScEpTIC inde-
pendent from devices’ target architecture. ScEpTIC implements our tech-
niques to analyze memory-related and environment-related anomalies and
provides developers with an emulation environment to test intermittent pro-
grams. ScEpTIC code and documentation are available as an open-source
release [69].

We use ScEpTIC to evaluate our techniques to analyze intermittence
anomalies. Our experiment results show that our techniques run up to ten
orders of magnitude faster than the baselines we consider, allowing de-
velopers to analyze intermittence programs in a reasonable time. A more
detailed description of our results is available in the published paper [75].
Research connections. ScEpTIC demonstrated to be a fundamental tool
for the PhD research, as it enabled the exploration and evaluation of var-
ious techniques and system designs. Throughout the PhD research, we
extend and update ScEpTIC with numerous simulation features, includ-
ing accurate simulations of devices’ energy consumption and simulations
of energy buffers, energy sources, circuitry external to the MCU, and cus-
tom hardware designs. We use ScEpTIC to (i) implement and evaluate
ALFRED [73] and (ii) implement, explore, and evaluate our DVFS hard-
ware/software co-designs of Chapter 10.

Finally, this research direction gave us essential knowledge and intu-
itions on intermittence anomalies and non-volatile memory access patterns.
As we describe in Figure 1.8, we later use this knowledge to devise intermit-
tence awareness [72] and ALFRED [73], respectively described in Chapter 8
and Chapter 9.
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CHAPTER8
Intermittence Awareness Program Design

Pattern

This chapter describes our contribution to intermittent program consistency
and energy efficiency [72]. We consider a new perspective on intermittence
anomalies, a new type of bug characterizing intermittent computing de-
vices. We introduce intermittence awareness, a new program design pattern
that intentionally allows the occurrence of specific intermittence anomalies
to gain new information regarding intermittent executions of programs. We
show one of the many design possibilities that intermittence awareness un-
locks by designing an intermittence-aware technique that reduces the over-
head required to preserve the computation achieved inside loops. We pub-
lished this work at the International Workshop on Energy Harvesting &
Energy-Neutral Sensing Systems (ENSsys ’20) [72], where it received the
Best Paper award. The paper is attached in Chapter 12.

We recall that the knowledge gained from our previous work on inter-
mittence anomalies [75], described in Chapter 7, gave us precious insights
that we exploit to conceive the concept of intermittence awareness and to
design our intermittence-aware technique for loops.
Intermittence awareness. As we describe in Chapter 4.1, mixed-volatile
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1. r = −1;
< save state() >
2. r = r + 1;
3. if(r < 1){
4. send(r);
5. }

...

Shutdown

r: -1

During
state save

r: 0

After
shutdown

1. r = −1;
< state save() >

2. r = r + 1;
3. if(r < 1) { false
4. send(r); skipped
5. }

...

r: 0

After
restore

r: 1

Figure 8.1: Example of an intermittence-aware program [72]. We allow the occurrence
of the intermittence anomaly at line 2, making variable r track the number of energy
failures.

platforms [49–51] may experience intermittence anomalies [64, 74, 75, 85,
100], consisting in unexpected behaviors caused by non-idempotent code
re-executions after energy failures. Existing forward progress techniques
always avoid intermittence anomalies and enforce a computation equiva-
lent to a continuous one [25, 64, 65, 74, 75, 100] executing additional state-
save operations at specific program locations [74, 75, 100] or re-executing
portions of programs when resuming after energy failures [25, 64, 65].

We take a different approach. Differently from existing literature, we de-
liberately allow the occurrence of specific intermittence anomalies to make
programs aware of their intermittent executions. We call this concept inter-
mittence awareness. intermittence-aware programs consider intermittence
as a new program input and can alter their behavior accordingly to where
and when energy failures occur. This allows developers to make their pro-
grams react to energy failures, unlocking new program designs.

Figure 8.1 shows an example of an intermittence-aware program. Vari-
able r is non-volatile. Line 1 initializes r to -1, and the device saves the
program’s volatile state onto non-volatile memory. Next, line 2 increments
r to 0, the if statement of line 3 evaluates to true, and line 4 executes.
The computation continues, and an energy failure eventually occurs. When
sufficient energy is available, the device restores the program state from
non-volatile memory and resumes the computation from line 2. Here an in-
termittence anomaly happens, as r retained the effects that line 2 produced
during the previous power cycle.

Instead of preventing the intermittence anomaly, we deliberately allow
its occurrence. This makes r track the number of energy failures since
the last checkpoint, as line 2 increments r every time the computation re-
sumes after energy failures. We then rely on this information to prevent
re-executions of line 4. The if statement of line 3 evaluates to false after
the first energy failure, and line 4 does not re-execute.
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1. ...
2. save state();
3. for(i = 0; i < N; i++){
4. ...
5. res[i] = ...
6. save state();
7. }

✔

(a) State-save inside loop body

1. ...
2. save state();
3. for(i = 0; i < N; i++){
4. ...

28th iteration (i=27)

5. res [ i ] = ...

6. }

Shutdown

1. ...
2. save state();
3. for(i = 0; i < N; i++){
4. ...
5. res[i] = ...
6. }

Resumes from
first iteration ✗

(b) No state-save inside loop body

Figure 8.2: Preserving loop iterations progress [72]. Fig. (a) saves the state at the end
of each loop iteration, preserving loop progress across energy failures. Fig. (b) lacks
a state-save operation inside the loop body and energy failures cause to re-execute the
loop from the beginning.

Note that this behavior is not possible with existing forward progress
techniques [16,64,86,100]. They enforce results equivalent to a continuous
execution, ensuring that r is equal to 0 every time the computation resumes
after energy failures. Consequently, r would not track energy failures, and
line 4 would re-execute after every energy failure.

Figure 8.1 shows only one of the many possible program designs that
intermittence-awareness unlocks.
Intermittence-aware loops. We demonstrate one of the possible appli-
cations of intermittence awareness by designing an intermittence-aware
technique that reduces the overhead required to preserve the computation
achieved inside loops. We report here the main aspects of our technique,
whereas a detailed description is available in the published paper [72].

As we describe in Chapter 3, ensuring forward progress across energy
failures requires devices to periodically save the program state onto a non-
volatile memory location. When resuming after energy failures, devices
restore the saved state from non-volatile memory and resume the computa-
tion from where the state was saved.

Consequently, to preserve the progress achieved inside loop iterations,
existing forward progress techniques [16, 64, 86, 100] need to save the pro-
gram state at the end of each loop iteration, as Figure 8.2(a) shows. In the
event of an energy failure, this ensures that the results of executed loop
iterations are preserved, as the program resumes from the latest-executed
loop iteration. Otherwise, the computation would resume before the loop,
and the results of loop iterations executed during the previous power cycle
are lost, as Figure 8.2(b) shows. However, saving the program state at the
end of each loop iteration introduces a significant overhead detrimental to
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Figure 8.3: Example of an intermittence-aware loop [72]. We allow the occurrence of
specific intermittence anomalies to preserve the computation achieved inside loop iter-
ations, without saving the state at the end of each iteration.

devices’ performance [72].
Unlike existing forward progress techniques [16,64,86,100], we do not

execute state-save operations at the end of each loop iteration. Instead, we
preserve the computation achieved inside loops by allowing the occurrence
of specific intermittence anomalies, reducing the overhead of state-save op-
erations.

Figure 8.3 shows an example of our technique, applied to the example
of Figure 8.2. We allocate the loop iterator i and the result vector res onto
non-volatile memory. Say that the program of Figure 8.3 reaches the third
loop iteration, and then an energy failure occurs before the execution of
line 5. When sufficient energy is available, the device restores the saved
program state and resumes the computation from line 2, outside the loop.

Both i and res retained the effects of loop iterations executed during the
previous power cycle. Consequently, the instructions of the loop of line 3
access an inconsistent value of i, as i was 0 when the state was saved, and
not 2. A similar case stands for res. However, we deliberately allow the
occurrence of intermittence anomalies involving i and res. Line 3 executes
and the loop resumes from the third iteration, as i is 2. Moreover, res
contains the results of previous iterations, executed in the previous power
cycle. Consequently, the program resumes from the third loop iteration as
if the state was saved at the end of the second loop iteration. Note that this
behavior is not possible if we prevent the intermittence anomalies on i and
res, as i would be 0 and the loop would restart from the beginning.

We provide a more detailed description of our technique in the published
paper [72], where we also provide a programming abstraction to ease its
application.
Results. To correctly preserve the computation achieved inside loops, our
technique requires the execution of state-save operations at precise pro-
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gram locations during its execution. Consequently, our technique does not
apply to dynamic/just-in-time checkpoint-based forward progress mecha-
nisms [11, 12, 54], as they may execute state-save operations at any in-
stant during programs’ execution, depending on harvested energy patterns.
Therefore, we evaluate our technique only against static checkpoint-based
forward progress mechanisms [16,86], as they execute state-save operations
at fixed program locations.

We use a heterogeneous set of benchmarks representing typical work-
loads in intermittent computing. Our experiment results show that, on aver-
age, our technique demonstrates a 35.2x lower energy consumption and a
48.4 lower workload completion time than existing forward progress tech-
niques. A more detailed description of our experiments is available in the
published paper [72].
Research connection. As we describe in Figure 1.8, the knowledge gained
from our previous work on intermittence anomalies [75], described in Chap-
ter 7, gave us precious insights that we exploit to conceive the concept of
intermittence awareness and to design our intermittence-aware technique
for loops. Moreover, this work on intermittence awareness gave us precious
insights that we use in ALFRED [73]. We design a versioning technique to
avoid unwanted anomalies in intermittence-aware loops, which we describe
in the published paper [72]. We later use the concept behind this technique
as a basis for designing a more complex technique that avoids intermittence
anomalies in ALFRED [73], as we point out in Chapter 9.
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CHAPTER9
Virtual Memory for Intermittent Computing

This chapter describes our contribution to forward progress, energy effi-
ciency, and intermittent programs consistency [73]. We design ALFRED,
a virtual memory abstraction and compilation pipeline for mixed-volatile
platforms that automatically identifies the most efficient mapping of the
program state across volatile and non-volatile memory. We published this
work at the ACM Conference on Embedded Networked Sensor Systems
(SenSys 2021) [73]. We release an open-source prototype of ALFRED code
and documentation [70] along with a comprehensive technical report of
ALFRED compilation pipeline techniques [71].

We recall that, as Figure 1.8 depicts, the knowledge gained from our pre-
vious works on intermittence anomalies [72,75], described in Chapter 7 and
Chapter 8, gave us precious insights that we exploit to conceive ALFRED
techniques.
Program state mapping challenges. As we describe in Chapter 3, to en-
sure program forward progress across energy failures, devices must pe-
riodically save their program state onto a persistent non-volatile memory
location and then restore it when energy returns. State-save operations in-
troduce a computation and energy overhead proportional to the size of the
saved program state as devices pause the program execution and copy the
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program state onto non-volatile memory. State-restore operations entail a
similar case.

Mixed-volatile platforms [49, 50] allow developers to directly allocate
portions of the program state onto non-volatile memory. Being these por-
tions non-volatile, they are automatically preserved across energy failures
and can be excluded from state-save and state-restore operations, reduc-
ing their overhead. However, this memory allocation increases programs
energy consumption and workloads completion time, as now a subset of
program instructions directly target non-volatile memory, whose accesses
require up to 247% of the energy and twice the number of clock cycles of
volatile memory accesses [49, 50, 75], Moreover, as Chapter 4.1 describes,
programs that directly access non-volatile memory may experience inter-
mittence anomalies [75], whose avoidance requires saving the program
state more frequently [74, 75, 100] or re-executing portions of programs
when resuming after energy failures [25, 64, 65], further increasing pro-
grams energy consumption and workloads completion time.

For these reasons, identifying the optimal mapping of the program state
across volatile and non-volatile memory is non-trivial, as it also depends
on multiple factors, including program execution flow and device energy
consumption.
Existing mapping approaches. As we describe in Chapter 5.1.2, exist-
ing forward progress techniques allocate the entire program state onto non-
volatile memory [54,59,66,100] or require developers to manually specify
the mapping of the program state across volatile and non-volatile mem-
ory [25, 64, 65, 103], leading to sub-optimal performance. Unlike these
works, we automatically identify the optimal mapping of the program state
across volatile and non-volatile memory, without requiring user interven-
tion.

The only work that automatically explores various mapping of the pro-
gram state is the one of Jayakumar et al. [55]. They evaluate all the possible
mappings of entire program segments, such as global variables, program
code, and stack frames, at single function granularity and apply the most
energy-efficient one. The mapping is applied at runtime, introducing an
energy overhead that may decrease device performance. Moreover, such
high granularity level limits the extracted performance, as the access pat-
tern to single data items may change multiple times across the execution
of a function. Unlike this work, our mapping is resolved at compile-time
and considers the granularity of single instructions, providing a higher op-
timization opportunity without introducing runtime overhead.
ALFRED. We design a virtual memory abstraction and compilation pipeline
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Figure 9.1: ALFRED compilation pipeline [73].

for mixed-volatile volatile platforms, called ALFRED. ALFRED automati-
cally identifies the optimal mapping of the program state across volatile and
non-volatile memory.

Unlike existing works [25, 54, 55, 59, 64–66, 100, 103], ALFRED oper-
ates at the granularity of single data items and provides a virtual memory
abstraction that relieves developers from specifying any memory mapping
for their programs. ALFRED uses a series of program transformation tech-
niques to automatically resolve the mapping of virtual memory at compile-
time, deciding what slices of the program state must be allocated onto non-
volatile memory and at what point during the program execution.

The general idea behind ALFRED technique consists in using the more
energy-efficient volatile memory to store intermediate results that need not
to survive energy failures, whereas we allocate data that requires persis-
tence onto non-volatile memory. Therefore, the mapping of each data item
is not fixed, and it is automatically adjusted during the program execution
based on memory read/write access patterns and program structure.

In the remainder of this chapter, we report on the main aspects of ALFRED
compilation pipeline, whereas a more detailed description is available in the
published paper [73] and companion technical report [71].
ALFRED compilation pipeline. Figure 9.1 depicts ALFRED compilation
pipeline. At each stage, ALFRED addresses compile-time uncertainty due
to unresolved memory addresses, memory aliases, loops, and conditional
executions with specific program transformation techniques that remove
sources of ambiguity. Further details are available in the published pa-
per [73] and companion technical report [71].

Developers write their programs using ALFRED virtual memory abstrac-
tion, which simply requires developers not to specify any mapping for the
program state. At stage ⟨1⟩, ALFRED applies a developer-specified forward
progress mechanism to the input program. ALFRED works on top of any
checkpoint-based [11,12,16,54,66,86,100] or task-based forward progress
technique [25, 64, 65, 76, 88, 103].

ALFRED program transformations work at the machine-code level. There-
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1. save state();
2. a = ...
3. x = sin(a);
4. a = a+ 1;
5. y = cos(a);
6. ...
7. save state();

...

non-final write

final write

writes same data

target volatile memory

target non-volatile memory

do not save a

Figure 9.2: Example of ALFRED mapping. Final memory writes target non-volatile mem-
ory and state-save operations need not to save memory locations.

fore, in stage ⟨2⟩, ALFRED translates the program into an intermediate
source code representation. Here ALFRED also partitions the program code
into computation intervals, consisting of sequences of machine-code in-
structions executed between two state-save operations.

At stage ⟨3⟩, ALFRED analyzes memory access patterns and maps vir-
tual memory to volatile/non-volatile memory accordingly, modifying the
target location of memory read and write operations. Figure 9.2 shows an
example of ALFRED mapping.

The key behind ALFREDmapping stands in the identification of final re-
sults, consisting in the same results that state-save operations save. We say
a memory write operation is final and writes final results if no other opera-
tion alters the same memory location before the next state-save operation.
In the example of Figure 9.2, line 4 is a final memory write operation.

ALFRED makes every final memory write operation target non-volatile
memory, whereas all the other memory write operations target volatile mem-
ory. In the example of Figure 9.2, line 4 is a final memory write operation
and targets non-volatile memory, whereas line 2 is non-final and targets
volatile memory.

ALFREDmapping exploits existing program instructions to save the pro-
gram state, as final memory write operations target non-volatile memory.
Therefore, state-save operations need only to save the register file and spe-
cial registers, such as the program counter and the stack pointer. This re-
duces the energy and computation overhead of state-save operations. More-
over, ALFRED achieves differential state saves [7] with zero run-time over-
head, as only modified memory locations are saved onto non-volatile mem-
ory without requiring runtime memory tracking [7].

ALFRED applies a dual case to memory read operations. A more de-
tailed description of ALFRED mapping is available in the published pa-
per [73] and companion technical report [71].
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At the end of stage ⟨3⟩ of Figure 9.1, ALFRED identified the most effi-
cient mapping of virtual memory across volatile and non-volatile memory.
However, now a portion of the program directly accesses non-volatile mem-
ory and may experience intermittence anomalies [74, 75, 85]. Therefore,
at stage ⟨4⟩, ALFRED identifies where intermittence anomalies may hap-
pen and avoids their occurrence using a memory versioning technique that
tightly integrates with the applied program transformations. Further details
are available in the published paper [73]. As we describe in Figure 1.8,
the underlying idea behind this versioning technique originates from our
works on intermittence anomalies [75] and intermittence awareness [72],
described in Chapter 7 and Chapter 8, respectively.

Finally, at stage ⟨5⟩, ALFRED compiles the transformed intermediate
representation of the program for the target architecture, producing the final
firmware and reaching stage ⟨6⟩, where developers can upload the firmware
to the target device.
Results. As we point out in Figure 1.8, we rely on ScEpTIC to evaluate
ALFRED performance. We implement a prototype of ALFRED techniques
into ScEpTIC [69, 75], which is available as an open-source release [70].
Moreover, we extend ScEpTIC with new features, enabling simulations of
devices’ energy consumption and energy sources.

We compare ALFRED against state-of-the-art checkpoint-based tech-
niques [16, 59, 66, 86, 100] using a heterogeneous set of benchmarks rep-
resenting typical workloads in intermittent computing. Our experiments
show that ALFRED maps up to 90% of memory accesses to volatile mem-
ory and reduces the energy consumption by up to two orders of magnitude.
Further, ALFRED more efficient memory mapping reduces the energy con-
sumption, removing non-terminating path bugs [26] from experiment con-
figurations that initially presented them. A more detailed description of our
experiments is available in the published paper [73].
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CHAPTER10
Dynamic Voltage and Frequency Scaling for

Battery-less Devices

This chapter describes our contribution to energy efficiency for battery-less
devices. We identify key features to enable efficient regulation of supply
voltage and clock frequency in highly resource-constrained battery-less de-
vices. We implement two hardware/software co-designs that capture these
features and expose different trade-offs and functionality, one of which we
fabricated. We submitted this work to the ACM Transactions on Sensor
Networks, and we are awaiting the reviews.
Efficient operating settings. As we anticipate in Chapter 1.2.3, the energy
consumption of low-power MCUs is a function of their operating settings,
including operating voltage and clock frequency. The higher the operating
frequency, the faster the execution speed and the lower the energy consump-
tion per clock cycle. For example, in the MSP430-G2553 [48], 16MHz
is 16x faster and 47% more energy efficient than 1MHz, as Figure 10.1
shows.

In principle, the most efficient operating setting corresponds to running
the highest possible operating frequency supported by the MCU at the min-
imum possible supply voltage. However, the selected operating frequency
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G2553 [48] factory-calibrated frequen-
cies.

1MHz 8MHz 12MHz 16MHz DVFS
Frequency

100k

200k

300k

400k

500k

600k

700k

800k

900k

Nu
m

be
r o

f c
lo

ck
 c

yc
le

s
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ecuted by a MSP430-G2553 [48] in a
single discharge of a 100µF capacitor
from 3.6V to the minimum operating
voltage of a given frequency.

limits the minimum supply voltage at which devices can operate: the higher
the operating frequency, the higher the minimum voltage required to oper-
ate such frequency. For example, in the MSP430-G2553 [48], 16MHz
minimum operating voltage is 3.3V , whereas 1MHz minimum operating
voltage is 1.8V .

We recall that, in the absence of voltage regulators between the energy
harvester and the sensor node, the input voltage of the MCU depends on
harvested energy and energy buffer level, and it is subject to periodic fluc-
tuations. In such a scenario, the reduced operating voltage range of higher
operating frequencies pone a severe disadvantage, as it forces devices to
shut down at higher voltages, limiting the computation achieved in each
power cycle. Although lower operating frequencies are less energy-efficient
than higher operating frequencies, their lower minimum operating voltage
allows devices to execute more operations in each power cycle. For ex-
ample, in the MSP430-G2553 [48], the reduced operating voltage range of
16MHz yields devices to execute 3.75x lower clock cycles than 1MHz in
each power cycle, as Figure 10.2 shows.
DVFS challenges. Statically selecting an operating frequency leads to sub-
optimal performance, as the most efficient frequency changes throughout
the computation with the energy buffer voltage. Therefore, battery-less
devices should dynamically adapt their operating voltage and frequency
at runtime, constantly selecting the most efficient configuration. In the
MSP430-G2553 [48], this increases the number of clock cycles executed
in a single power cycle by up to 8.1x, as Figure 10.2. However, apply-
ing such a Dynamic Voltage and Frequency Scaling (DVFS) technique to
battery-less devices is challenging.

Simple battery-less devices’ architectures lack input voltage regulators.
Moreover, unlike mainstream processors, the ultra-low-power MCUs used
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in battery-less devices lack hardware support to dynamically adapt the sys-
tem operating voltage and frequency, as well as an operating system that
manages such operations. Finally, applying DVFS under harvested energy
supply requires constant monitoring of the energy buffer to identify the
available operating frequencies. Adding these capabilities may increase en-
ergy consumption, resulting in worse performance than a static frequency
configuration.

As we describe in Chapter 5.2, the literature provides very few works
that apply DVFS to battery-less devices [9, 10, 36]. These works mainly
target multi-core processors with DVFS hardware capabilities [10, 36] and
adapt MCUs operating frequency to achieve power-neutral operations [9,
10] without necessarily selecting the most efficient one. Unlike available
literature, we target highly resource-constrained MCUs, providing (i) a sys-
tem design for efficient DVFS in battery-less devices, (ii) the first concrete
implementation and fabrication of hardware/software co-designs that en-
able DVFS in battery-less devices, and (iii) a detailed evaluation that high-
lights the benefits of applying DVFS to battery-less devices.

In the remainder of this chapter, we report on the main aspects of our
DVFS system design concepts, whereas a more detailed description is avail-
able in the paper attached in Chapter 13.
Efficient DVFS design. We devise a generic system design that enables
efficient DVFS in energy-constrained battery-less devices.

The key functionality of our system design is the identification of avail-
able MCU performance windows, consisting of the most efficient combina-
tions of voltage and frequency settings. Therefore, a performance window
consists of an operating frequency and its minimum operating voltage, as
it yields the lowest possible energy consumption. For example, for the
MSP430-G2553 [48] MCU, we consider the four factory-calibrated fre-
quency settings and their corresponding minimum operating voltage, thus
identifying four performance windows: (i) 16MHz at 3.3V , (ii) 12MHz
at 2.8V , (iii) 8MHz at 2.2V , and (iv) 1MHz at 1.8V .

At any instant, we apply the most efficient performance window among
the ones available. For the MSP430-G2553 [48], this corresponds to the
performance window with the highest clock frequency among the available
ones. Note that we consider a performance window available if its mini-
mum operating voltage is higher than the energy buffer voltage.

We avoid periodic monitoring of the energy buffer voltage by only track-
ing changes in the available performance windows. We logically partition
the energy buffer into discrete energy levels, one for each identified per-
formance window. For example, for the MSP430-G2553 [48] MCU, we

99



Chapter 10. Dynamic Voltage and Frequency Scaling for Battery-less
Devices

Energy Buffer
Level Detection

Current Energy
Buffer State

Energy Buffer 
State Comparator

Save Energy
Buffer State
Controller

Energy 
Buffer

Voltage
Regulator

MCU

Interrupt Driver DVFS Driver

(a) D2VFS system design.

Power State Controller

Interrupt Driver

Energy 
Buffer

Operating 
Range 

Detection

Voltage
Regulator

MCU

DVFS Driver

Charge 
Detector

Discharge 
Detector

System Enable

(b) FBTC system design.

Figure 10.3: Logic representation of our system designs.

have four discrete energy levels: (i) the range 3.6V -3.3V , (ii) the range
3.3V -2.8V , (iii) the range 2.8V -2.2V , and (iv) the range 2.2V -1.8V . There-
fore, we track changes in the discrete energy level, and we change the per-
formance window whenever we identify a change in the discrete energy
level. We provide a detailed description of our generic system design in the
paper attached in Chapter 13.

Following our generic system design, we implement two hardware/soft-
ware co-designs for the MSP430-G2553 [48], D2VFS and FBTC. Fig-
ure 10.3 depicts the main feature of each system. Both designs use an
MCU-driven voltage regulator to set the system operating voltage.
D2VFS. Figure 10.3(a) depicts the system design of D2VFS. D2VFS iden-
tifies discrete energy levels using an array of four voltage detectors, one
for each operating voltage of the performance windows. The outputs of
the four voltage detectors identify the current discrete energy level, which
D2VFS stores into a flip-flop. D2VFS detects changes in the discrete en-
ergy level using a hardware comparator that compares the content of the
flip-flop against the outputs of the voltage detectors. When the comparator
detects a change, D2VFS updates the flip-flop and fires an interrupt to the
MCU, which probes the voltage detectors to identify the new performance
window and applies it. We provide more details of D2VFS system design
in the paper attached in Chapter 13.
FBTC. Figure 10.3(b) depicts the system design of FBTC. FBTC offers a
more complex system design than D2VFS, which leads to a lower quiescent
current and lower delay when scaling to higher performance windows, at
the expense of less precise detection of discrete energy levels.

Unlike D2VFS, FBTC powers the system only when the energy buffer
voltage is in a pre-defined voltage range, and allows users to select the
power-on voltage among four pre-defined voltages. FBTC identifies changes
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in the energy buffer level using two operational amplifiers, which detect
energy buffer charge and discharge by comparing the energy buffer level
against the output of the voltage regulator.

Similarly to D2VFS, FBTC fires an interrupt to the MCU whenever
the operational amplifiers detect an energy buffer charge or discharge. The
MCU runs a DVFS driver that tracks the current performance window and
changes it in response to interrupts. We provide more details of FBTC
system design in the paper attached in Chapter 13.
Results. As we describe in Figure 1.8, we rely on ScEpTIC [69, 75] to
evaluate the performance of D2VFS and FBTC. We extend ScEpTICwith
the ability to simulate devices’ energy consumption, energy buffers, energy
sources, circuitry external to the MCU, and custom hardware designs. We
then implement a model of D2VFS and FBTC into ScEpTIC. These up-
dates are available in ScEpTIC repository [69].

We compare D2VFS and FBTC against static frequency configurations
using a heterogeneous set of benchmarks representing typical workloads in
intermittent computing and various energy source configurations. Our ex-
periments show that D2VFS and FBTC reduce devices’ energy consump-
tion by up to 170% and workloads completion time by up to one order of
magnitude. A more detailed description of our experiments is available in
the paper attached in Chapter 13.
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CHAPTER11
Conclusion and Future Directions

Battery-less devices represent a great opportunity to enable a sustainable
Internet of Things. However, as we argued in Chapter 1, their unstable
power supply poses several challenges that harden their adoption as main-
stream sensors for the Internet of Things [43, 63, 85]. Throughout the PhD
research, we tackled a subset of these challenges, demonstrating the po-
tential of this technology, and improving the reliability and efficiency of
battery-less devices.

As we described in Chapter 2, the literature was missing examples of
long deployments of battery-less devices that account for end-user needs.
In Chapter 6, we described our multi-year deployment of battery-less de-
vices that requires zero maintenance without compromising end-user re-
quirements [4]. Our results demonstrated the potential of this technology,
showing that battery-less sensors are a viable alternative to battery-powered
ones. Moreover, we believe the lesson learned from this work will help fu-
ture deployments of battery-less devices.

The literature provides a broad range of state-retention techniques [8,
11, 12, 16, 25, 52, 54, 59, 64–68, 76, 86, 88, 100, 103] that enable program
forward progress across energy failures, which we described in Chapter 3.
A large subset of these techniques [25, 54, 59, 64–67, 76, 100, 103] rely on

103



Chapter 11. Conclusion and Future Directions

mixed-volatile platforms [49, 50] to ease persistent state management at
the expenses of an increased systems and programs complexity [25, 59,
64–66, 76, 103], intermittence anomalies [74, 75], and sub-optimal perfor-
mance [54, 72, 73, 100]. Ensuring safe, reliable, and efficient operations in
mixed-volatile platforms provided several analysis and optimization oppor-
tunities that we tackled throughout the PhD research.

First, as described in Chapter 4, energy failures may cause unexpected
behaviors that may lead to the computation of results different than a con-
tinuous execution. The literature lacked both tools and techniques to iden-
tify and analyze where these behaviors may happen. In Chapter 7, we
described our work [75] on these unexpected behaviors, which we iden-
tify as intermittence anomalies [75]. We classified intermittence anomalies
and identified new types that previous literature overlooked, which may
happen whenever battery-less devices interact with the environment. We
provided an in-depth description of their causes, and we designed a set of
techniques to verify their occurrence. The knowledge built from this line
of research allowed us to identify key insights that we later used in the PhD
research for conceiving intermittence awareness [72] and for the design of
ALFRED [73]. Finally, we implemented ScEpTIC, a testing environment
for battery-less devices, which we provided to the community as an open-
source release [69]. We constantly updated ScEpTIC throughout the PhD
research, as it helped us evaluate various system designs and techniques,
demonstrating a handy tool for battery-less devices research.

Building on our research on intermittence anomalies, we devised inter-
mittence awareness [72], a novel program design pattern considering a new
perspective on intermittence anomalies. As we described in Chapter 8, in-
termittence awareness intentionally allows the occurrence of specific inter-
mittence anomalies to gain new information regarding intermittent execu-
tions of programs, enabling developers to consider intermittence as a new
program input. We demonstrated one of the many possibilities that inter-
mittence awareness unlocks by designing an intermittence-aware technique
that reduces the overhead required to preserve the computation achieved
inside loops. On average, our technique reduces programs’ energy con-
sumption by 35.2x and workloads completion time by 48.4x.

In Chapter 5, we described the various approaches to reduce the energy
consumption of state-save and state-restore operations. Available tech-
niques rely on mixed-volatile platforms to map slices of program state
onto non-volatile memory, reducing state-save operations overhead due to a
lower volatile state that needs to be saved. However, allocating portions of
main memory onto non-volatile memory increases program energy con-
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sumption due to non-volatile memory accesses during the computation.
Further, it may also introduce intermittence anomalies, whose avoidance
requires dedicated instructions that further increase program energy con-
sumption. To address these problems, we devise ALFRED, a virtual mem-
ory abstraction and compilation pipeline for mixed-volatile platforms that
automatically identifies the most efficient mappings of the program state
across volatile and non-volatile memory. In Chapter 9, we described the key
elements of ALFRED compile-time techniques and demonstrated ALFRED
performance. Our experiment results show that ALFRED enables a faster
and more efficient intermittent computation, reducing program energy con-
sumption by up to two orders of magnitude.

Finally, in Chapter 5, we also described the various approaches to en-
sure battery-less devices operate using the most efficient settings. Avail-
able literature fails to adapt battery-less operating voltage and frequency,
as they lack hardware and software support for such operations. There-
fore, in Chapter 10, we show how dynamic voltage and frequency scaling
techniques can be applied to battery-less devices. We devised a system
design that captures the key feature required to enable intelligent runtime
regulation of supply voltage and operating frequency. We developed two
hardware/software co-designs that capture these features, one of which we
fabricated. Our experiment results show up to 170% lower energy con-
sumption and up to one order of magnitude faster workload completion
time.

In conclusion, the PhD research provided previously-unavailable tools
to test intermittence programs, analysis techniques to analyze their be-
haviors, and techniques that significantly improve the energy efficiency of
battery-less devices.
Future directions. Alongside the existing community of intermittent com-
puting researchers, we believe that battery-less devices represent the future
for a sustainable Internet of Things [43]. However, this research field still
presents untackled challenges.

As we argued in Chapter 4, the literature provides very few tools and
testbeds to test battery-less devices. Although ScEpTIC represents a step
toward this direction, we aim at extending ScEpTIC to simulate network
communications and multiple devices simultaneously. This would enable
developers to test multiple device configurations, communication technolo-
gies, and network topologies before deployments without requiring ad-
ditional hardware components for distributed testing of battery-less de-
vices [39].

Further, ALFRED demonstrated better forward progress, as it signifi-

105



Chapter 11. Conclusion and Future Directions

cantly improves devices’ energy consumption. ALFRED energy consump-
tion improvement can allow stretching the distance between state-save op-
erations, further reducing their overhead. However, ALFRED works along-
side forward progress techniques, requiring already-placed state-save oper-
ations. Therefore, to overcome this limitation and further improve device
efficiency, we plan to extend ALFRED to automatically insert state-save
operations and partition programs into compilation units. This would make
ALFRED partition programs by considering where memory accesses hap-
pen, reducing both the number of state-save operations and the number of
operations that need to target non-volatile memory.
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ABSTRACT
We present the design and evaluation of a 3.5-year embedded sens-
ing deployment at the Mithræum of Circus Maximus, a UNESCO-
protected underground archaeological site in Rome (Italy). Unique
to our work is the use of energy harvesting through thermal and
kinetic energy sources. The extreme scarcity and erratic availabil-
ity of energy, however, pose great challenges in system software,
embedded hardware, and energy management. We tackle them by
testing, for the first time in a multi-year deployment, existing solu-
tions in intermittent computing, low-power hardware, and energy
harvesting. Through three major design iterations, we find that
these solutions operate as isolated silos and lack integration into a
complete system, performing suboptimally. In contrast, we demon-
strate the efficient performance of a hardware/software co-design
featuring accurate energy management and capturing the coupling
between energy sources and sensed quantities. Installing a battery-
operated system alongside also allows us to perform a comparative
study of energy harvesting in a demanding setting. Albeit the latter
reduces energy availability and thus lowers the data yield to about
22% of that provided by batteries, our system provides a comparable
level of insight into environmental conditions and structural health
of the site. Further, unlike existing energy-harvesting deployments
that are limited to a few months of operation in the best cases, our
system runs with zero maintenance since almost 2 years, including
3 months of site inaccessibility due to a COVID19 lockdown.

CCS CONCEPTS
• Computer systems organization → Sensor networks; Em-
bedded software.
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1 INTRODUCTION
Ambient energy harvesting is progressively enabling battery-less
embedded sensing. A variety of harvesting techniques exist that ap-
ply to, for example, light, vibrations, and thermal phenomena [14].
These technologies are naturally attractive wherever replacing bat-
teries is unfeasible or impractical, and represent a foundation to
achieve zero-maintenance embedded sensing [53].
Real-world deployments. Besides systems that use solar radia-
tion as energy source, few examples exist of long-term deploy-
ments demonstrating energy-harvesting zero-maintenance sys-
tems [20, 21, 45], as we discuss in Sec. 2. The longest-running such
deployment is reported to be operational for 3 months [20]. Further,
very few of these deployments serve the needs of actual end users;
rather, they are most often instrumental to demonstrate isolated
software, hardware, or energy harvesting techniques. We argue
that the limited span and scope of such real-world experiences is
a sign that current technology is not ready for prime time, as a
complete-system perspective is sorely missing.

This paper is about our first-hand experience of such state of
affairs, specific to a 3.5-year embedded sensing deployment at the
Mithræum of Circus Maximus, a UNESCO-protected archaeological
site in Rome (Italy). Such an effort is prompted by the municipality
of Rome, motivated by the need to understand environmental and
structural conditions of the site, as we illustrate in Sec. 3. The site,
shown in Fig. 1, is generally closed to the public, completely under-
ground, and only accessible through spiral staircases and provisional
ladders. Access to the site is strictly regulated to avoid gatherings
that may create detrimental environmental conditions and requires
authorization from the municipality to assign an accompanying
officer. Artificial lighting is temporary, as it is deployed impromptu
by archaeologists and restorers only for the duration of their visits.
Our work. Our deployment unfolds through three distinct phases,
shown in Fig. 2 and summarized in Fig. 3.

The first design iteration, called Kingdom and illustrated in
Sec. 4, is largely based on off-the-shelf components and operates
with batteries. We use a commercial platform coupled with accel-
eration, inclination, temperature, and relative humidity sensors,
along with a sub-GHz radio. Despite its satisfactory performance



SenSys ’20, November 16–19, 2020, Virtual Event, Japan Afanasov et al.

(a) Mitra altar. (b) Concrete columns.

Figure 1: Mithræum of Circus Maximus in Rome, Italy. The
site is underground and only accessible through spiral staircases and
provisional ladders, along with proper authorizations.

during operational times, its reliability is limited, mainly because
of batteries. Due to the difficulties to access the site to replace them,
this renders the system impractical. After 1.5 years of operation,
we eventually turn to energy harvesting. Besides making battery
replacement a hurdle, however, the site characteristics rule out most
of the energy-rich sources, notably including light.

The second design iteration, called Republic and described in
Sec. 5, starts out from the overly optimistic belief—somehow fueled
by the lack of experiences akin to ours—that relying on ambient
energy is as simple as replacing batteries with a suitable harvester.
Due to the site characteristics, we rely on thermal and kinetic
sources, harvesting energy from temperature gradients and struc-
tural vibrations. We do not expect to achieve energy-neutral opera-
tion [8, 65], and design the system as an intermittently-executing
one [41]. Intermittent executions interleave periods of active op-
eration with periods of solely recharging energy buffers. We use
existing programming techniques [15, 60, 72] to implement sens-
ing, data processing, and communication. The system now operates
with essentially zero maintenance, but lower energy availability
causes data yield to degrade compared to the Kingdom, which we
keep in place (and continue to maintain) as a baseline.

Based on the lessons learned from the earlier designs, the third
iteration, called Empire and discussed in Sec. 6, is rooted in two key
observations, namely i) a hardware/software co-design is required
to efficiently manage the little available energy, and ii) in our de-
ployment, a form of coupling exists between energy sources and
sensed quantities [21, 64]. We make the former concrete through
dedicated hardware designs that tightly integrate with program
structure and execution model. As for the latter, we capitalize on
structural vibrations representing both the energy source and the
data we sense. As a result, while not remedying the decreased data
yield, Empire greatly improves the level of insight into environment
conditions and structural health of the site, provably bringing it
back to the same level as the battery-operated system.
Outcomes. We report on site-specific insights from sensed data
and on system performance in Sec. 7. We consider Kingdom as a
baseline for our evaluation, as similar technology demonstrates
remarkable measurement accuracy in previous embedded sensing
deployments [12, 17–19, 27, 32, 44, 51, 66].

We illustrate the novel understanding of the Mithræum condi-
tions we offer to the end users, and how that influences restoration
and preservation activities. We show, for example, that relative
humidity levels easily cross 90% in a 21C◦-25C◦ temperature range,

motivating the need of dedicated preservation procedures. We also
analyze the performance trade-offs through the three design itera-
tions and compare energy harvesting to battery-powered operation.
We specifically show that in the same conditions, energy harvesting
reduces energy availability and thus lowers the system’s data yield
to about 22% of that provided by batteries, but our design in Em-
pire retains quality of collected data. For example, the conclusions
drawn on the site’s structural conditions remain unaltered using
energy harvesting in Empire as compared to batteries in Kingdom.

Still in Sec. 7, the account of our experience culminates in demon-
strating the zero-maintenance operation of Empire. Amidst the
COVID19 lockdown in Rome, Kingdom goes down as batteries are
exhausted while we are prevented from accessing the site, and yet
Empire makes the most of the little energy available by promptly
recording the occurrence of a moderate earthquake on May 11th,
2020. Analysis of our acceleration data result in a 3.14 estimate of
Richter magnitude, close to the (3.2, 3.7) interval officially reported
using professional seismographs [29].

In Sec. 8, we discuss key take-aways and design choices that ap-
ply more generally to zero-maintenance embedded sensing systems
in contrast to the ones that are specific to our deployment. Sec. 9
ends the paper with brief concluding remarks.

2 BACKGROUND AND RELATED WORK
Our work touches upon different areas. We discuss next the relation
to those works we deem closer to ours.

2.1 Deployments
A rich body of literature exists on deploying battery-powered em-
bedded sensing systems at different scales and in various environ-
ments [12, 17–19, 27, 32, 44, 51, 63, 66, 68, 80]. Common to these
efforts are the many sources of unreliable operation and the hectic
experience with frequent battery replacements. Lessons from these
works help us swiftly set up a fully functional Kingdom, but de-
spite decades of research, limited and unpredictable battery lifetime
remains the root cause of malfunction.

Various works demonstrate prolonged lifetime using recharge-
able batteries backed by solar [1, 21, 24, 28, 46, 64, 67] or sometimes
kinetic and thermal energy harvesting [21, 64]. The longest such
deployment is understandably based on solar, and demonstrates a 2-
year uninterrupted operation [24]. In contrast, deployments based
on thermal [64] and kinetic [21] energy harvesting are limited in
lifespan, extending up to four weeks [64]. Our deployment location
is void of solar energy, mandating the use of lower-energy sources
like thermal and kinetic, yet the lifetime performance of Empire
matches the one of the longest deployment using solar energy.

Fewer examples exist replacing rechargeable batteries with envi-
ronment-friendly super-capacitors [20, 34, 46, 55, 70] or regular
capacitors [45, 73, 75–77] to buffer energy and smoothen harvest-
ing fluctuations. Again, only a fraction of these works consider
energy sources other than solar [55, 73, 75, 77], let alone real-world
deployments [20, 45]. The longest such deployment uses micro-
bial fuel cells to power nodes for water quality monitoring for
three months [20]. Although these efforts communicate invaluable
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Figure 2: Time evolution of deployments at Mithræum of Circus Maximus. Kingdom is battery-operated and covers the entire
deployment duration, representing a baseline for the other systems. Republic and Empire use energy harvesting. A partial (total) failure occurs
when at least one (all) device(s) stop operating, and lasts until it is resolved through one or multiple site visits.

Phase Time span Energy source Hardware

Kingdom January 2017 - time of writing Batteries Off the shelf
Republic November 2017 - March 2018 Thermal and kinetic Custom
Empire June 2018 - time of writing Thermal and kinetic Custom

Figure 3: Design iterations at Mithræum. We name them after
the three major ages of ancient Rome. These names, however, have no
relation to the legacy of the Mithræum.

lessons on specific techniques, they provide no evidence of a com-
plete system design. Similarly, only a few of them concretely fulfills
the requirements of real end users [20, 45], unlike what we do here.

2.2 System Support
Limited form factors impose restrictions on the harvesting unit,
limiting power supply to tens of 𝑚𝑊 [20, 34, 46]. This creates a
demand-supply gap, which is tackled through two possible ap-
proaches: energy-neutral system design and intermittent computing.
Energy-neutral systems. The idea is to aggressively tune system
performance to achieve a demand-supply balance, thus enabling
continuous operation [8, 9, 33, 69, 78, 79]. A range of hardware
and software optimizations exist to improve energy generation
or reduce its consumption, such as maximum power point track-
ing (MPPT) [9, 75], variable duty-cycling [69, 78, 79] and dynamic
voltage and frequency scaling (DVFS) [8].

Techniques for energy neutrality, however, tend to cap the sys-
tem performance, squeezing the set of feasible applications. Energy
neutrality, moreover, may simply not be feasible whenever the av-
erage input power is lower than a minimum requirement. This is
precisely our setting, where the thermal and kinetic sources offer an
insufficient energy content to even conceive continuous operation.
Intermittent computing. Unlike energy-neutral system design,
intermittent computing allows energy to buffer for performing op-
erations whose power consumption may exceed the maximum har-
vesting capabilities. Executions thus become intermittent [41]: peri-
ods of active operation are interspersed with periods for recharging
energy buffers, while the rest of the system is quiescent.

Intermittent systems typically employ techniques such as check-
pointing [4, 10, 11, 15, 47, 60, 61, 72, 85] or task-based program-
ming abstractions [22, 57, 59, 62, 74, 89] to recover from power
failures. The former consist in replicating the application state on
non-volatile memory, where it is retrieved back once the system
resumes with sufficient energy. The latter target mixed-volatile
platforms and offer abstractions that programmers use to define
and manage persistent state, while taking care of data consistency
in case of repeated executions of non-idempotent code [85].

Figure 4:Mithræum location relative to theCircusMaximus.

Most existing solutions in intermittent computing, again, oper-
ate in isolation and lack integration into a complete system. Our
work uses a hardware/software co-design for higher efficiency in a
complete system and ultimately represents one of the few examples
of intermittent computing long-term deployment.

3 MOTIVATION
The Mithræum of Circus Maximus is an archaeological site in Rome
(Italy). It is largely considered one of the “hidden gems” of its
age [81] and is part of the larger UNESCO heritage site in Rome [84].
Site. The Mithræum was accidentally discovered in 1931 while per-
forming construction works to build a workshop for the local Opera
Theater. Historians conjecture that the location was originally used
to host horses and carriages (carceres) before entering the nearby
Circus Maximus for the traditional chariot races. Fig. 4 shows the
location of the Mithræum relative to the Circus Maximus. In the
third century d.C., a place of worship to god Mitra was created.

The site unfolds as a series of small communicating rooms, cov-
ered by barrel vaults whose remains are shown in Fig. 1. Of unique
historical and artistic value are the plaster layers on the walls and
the Mitra altar, shown in Fig. 1(a). The workshop of the Opera
Theater currently sits right above the Mithræum and hosts large
machinery and equipment for building theatrical backdrops and
sceneries. A set of concrete columns support the ground level of
the workshop, reaching into several of the rooms of Mithræum or
standing on top of the barrel vaults, as shown in Fig. 1(b).
Goal and requirements. The Mithræum belongs to a set of arche-
ological sites the municipality of Rome plans to open up to the
larger public. Before doing so, an intense process of preservation
and restoration is to be carried out. These activities must be planned
and executed based on a thorough understanding of the current
conditions. Two environmental aspect are key at the Mithræum:
[R1] Temperature and relative humidity of plasters: The in-

tegrity of the plaster layers may be affected by specific pat-
terns of temperature and relative humidity. Given a certain
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Measurement Sensor Accuracy Relevance Device

Temperature SHT85 ±0.1C◦ Plasters I/A and T/H
Relative humidity SHT85 ±1.5% Plasters I/A and T/H
Acceleration ADIS16210 ±1m𝑔 Vaults T/H
Inclination ADIS16210 ±0.1◦ Vaults T/H

Figure 5: Sensed physical quantities, corresponding sensing
equipment, and device configuration.

temperature, a threshold exists in humidity where hygro-
scopic salts start forming on the surfaces. The salts absorb
water from vapor in the air, causing a corrosion process to
happen on the surface. In a site with no external ventilation
like the Mithræum, this process may only be prevented us-
ing specific chemicals whose type, quantity, and method of
deposition depend on temperature and humidity [56].

[R2] Vibrations around the barrel vaults: Vibrations originat-
ing from surrounding vehicular traffic and from the activities
at the workshop above may affect the structural stability of
the site, and be especially detrimental to the integrity of the
barrel vaults [38]. No studies currently exist on the structural
conditions of the site and no evidence is available motivating
the need for specific interventions, such as installing auxiliary
reinforcements of the barrel vaults or deploying dedicated
damping mechanisms [38].

Collecting data to support a quantitative investigation on these
aspects at the Mithræum must co-exist with specific constraints:
[C1] Placing devices to record vibrations is difficult, as it requires in-

stalling accelerometers on the columns supporting the Opera
Theater workshop. This literally necessitates climbing up the
barrel vaults to access the device, putting at risk the operator
safety and the integrity of the vaults. This kind of mainte-
nance operations are to be reduced to a minimum.

[C2] Form factors must be reduced, because of the visual impact on
historical and artistic pieces. Since the very beginning of our
effort, this aspect limits the size of deployed batteries. Such
a constraint is not unique to our experience and many em-
bedded sensing deployments, especially in heritage buildings,
share similar limitations [12].

[C3] Commercial chemical batteries are considered dangerous by
the restorers. With average relative humidity values in excess
of 90% at the Mithræum, as discussed in Sec. 7, the chances
that batteries start leaking greatly increase [90]. This is, of
course, not welcome in such a sensitive environment.

Lowering the maintenance effort is thus key, as it determines
how practical is the system and, thus, beneficial for end users.

4 BATTERIES → KINGDOM
We set off by using commercial off-the-shelf components. As such,
Kingdom represents a baseline based on established solutions.

4.1 Design and Deployment
We describe next the hardware we use for Kingdom, the software
we implement, and the initial deployment at Mithræum.
Hardware. We use Libelium Waspmotes [54] as the computation
and communication core. We couple the computing core with an
XBee 868LP sub-GHz radio for communication to a data sink.

I/A device
T/H device

1

2

3

4 5

6

(a) Deployment map.

(b) Paper authors installing I/A devices. (c) I/A device in place.

Figure 6: Deployment at Mithræum. We install 18 T/H devices
with temperature and humidity sensors and 6 I/A devices with tem-
perature, humidity, inclination, and acceleration sensors.

Fig. 5 summarizes the deployed hardware. To read temperature
and humidity, we use a Sensirion SHT85 digital sensor through
I2C because of the low-power operation and temperature accuracy,
which is sufficient to enable the analysis sought by the restorers [38,
56]. It also features a PTFE membrane for protection against liquids
and dust as per IP67 specifications, without affecting the response
time. The nodes equipped with this sensor are termed T/H nodes.

Acceleration readings are obtained through an Analog Devices
ADIS16210 combined inclinometer and accelerometer, connected
through SPI on a subset of the deployed devices. High accuracy of
acceleration sensing and availability of the on-board inclinometer
motivate this choice; the latter may be used to detect permanent
changes in the structure [43]. We calibrate each sensor using a
shake table and piezoelectric accelerometers for seismic vibrations
as a reference [19]. The nodes equipped with this sensor in addition
to the temperature/humidity one are termed I/A devices.
Software. We implement a periodic procedure to sense tempera-
ture and humidity every 20 minutes and to locally store the readings.
At every hour, average and standard deviation of these quantities
are computed and reported via radio to the sink. Such a sensing
period is deemed to provide sufficient granularity [38, 56].

Onboard I/A nodes, every 20 minutes we additionally record a
one minute burst of acceleration readings at 400Hz and sample the
inclinometer, according to the guidelines of the structural engineers.
At every hour, we process acceleration data by computing the Fast
Fourier transform and determining the fundamental frequency as
well as spectral density. These information are compressed and also
reported to the sink. Such a form of periodic acceleration sensing
is common to many deployments for structural analysis [43].

Upon reception, the sink timestamps the data along a global time
reference. Between every sensing period, the radio is switched off
and the system is placed in low-power mode.
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Deployment. Fig. 6 illustrates the deployment. We install a total
of 24 devices; 18 devices of type T/H, and 6 devices of type I/A, laid
down as shown in Fig. 6(a). For the latter, we use industry-grade
epoxy resins to attach the inclinometer/accelerometer sensor to
the structure, as shown in Fig. 6(b) and Fig. 6(c) during and after
installation. The devices are powered with six type-C batteries.

We deployed a data sink using a Raspberry Pi 3 computer, not
shown in the picture, connected to the Internet via 4G. The sink
is powered from the grid and, due to the availability of cellular
connectivity, could only be installed in a different building at about
250 meters from the Mithræum. This motivates the choice of a sub-
GHz radio, as the signal needs to penetrate two layers of concrete
to reach the sink. Using this radio, no multi-hopping is necessary.

4.2 Lessons Learned
Sec. 7 provides a quantitative account of the performance of King-
dom. We anticipate the fundamental lessons learned, which are
input to the following design iteration.

Lesson 1: Whenever there is sufficient energy, embed-
ded sensing runs like a charm.

Whenever energy is available, the system provides substantial
data yield. Compared to the earlier efforts discussed in Sec. 2, we
also note that the effort required to go from zero to a fully-working
embedded sensing deployment also drastically reduced. We quantify
this effort from one to two person-months.

Lesson 2: Batteries are the one and only aspect that
makes Kingdom unreliable.

As shown in Fig. 2, Kingdom experiences a number of failures.
Batteries are ultimately accountable for all such occurrences, but for
two cases of cellular failure. The latter, however, is no significant
problem as the sink locally caches sensor data. Our experience
contrasts the literature discussed in Sec. 2, where earlier deployment
experiences resulted in a number of failures due to a variety of
factors, including hardware failures and software bugs [12, 44].

Through a series of ad-hoc experiments, we try and improve
the energy figure. The first attempt is based on multi-hop network-
ing [7]. Based on lab experiments in a setting akin to Mithræum,
we quickly realize the use of such protocols to be detrimental to
energy consumption, due to control traffic overhead. In a short-
term deployment at Mithræum alongside Kingdom, we integrate a
transmission power control protocol [86]. Over a 10-day span, we
measure the energy performance to improve by a mere 1.7%.

The peculiar conditions at the Mithræum makes predicting the
system lifetime extremely difficult. High ambient humidity and
temperature fluctuations cause the alkaline batteries we use to fail
unpredictably. This complicates planning the maintenance visits
and the associated logistics, causing the periods of down to prolong.
Using different battery technology, such as industry-grade alkaline,
pro-alkaline, or lithium make essentially no difference.

Despite our best efforts, maintenance represents a hampering
factor regardless of the value of the data. We have two options to
proceed. One possibility is to apply iterative improvements to lower
the system energy consumption and extend the maintenance cycle.
The unpredictability of failures would, however, remain. The other

Figure 7: TEG harvester installation. We exploit thermoelectric
generation between air inside the Mithræum and layer B, made of
Roman concrete and found 10cm below the surface at Circus Maximus.

option is to tackle the root of the problem, namely, to seek energy
sources other than batteries. We choose the latter.

5 ENERGY HARVESTING → REPUBLIC
Energy harvesting is often advertised as a direct alternative to
battery-powered operation [14]. Because of this, we set off by
merely swapping batteries for a suitable harvester, performing
the minimum effort to make the system work on harvested energy
rather than batteries. As a result, the degree of hardware/software
co-design here is limited to adapting the software to work with the
chosen hardware, that is, the design process starts with the selec-
tion of hardware components and ends with the implementation of
the necessary software functionality. We eventually recognize that
this approach is, in fact, naive.

5.1 Design and Deployment
The opportunities for energy harvesting at the Mithræum are min-
imal. As described in Sec. 3, the site is underground and is not
illuminated besides when someone is there. Moreover, the nature of
the site requires minimally-invasive solutions. T/H and I/A devices
thus use different energy harvesting mechanisms because of their
different deployment configuration; T/H being placed next to the
ground, whereas I/A being attached to the structure.
Thermoelectric energy harvesting. Fig. 7 shows the setup for
T/H devices. At about 40cm below the soil at Mithræum, a layer
of debris is found largely composed of what is called Roman con-
crete [52]. The same layer is found at the nearby Circus Maximus
at about 10cm below the surface. Scholars conjecture that the two
layers are, in fact, the same [52, 81]. This means that Circus Max-
imus potentially acts as a ≈73,000m2 thermal surface linking the
Mithræum to the outside. The heat flux generated because of the
thermal transfer between air, layer A, and layer B creates an oppor-
tunity to employ a thermoelectric energy generator (TEG).

A broad range of commercial TEGs exists. Based on the air tem-
perature values collected during Kingdom and the outdoor seasonal
trends in Rome, we expect the thermal deltas between air and layer
B to be of some K◦. We thus choose a Thermalforce 254-150-36
TEG [82], offering a 30mm by 60mm harvesting surface, connected
to layer B through a thermal guide, as shown in Fig. 7.

Available harvesting management circuits usually combine bat-
tery charge functionality and output voltage regulation. Solutions
for TEG may be passively controlled converters or actively con-
trolled single inductor circuits [83]. The latter offer a dynamic
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conversion ratio and maximum power point tracking (MPTT) [9],
but require a higher minimal input voltage. Despite this, we use a
BQ25570 due to its high efficiency for the range of input voltages
that most likely correspond to the TEG output in our conditions.

Because the output voltage of the TEG depends on the direction
of heat transfer, depending on time of the day, its output may
be positive or negative. However, the BQ25570 does not support
negative input voltages and hence the TEG output needs to be
rectified before being input to the harvesting circuit. We build an
ultra low-power rectifier using SiR404DP switches, based on the
observation that the TEG output only switches twice a day [37].
Piezoelectric energy harvesting. Thermoelectric generation is
not available for I/A devices, as they are too far from the ground.
We absorb energy from structural vibrations to power them, taking
advantage of the piezoelectric effect. The limited vibrations of the
structure, however, require a careful dimensioning of the harvester
and of the energy management circuitry, as we discuss next.

We employ a ReVibe modelD energy harvester [30]. The device
can be customized by the manufacturer for highest efficiency at
a given resonance frequency. We do this based on vibration data
gathered with Kingdom. We choose this specific harvester over
alternatives, for example, the modelQ [31] of the same manufacturer,
because of the higher power output at the target frequencies. The
harvester is attached to the columns of Fig. 1(b) using the same
epoxy resins used for attaching the accelerometer/inclinometer.

Based on similar considerations as for T/H devices, we use a
BQ25505 here as well. No rectifier circuit is needed.
Computing and communication. As discussed in Sec. 2.2, due
to the limited energy availability, it is not conceivable to achieve
energy-neutral operation [8, 65]. Therefore, we design the system
to work in an intermittent fashion [41].

The Libelium Waspmote we use for Kingdom is not designed
to work in such a setting. We opt to build our own computing and
communication platform, using an MSP430FR5989 MCU coupled to
a CC1101 transceiver. The choice of an MCU from the FR series is
motivated by the need of non-volatile memory to manage persistent
state. The radio chip retains the advantages of sub-GHz transmis-
sions described in Sec. 4, with comparable energy consumption.
The sensors we use are the same as in Kingdom.

We configure the output voltage of the BQ25505 buck converter
to 2.2V, which represents the worst-case energy need including
sensing, local processing, and data transmission. This means that
the device is activated as soon as the capacitor voltage is at or above
2.2V. We also configure the BQ25505 to operate in pass-through
mode whenever the capacitor voltage falls below this value, to
prolong the execution for as long as possible.

We use a 20`F capacitor as energy buffer. We determine its
size through a mixed analytical and experimental approach [83],
striking a balance between charging times and available energy to
guarantee eventual progress. A too large capacitor may take long
to charge to a sufficient level, yielding large periods of no system
operation when interesting environmental events might be missed.
A too small capacitor may not suffice to supply enough energy to
complete energy-intensive operations, such as transmitting data.

An external Abracon AB18X5 real-time clock (RTC) keeps track
of the passing of time while the MCU is off, connected via I2C. We

choose this over remanence timekeepers [26, 42] because of the
lower power consumption in the setting we consider. As we only
require minute granularity, using the internal RC oscillator on the
AB18X5 requires a mere 14nA current. Should the capacitor voltage
fall below the RTC supply voltage, causing the latter to reset, we
post-process the data at the sink to re-align the timestamps to the
global time reference [87]. According to our logs, this happens
roughly twice a year in our deployment.
Programming. As described in Sec. 2.2, system supports exist for
intermittent computing [41]. In Republic, we use a static check-
point approach [15, 72], which inlines calls to a checkpoint library
to copy the complete system state onto FRAM. To place checkpoints,
we profile the energy consumption of different parts of the code [3]
and accordingly inline checkpoint calls. At each call, a checkpoint
takes place if the capacitor voltage drops below a threshold that
barely guarantees the energy to dump the state on FRAM.

We opt for static as opposed to dynamic checkpoints [10, 11,
47, 48], as we cannot afford additional hardware. Compared to
task-based programming abstractions [22, 42, 57, 59] that require
significant restructuring of the program [50], we wish to leverage
the earlier codebase used in Kingdom.
Sensing. As the device activates depending on energy intake, the
periodicity of sensing can no longer be guaranteed. Depending on
harvesting performance, we may simply not have sufficient energy
to activate the device every 20 minutes. As a result, we modify the
local processing and data transmission functionality to execute only
when the same amount of data as in Kingdom locally accumulates.

It may also happen that the required operation complete with
some energy left. To avoid unnecessarily performing a checkpoint
at this time, we enter a sleep state, which is a technique borrowed
from Lukosevicius et al.[58]. This includes switching the radio off,
putting the MCU in the lowest power mode, and setting a timer to
trigger another round of sensing in 20 minutes. This also ensures
that, at least in the cases where some consecutive rounds may be
achieved, this happens with the same period as in Kingdom.

5.2 Lessons Learned
Republic represents the minimum of design and implementation
effort to turn a battery-operated system into an energy-harvesting
one. Similar to Sec. 4.2, we discuss here the main learned lessons
and postpone the performance discussion to Sec. 7.

Lesson 3: When executions are intermittent, peripher-
als become markedly decisive.

The workload at Mithræum is peripheral-bound. Peripherals
execute asynchronously with respect to the computing unit. Their
functioning is characterized by own states, frequently updated due
to the execution of I/O instructions. Information on peripheral
states is not automatically reflected in main memory, neither it may
be simply queried or restored [16]. System support for intermittent
computing often only provides support for the computing unit and
expect developers to take care of peripherals [22, 57, 89]. Similarly,
the few systems addressing the intermittent peripheral problem are
not integrated with those for the computing unit [6, 13, 16].

To address this issue in Republic, we manually replicate the
initialization procedures of all peripherals, including sensors and
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radio, at every point in the code where execution can possibly
resume after a power failure. This is necessary as we cannot antici-
pate for how long an execution proceeds after resuming and thus
what peripherals are used when. The profiling data we use to place
checkpoint calls indicates, however, that re-initializing peripherals
this way accounts for about 28% of the overall energy consumption,
opening up avenues for energy savings with a better solution.

We also crucially realize how the use of radio and sensors vastly
determines how far the computation can progress. We observe that
the first checkpoint call right a packet transmission is systemati-
cally triggering a checkpoint, as radio operations are sufficient to
cause the capacitor voltage to fall below the checkpoint threshold.
However, handling peripherals is not the only source of inefficiency.

Lesson 4: When energy is scarce, sleeping may not be
a smart choice.

The technique we use in case some energy is left after completing
the required workload ultimately represents a waste of energy.
Based on the logs we collect, after setting a timer to expire in
20 minutes, in about 89% of the cases the node dies before the
timer fires. This means that the energy invested in keeping the
system in sleep mode is wasted, as another round of sensing cannot
happen in the majority of the cases. In Sec. 7, we further quantify
the performance impact of this design choice.

To some extent, this is again an effect of how peripherals impact
the energy figure. As every time the device activates at least one
peripheral is used, the chances that some energy is left that could
power the sleep state for another 20 minutes are slim. This problem
aggravates if the radio is also used. If we only consider the cases
where we set the 20-minute timer after a packet transmission, in
98% of the cases the node dies before the timer fires.

Lesson 5: Energy availabilitymay not necessarily over-
lap with events of interest.

We expect the data yield to be affected, due to the lower availabil-
ity of energy. As reported in Sec. 7, Republic can only provide about
22% of the net amount of data Kingdom provides on a monthly
basis. Worse is that the information gain obtained from Republic
is comparatively way below the reduction in data yield.

This observation particularly applies to I/A devices. In Kingdom,
the relative abundance of acceleration data forgives that accelera-
tion sensing is not necessarily synchronized with events of interest,
such as activities at the Opera Theatre workshop or vehicular traf-
fic. In Republic, I/A devices activate only depending on capacitor
voltage levels, which might cross 2.2V merely because of vibration
noise of no interest [43]. The structural engineers state that, by only
using the acceleration data from Republic, no structural analysis
is possible, due to the signal information being too poor for modal
analysis, irrespective of the amount of collected data [43].

6 BETTER ENERGY HARVESTING → EMPIRE
We eventually choose to co-designing the hardware and software.
This is primarily based on the experience and insights gained from
Republic, but also on a number of (failed) attempts at remedying
the deficiencies of Republic by only working at software level.

For example, alongside Republic, we eventually deploy two
additional I/A devices with a customized software implementation

that postpones acceleration sensing to the next active cycle in case
the initial 1-sec burst of data indicates no specific event of interest.
In a sense, we bet on the fact that we may have better chances
to capture something interesting at the next time around. Over
a two-week span, we realize that system performance stays the
same in terms of enabling structural analysis, as the hardware may
keep activating the device because of vibration noise and events
of interests are completely uncorrelated with that. In terms of data
yield, the performance even degrades, because of the additional
processing required to decide on the possible postponement.

In contrast to Republic, therefore, we attack the problem by
looking at hardware and software together. As a result, for example,
we discover and exploit further opportunities by capturing the
coupling between energy sources and sensed data.

6.1 Design and Deployment
We realize different designs for T/H and I/A devices. Their key
elements are described next, whereas attached sensors and the
timer subsystem remain the same as in Republic.
Programmable activation threshold. Fig. 8 shows the block di-
agram of the 2nd generation T/H device. It offers two fundamental
features: i) it allows the MCU to dynamically configure the amount
of energy available at the next device activation, and ii) it provides
a software-controlled shutdown functionality, which the MCU uses
once the required operations are completed.

To achieve these functionality, we place three voltage compara-
tors in parallel; each corresponding to a different activation thresh-
old. We select comparators from the BU49xx series corresponding
to voltage levels matching the energy required for i) sensing (𝑉 𝑡ℎ𝑠 ),
ii) sensing and local processing (𝑉 𝑡ℎ𝑠𝑝 ), and iii) all application func-
tionality including data transmission (𝑉 𝑡ℎ𝑠𝑝𝑡 ), where𝑉 𝑡ℎ𝑠 <𝑉 𝑡ℎ𝑠𝑝 <𝑉 𝑡ℎ𝑠𝑝𝑡 .
Every threshold also includes the energy required to dump the state
on FRAM once the necessary operations complete. An ADG704
digital multiplexer selects the comparator to use based on the input
of a two-bit memory the MCU can program by manipulating two
GPIO pins. The choice of components is dictated by both their low
energy consumption and their matching with the voltage threshold
we require, given the same capacitor size as in Republic.

We implement the two-bit memory using two SN74AUP1G74
flip-flops in a cascading configuration. These feature both an ex-
tremely limited quiescent current and a low reset voltage. Below
0.8V, however, they lose their state. We have evidence that this was
the case for only eleven times in almost two years. If the flip-flops
reset, the circuit causes the multiplexer to select the lowest thresh-
old 𝑉 𝑡ℎ𝑠 . This ensures that some progress is eventually achieved.

We deploy a TPS62736 buck converter, which is optimized for
the target range of currents. A further voltage detector turns the
“power good” signal up to make the buck converter activate the
device whenever the selected input comparator switches its output.
As device activation is now separately controlled, we configure the
output of the buck converter exactly to 2.1V, which represents an
energy-efficient regime for both the MCU [3] and the radio [25] As
in Republic, the converter operates in pass-through mode when-
ever the capacitor voltage falls below this value. The TPS62736
also features an independent “enable” signal that can be used by
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Figure 8: Second generation T/H device in Empire. The MCU
can programmatically configure the amount of energy available at
the next device activation and shutdown the system via software.
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Figure 9: Second generation I/A device used in Empire. A sec-
ondary piezo element triggers device activation. A 2-bit input line
informs the MCU of the energy available at activation time.

the MCU to disconnect from the power sub-system, effectively
implementing a software-controlled shutdown.

Our concept of programmable activation shares similarities with
Capybara [23] and Dynamic Energy Burst Scaling (DEBS) [36], but
we trade generality for a lower energy overhead. The whole power
sub-system, in fact, only consumes 5.35`A of quiescent current.
Vibration-triggered activation. Fig. 9 depicts the block diagram
of the 2nd generation I/A device. It features two key elements: i) a
second piezo element that operates as a trigger, activating the device
only when vibrations above a certain frequency are detected, and
ii) a 2-bit input line that informs the MCU of the energy available
at activation time, which the application uses to determine what
operations may be completed in the active cycle.

We use a Piezo.com Q220-H4BR-2513YB bending transducer [71]
as trigger, enclosed in a PPA-500x clamping base with a 13mg tip
mass. A custom trigger circuit turns up the “power good” line
of the buck converter whenever the trigger piezo generates an
output voltage above a threshold 𝑉𝑡 and the capacitor voltage is
above a threshold 𝑉 𝑖𝑎𝑠 sufficient for acceleration sensing. The buck
converter then activates the device. We select both piezoelectric
element and tip mass in a way that 𝑉𝑡 can be accurately detected
and corresponds to vibrations of interest [43].

A set of TLV369x comparators and SiR404DP switches control
the “power good” line of the buck converter and the 2-bit “energy
level” input line connected via GPIO to the MCU. Upon activating
the device, the latter informs the MCU of the amount of energy
available, based on whether three additional voltage thresholds are
crossed. These correspond to the energy for i) sensing and local
processing (𝑉 𝑖𝑎𝑠𝑝 ), ii) sensing and data transmission (𝑉 𝑖𝑎𝑠𝑡 ), and iii)
all application functionality (𝑉 𝑖𝑎𝑠𝑝𝑡 ), where 𝑉 𝑖𝑎𝑠 < 𝑉 𝑖𝑎𝑠𝑝 < 𝑉 𝑖𝑎𝑠𝑡 < 𝑉 𝑖𝑎𝑠𝑝𝑡 .
Depending on this input, the application schedules the operations
it can perform given a certain energy budget.

The roles and connections of the remaining components are
similar to the T/H devices. In this case, the power sub-system only
consumes 4.98`A of quiescent current.

high priority
Vs

low priority
Vp

low priority
Vt

sensing processing transmission

Figure 10: Task-based program structure. Every task demands
a different amount of energy. Tasks have different priorities and are
connected through non-volatile data pipelines.

Programming. Both designs aim to exert a higher control on er-
ratic energy patterns. T/H devices achieve that by giving the MCU
the ability to decide the energy available for the next iteration. I/A
devices proactively provide the MCU with information on available
energy at the time of activation. Both designs also give the MCU a
means to shutdown the device whenever required.

Taking advantage of these features requires to co-design the
software in ways to i) precisely isolate and decouple the function-
ality corresponding to different voltage thresholds, ii) abandon the
strictly-sequential execution semantics, so different functionality
can execute independent of each other, depending on available en-
ergy. In doing so, we must come to terms with the need to refactor
the codebase created in Kingdom, which is unavoidable now.

We opt for a task-based structuring of the code, shown in Fig. 10.
A task is an atomic piece of functionality that executes in a transac-
tional manner [22, 57, 59, 62, 89]. If energy suffices and a task com-
pletes, its output are committed onto a non-volatile data pipeline. If
a power failure happens before the task completes, the effects of a
partial execution are lost and the task restarts from the beginning.
Unlike existing solutions, our design enables a form of energy-
aware scheduling that simplifies system operation, while reducing
overhead. Upon device activation, the sensing task is enabled and
sensors are (re-)initialized. The power sub-system ensures that suf-
ficient energy is available for this when activating the device, as
𝑉 𝑖𝑎𝑠 is certainly crossed. We additionally enable any other task with
input data and whose energy demands match the available energy
and (re-)initialize (only) the necessary peripherals.

We set higher priority for the sensing task to make sure we do not
miss any environment data. Among enabled tasks, we therefore run
the sensing task first and commit its results on FRAM. We proceed
to run the other enabled tasks and similarly commit the results on
FRAM. For I/A devices, as long as sufficient energy is available not
to starve the transmission task, no data buffers overflow. For T/H
devices, we can proactively ensure this by configuring the activation
threshold to provide the transmission task with sufficient energy.

In Sec. 8, we discuss the limitations of our work and cast our
design rationale in the larger context of battery-less systems.

6.2 Lessons Learned
The efficient operation of Empire, reported in Sec. 7, leads us to
additional lessons learned.

Lesson 6:Determine howmuch energy you need, when,
and for which operation.

In Empire, knowledge of energy demands and is key in our hard-
ware/software co-design. The inefficient operation of Republic,
instead, stems from the application whimsically unfolding through
three distinct phases with different energy demands and periods.
Sensing is moderately energy consuming and happens most often.
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Local processing is the least energy consuming, but comparatively
happens more rarely, as it needs a batch of sensed data to operate
on. Data transmission is the most energy hungry, and must happen
as frequently as local processing, as it relays the results to the sink.

Energy management in Republic was totally unaware of these
aspects and only operated based on the net energy inputs from the
harvesters. Existing literature, besides a few exceptions [3, 35, 39],
offers little support for gaining or exploiting this information, and
almost never includes peripherals in the picture.

Lesson 7: Only perform an operation when you have
the energy required; consume no more, no less.

Empire performs efficiently because it is provided with just the
right amount of energy for the required operation and for commit-
ting the results on FRAM. This means, for example, that sufficient
energy to perform local computation and data transmission is at
disposal whenever the required amount of data is available. The
device then completely switches off to avoid wasting energy doing
nothing in sleep state, as in Republic.

Lesson 8: Selectively activate peripherals, and only
when you need them.

The execution pattern we enforce in Empire also allows us to
shave off some of the significant energy overhead for re-initializing
peripherals, discussed in Sec. 5.2. Knowing what operations are
going to be performed within the given energy budget, only the
required peripherals are initialized.

Republic is unable to guarantee this; for example, because we
cannot anticipate for how long an execution proceeds after a power
failure, as explained in Sec. 5.1. Again available solutions provide a
limited foundation to build upon these observations [16, 23, 40].

Lesson 9:Capturing the coupling between energy sources
and sensed quantities is key, if one exists.

In Empire, we make use of vibrations both as energy source
and as a quantity to sense. Significant vibrations are used for both
harvesting energy and for triggering the sensing process, if the
accumulated energy suffices. On the other hand, crossing the acti-
vation threshold merely because of vibration noise does not lead to
activating a device, and we rather keep accumulating energy. Only
a few solutions currently exist in this direction [21, 64].

7 EVALUATION
We study multiple complementary dimensions. In Sec. 7.1 we eval-
uate our deployment as a scientific instrument to fulfill the require-
ments in Sec. 3. We compare the system performance of the three
design iterations in Sec. 7.2. The overarching question we seek to
answer is whether accurate zero-maintenance embedded sensing is
possible in our setting. We elaborate on this in Sec. 7.3.

7.1 Application
We separate the discussion of the environmental information we
gather, as per requirement R1 in Sec. 3, from the structural analysis
of the site, as per requirement R2 in Sec. 3. The differences in sensed
values between the three design iterations are discussed in Sec. 7.2.
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Figure 12: Fundamental frequencies using Kingdom and Em-
pire when both systems are operational. The structures at
Mithræum have different fundamental frequencies than possible ex-
ternal excitating phenomena, ruling out resonance behaviors.

Environment. Fig. 11 shows the monthly average of relative hu-
midity recorded by the three systems in 2018. We obtain comparable
trends also in other periods and for temperature data, making the
following conclusions applicable throughout the deployment dura-
tion. The differences in sensed values between the three systems
are due to different energy efficiency, as discussed in Sec. 7.2.

Fig. 11 shows that relative humidity at the Mithræum is markedly
higher than in a regular environment, with distinct seasonal trends
and peaks in the summer months. This may be attributed to the
nature of the soil combined with the lack of external ventilation. To-
gether with our recording of ambient temperature in the 21C◦-25C◦
range, the situation corresponds to roughly 15 grams of vapor per
kilogram of air, with peaks of 18 grams in the summer months. This
is way above the threshold for the creation of hygroscopic salts that
possibly cause corrosion processes to occur on the surfaces [56], as
explained in Sec. 3, and prompts immediate action by the restorers.

This information is also crucial for a public opening of the site.
Existing standards for thermal comfort indicate a maximum of 6
grams of vapor per kilogram of air [5]. This value is less than half of
what we record1. Ensuring thermal comfort for the general public
at the Mithræum requires the installation of an auxiliary ventilation
system, at least during the opening times. In turn, this would likely
change the general environment conditions at the site, making them
more variable depending on the operation of the ventilation system.
A permanent installation of a minimally-invasive zero-maintenance
sensing system thus becomes even more fundamental.
Structure. Fig. 12 shows a sample output of the analysis on acceler-
ation data, plotting the average fundamental frequencies recorded
throughout the deployment at every I/A device. As explained in

1We also experience the thermal discomfort at the Mithræum, as we can barely work
at the site continuously for more than a couple of hours without reaching the outside.
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pending on functionality. Peripherals bear an impact on energy,
as per Lesson 3 in Sec. 5.2. Accurate energy management makes better
use of the energy spent in sleep mode at T/H devices, as per Lesson 4
in Sec. 5.2, as well as Lesson 6, 7 and 8 in Sec. 6.2.

Sec. 5.2, Republic provides no usable data. This information is valu-
able in that, if the fundamental frequency of an external excitating
phenomenon match those of the structure, then the motion of the
structure is amplified, resulting in resonance behavior [43].

The external phenomena may be, in our case, activities at the
Opera Theater workshop or vehicular traffic. The values in Fig. 12,
however, indicate that the fundamental frequencies of the structures
at the Mithræum are relatively far from those possibly characteriz-
ing the aforementioned phenomena, which are thought to lie above
10Hz [38]. Resonance behaviors may thus be safely ruled out.

This reasoning is confirmed by the information on spectral den-
sity, shown in Fig. 13 for node #6 as an example. Only one dominant
fundamental frequency exists and most of the signal energy is con-
centrated below 10Hz. As every fundamental frequency follows a
specific deflection shape, usually referred to as vibrational mode,
we can argue only one such mode exists for the structure at the sam-
pling points. The analysis on the dominant fundamental frequency
thus bears general validity [43].

7.2 System
We assess the performance of the two energy harvesting systems
compared to the battery-operated one. We take Kingdom as a base-
line hereafter, as the sensing equipment is the same across the three
systems and only the power source and associated designs differ.
T/H devices. We return to Fig. 11 to analyze the compare the three
systems. The plot shows how Republic constantly underestimates
the relative humidity at the site, whereas Empire provides values
closer to those of Kingdom. The variability of data around the
average is also much higher for Republic than for Empire. This is
an effect of Republic’s inability to accurately manage the available
energy, which is used opportunistically and partly wasted.

Based on detailed logs we collect at a subset of the devices,
Fig. 14 quantifies this aspect by showing the breakdown of energy
consumption across the four main system states in Republic and
Empire. The plot demonstrates the impact of the peripherals on
the energy figure, supporting our claims in Lesson 3 in Sec. 5.2.
For Republic, it also shows the contribution of entering a sleep
state when the required operations complete with energy left, as
described in Sec. 5.1. Crucially, the latter accounts for almost the
same fraction of energy consumption as local processing, thus
providing a quantitative indication for Lesson 4 of Sec. 5.2. Empire
shifts this energy budget to other functionality, as our hardware
design offers a way for the software to shutdown the device when
the current workload completes. This testifies that Lesson 6, 7 and
8 in Sec. 6.2 are key to achieve better energy management.

Fig. 15 examines data yield, plotting the amount of sensed data
that reaches the end user using either of the energy-harvesting sys-
tems, normalized to the monthly performance of Kingdom through-
out the deployment. Even though the data yield is slightly higher
in Empire due to better energy management of T/H devices, the
improved design in Empire is not meant to increase data yield, but
to repurpose available energy to capture more data that describes
events of interest. In contrast, inefficient energy management in
Republic makes it unable to capture humidity and temperature
readings faithfully, as less data reported to the sink means certain
trends in humidity or temperature are missed.

Fig. 16 corroborates this reasoning by showing how Republic
provides values close to Kingdom at sunrise or sunset, that is, when
the heat flux from Circus Maximus to/from Mithræum is larger and
thus the TEG provides more energy. We find that the number of
times a T/H device activates in these periods is roughly equal for
Republic and Empire. At times when the heat flux is lower, the mea-
sure obtained with Republic appear to deviate from Kingdom. Our
logs indicate that the T/H devices in Republic activate about 32%
fewer times in these periods compared to Empire. The latter makes
better use of the lower energy available at these times, reporting as
valuable information as the battery-operated system.

This performance is enabled by accurate energy management
at T/H devices in Empire by i) programmatically configuring the
energy available at the next device activation, and ii) enforcing a
device shutdown whenever the current workload is accomplished.
I/A devices. Different from T/H devices, Fig. 14 shows that the
impact of using low-power modes at I/A devices is minimal. This is
consistent with Fig. 15, which shows that the monthly data yield
for I/A devices is generally the same for Republic and Empire, and
anyways about one fourth of what the battery-operated system can
collect. In this case, the nature of the data matters.

In Kingdom, the amount of data collected is sufficient to compre-
hensively describe the signal features. As anticipated, no structural
analysis is possible using Republic, in that acceleration data is
unsuitable for modal analysis [43]. The acceleration data we gather
with Republic, while being the same as Empire in net amount, is
of a different nature: it poorly describes the signal features. Unlike
the functioning of Empire, I/A devices in Republic may activate
at times where no specific vibration of interest takes place. This
substantiates our claims in Lesson 5 of Sec. 5.2.
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dom throughout the system lifetime. Less accurate energy man-
agement in Republic becomes apparent in periods of energy scarcity.

Conversely, the ability of Empire to activate when a relevant
phenomenon occurs counterbalances the smaller amount of col-
lected data. Fig. 12 and Fig. 13, for example, demonstrate that the
structural analysis obtained using Kingdom or Empire is largely
equivalent, as the outputs are quite similar in absolute value and
variability. This performance is enabled by our design of I/A de-
vices, including i) the use of a secondary piezo element to activate
the device upon detecting vibrations of interest, crucially based on
Lesson 9 in Sec. 6.2, and ii) the 2-bit “energy level” input line that
enables energy-aware scheduling of tasks.

7.3 Maintenance
We record a partial (total) failure of Kingdom as the point in time
when at least one (all) device(s) stop operating. The duration of a
failure is the time between when the failure is recorded first, until
it is resolved through one or multiple site visits.
Batteries. By subtracting the time of partial or total failures from
the deployment duration, we find that the uptime of Kingdom is
roughly 71%. This notably includes a period of almost three months,
shown on the right in Fig. 2, where a partial failure on March 3rd,
2020—eventually turned into a total failure—was impossible to re-
solve promptly as the city of Rome, as much as the entire country, is
under a lockdown due to COVID19 [88]. During this period, citizens
mobility was limited to the bare essential for one’s sustenance and
access to health services. As restrictions are progressively lifted in
late May 2020, we access the site for the required maintenance.

Besides two failures in the cellular connection at the sink, shown
in Fig. 2, all failures in Kingdom are due to battery problems. Each
failure requires accessing the site for maintenance, including obtain-
ing authorizations from the municipality, scheduling an appoint-
ment with the accompanying officer based on her availability and
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Figure 17: Spectral density at I/A device #6 using Empire dur-
ing May 11th earthquake in Rome. The data comes in a period
where Empire experiences very little energy intake, due to the ongoing
COVID19 lockdown. The Richter magnitude from the acceleration
data we obtain is 3.14, close to the official (3.2, 3.7) estimates [29].

not overlapping with other people’s visits, accessing the site for the
time required, performing the maintenance work, and rebooting the
system. We estimate this effort to be around six person-month until
the time of writing. On a yearly basis, this equals the effort for the
initial development of the system, discussed in Sec. 4.2; throughout
the duration of the deployment, the maintenance effort is right now
more than twice the development one.
Zero maintenance. We cannot similarly indicate a measure of
system uptime for the energy-harvesting ones, due to the lack of
ground truth on the availability of ambient energy. However, we
can offer ultimate evidence of the zero-maintenance operation of
Empire. We not only do not touch the system other than the initial
installation, but during the lockdown we are prevented to do so. The
lockdown is, nonetheless, apparent in the data yield of I/A devices
in Fig. 15. As activities at the Opera Theater workshop come to
a halt and vehicular traffic greatly lowers, vibrations useful for
energy harvesting sharply reduce. The system then provides less
acceleration data to end users during March, April, and May 2020.

Nonetheless, capturing the coupling between energy sources
and sensed data, as per Lesson 9 in Sec. 6.2, allows the I/A devices
in Empire to become operational when needed, even during the
lockdown. On May 11th, 2020 at 3.03AM UTC, an earthquake of
moderate intensity hits the area north of Rome [29]. The I/A devices
in Empire are activated by the trigger piezo, while they accumulate
enough energy to execute at least the sensing task. Fig. 17 shows the
spectral density of the acceleration signal we eventually receive. The
sharp difference compared to Fig. 13 testifies the different nature
of the vibration, with two peaks at frequencies much higher than
those in normal circumstances, as explained in Sec. 7.1. Kingdom is,
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on the other hand, hopelessly down since the beginning of March
and thus unable to provide any data.

Using existing computational methods [49], we estimate the
Richter magnitude of the earthquake from spectral density and Fast
Fourier transform of the signal we collect. We obtain a value of 3.14,
close to the official estimates [29] of the Italian Institutes of Geo-
physics that report a (3.2, 3.7) interval, obtained using numerous
professional seismographs around Rome. Our estimate, in contrast,
is obtained using an energy-harvesting embedded sensing device
that operates with zero maintenance since almost two years.

8 KEY TAKE-AWAYS
We articulate how the insights we gain through our specific

experience may serve to other system builders and seed new direc-
tions. Our primary message is that, in situations of energy scarcity
like ours, generality in concrete implementations is a luxury one
cannot afford. Different than existing literature that seeks general-
ity in both concepts and concrete implementations, our experience
motivates developing general concepts supported by application- or
even deployment-specific implementations.

Evidence of our reasoning is found on the hardware side, where
existing works that focus on accurate energy management [23, 36,
40] largely trade generality for overhead. The generic implemen-
tation of the federated energy architecture concept in the Flicker
platform [40], for example, costs 10.24`A in device quiescent cur-
rent: almost twice what we have for T/H devices in Empire. Similar
observations apply to Capybara [23] and DEBS [36], both propos-
ing useful concepts coupled with general-purpose implementations
whose overhead, in settings akin to ours, are hardly tolerable.

Existing programming techniques largely seek independence
from energy patterns and hardware platforms. Most task-based
solutions, in particular, adopt a pure software approach [22, 57,
59, 62, 89]. In contrast, our design of Empire fundamentally builds
upon Lesson 6, 7, and 8 in Sec. 6.2, as
1) the decision on what task to execute is taken not just based on

the availability of input data [22, 57, 59], but also on whether
sufficient energy is available; this information is known be-
forehand in Empire, as it is proactively provided by the power
sub-system (I/A devices) or the MCU configures the activation
threshold at end of the previous activation cycle (T/H devices).

2) available energy at the start of an active cycle matches the
energy demands of a defined subset of tasks, and little to no
energy is harvested during an active cycle; as a result, techniques
such as two-phase commit of task outputs [59], run-time energy
events [89], or task splitting [62] are an unnecessary overhead:
if we schedule a task to start, we know it completes successfully.

3) tasks are decoupled and only connected by variable-sized data
pipelines; therefore, there is no strict ordering of task execu-
tions to be guaranteed [57], neither there are relative timing
constraints on their execution [42], as long as the transmission
task does not starve, no buffer overflows occur.

4) partitioning the application in tasks explicates the relation be-
tween functionality and required peripherals; as a consequence,
general solutions for intermittent peripheral operations become

unnecessary [6, 13, 16, 23], as every task knows what peripher-
als it needs and only (re-)initializes those.

In general, we argue that programming techniques must not
be oblivious to everything outside software, as long as a proper
hardware abstraction layer is defined. Core to this is energy man-
agement, both for informing the computing core on its availability
and to give the latter the knobs to exert some control on it.

Our arguments do not entail that work in this area is necessarily
bound to a narrow scope. One may argue, for example, that our de-
sign in Empire is enabled by a priori knowledge of energy demands,
which is generally not available and may change at run-time. Tools
and techniques to accurately gain this information are, however,
emerging [3]. Moreover, as we learn from Lesson 3 in Sec. 5.2, pe-
ripherals makes the case of varying run-time energy demands a
rare, and often remediable issue, as they dominate the energy fig-
ure in our deployment as well as in many others [20, 21, 45, 83].
Should peripherals be used based on run-time information, our
design is applicable by scaling down the granularity of individual
functionality to the level of single peripheral operation [36].

We thus advocate that our experience be a basis to develop gen-
eral concepts, backed by (semi-)automatic methods to synthesize
application-specific implementations across hardware and software.
For example, the concept of energy buffering for T/H devices in Em-
pire, while similar to Capybara [23] and DEBS [36] that only offer
generic implementations, currently has no way to be instantiated
with little effort for a different application. Enabling a form of (semi-
)automatic generation of hardware/software designs may reap the
best of both general concepts and efficient implementations.

9 CONCLUSION
We presented the design and evaluation of a 3.5-year embedded
sensing deployment at the UNESCO-protected Mithræum of Circus
Maximus in Rome, Italy. Besides serving the end users, the effort was
an opportunity to assess the state of energy harvesting embedded
sensing. We did so through three design iterations.

In our Kingdom design, we find that battery-powered embedded
sensing still suffers from the hectic performance of batteries. In
our Republic design, we realize that using energy harvesting as a
replacement for batteries is not as easy in an energy-scarce setting,
mainly due to the lack of complete system solutions. In contrast, a
dedicated hardware/software co-design in Empire achieves better
utility for data, bringing it back to the level of a battery-powered
system. Empire also shows that accurate zero-maintenance embed-
ded sensing is possible in a demanding setting. While Kingdom is
down since 2+ months due to battery depletion during a COVID19
lockdown, Empire accurately captures a earthquake after almost 2
years of unattended operation. Our 3.14 estimates of Richter mag-
nitude, obtained from acceleration data collected by Empire, is
remarkably close to the official (3.2, 3.7) estimate [29].

The hardware schematics and application code for the three
design iterations are available [2] for the community to build on.
Acknowledgments. We thank the shepherd and reviewers for
the feedback received on the initial submission. This work was
supported partly by the Google Faculty Award programme and by
the Swedish Foundation for Strategic Research (SSF).



Battery-less Zero-maintenance Embedded Sensing at the
Mithræum of Circus Maximus SenSys ’20, November 16–19, 2020, Virtual Event, Japan

REFERENCES
[1] J. Adkins, B. Ghena, N. Jackson, P. Pannuto, S. Rohrer, B. Campbell, and P. Dutta.

2018. The Signpost Platform for City-Scale Sensing. In Proceedings of the 17th
ACM/IEEE International Conference on Information Processing in Sensor Networks
(IPSN).

[2] M. Afanasov, N. A. Bhatti, D. Campagna, G. Caslini, F. M. Centonze, K. Dolui,
A. Maioli, E. Barone, M. H. Alizai, J. H. Siddiqui, and L. Mottola. [n.d.]. Battery-
less Zero-maintenance Embedded Sensing at the Mithræum of Circus Maximus:
Hardware Schematics and Source Code. https://www.neslab.it/mitreo

[3] S. Ahmed, A. Bakar, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui, and L. Mot-
tola. 2019. The Betrayal of Constant Power × Time: Finding the Missing
Joules of Transiently-powered Computers. In Proceedings of the 20th ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES).

[4] S. Ahmed, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui, and L. Mottola. 2019. Efficient
Intermittent Computing with Differential Checkpointing. In Proceedings of the
20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES).

[5] ANSI/ASHRAE. [n.d.]. Standard 55 - Thermal Conditions for Human Comfort.
Retrieved July 10th, 2020 from https://www.ashrae.org/technical-resources/55

[6] A. R. Arreola, D. Balsamo, G. V. Merrett, and A. S. Weddell. 2018. RESTOP:
Retaining External Peripheral State in Intermittently-Powered Sensor Systems.
Sensors (2018).

[7] N. Baccour, A. Koubâa, L. Mottola, M. Zúñiga, H. Youssef, C. Boano, and M. Alves.
2012. Radio Link Quality Estimation in Wireless Sensor Networks: A Survey.
ACM Transactions on Sensor Networks (TOSN) 8, 4 (2012).

[8] D. Balsamo, A. Das, A. S. Weddell, D. Brunelli, B. M. Al-Hashimi, G. V. Merrett, and
L. Benini. 2016. Graceful Performance Modulation for Power-Neutral Transient
Computing Systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2016).

[9] D. Balsamo, B. J. Fletcher, A. S. Weddell, G. Karatziolas, B. M. Al-Hashimi, and
G. V. Merrett. 2019. Momentum: Power-Neutral Performance Scaling with In-
trinsic MPPT for Energy Harvesting Computing Systems. ACM Transactions on
Embedded Computing Systems (2019).

[10] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-Hashimi,
G. V. Merrett, and L. Benini. 2016. Hibernus++: A Self-Calibrating and Adap-
tive System for Transiently-Powered Embedded Devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2016).

[11] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and L.
Benini. 2015. Hibernus: Sustaining Computation During Intermittent Supply for
Energy-Harvesting Systems. IEEE Embedded Systems Letters (2015).

[12] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli. 2008. The Hitchhiker’s
Guide to Successful Wireless Sensor Network Deployments. In Proceedings of the
6th ACM Conference on Embedded Network Sensor Systems (SENSYS).

[13] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac. 2018. Sytare: a
Lightweight Kernel for NVRAM-Based Transiently-Powered Systems. IEEE Trans.
Comput. (2018).

[14] N. A. Bhatti, M. H. Alizai, A. A. Syed, and L. Mottola. 2016. Energy Harvesting and
Wireless Transfer in Sensor Network Applications: Concepts and Experiences.
ACM Transactions on Sensor Networks (2016).

[15] N. A. Bhatti and L. Mottola. 2017. HarvOS: Efficient Code Instrumentation for
Transiently-powered Embedded Sensing. In Proceedings of the 16th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN).

[16] A. Branco, L. Mottola, M. H. Alizai, and J. H. Siddiqui. 2019. Intermittent Asynchro-
nous Peripheral Operations. In Proceedings of the 17th Conference on Embedded
Networked Sensor Systems (SENSYS).

[17] D. Carlson, J. Gupchup, R. Fatland, and A. Terzis. 2010. K2: A System for Campaign
Deployments of Wireless Sensor Networks. (2010).

[18] M. Ceriotti, M. Corrà, L. D’Orazio, R. Doriguzzi, D. Facchin, G. P. Jesi, R. L. Cigno,
L. Mottola, A. L. Murphy, M. Pescalli, et al. 2011. Is there light at the ends of
the tunnel? Wireless sensor networks for adaptive lighting in road tunnels. In
Proceedings of the International Conference on Information Processing in Sensor
Networks (IPSN).

[19] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna, M. Corrà, M. Pozzi, D.
Zonta, and P. Zanon. 2009. Monitoring Heritage Buildings with Wireless Sensor
Networks: The Torre Aquila Deployment. In Proceedings of the International
Conference on Information Processing in Sensor Networks (IPSN).

[20] Q. Chen, Y. Liu, G. Liu, Q. Yang, X. Shi, H. Gao, L. Su, and Q. Li. 2017. Harvest
Energy from the Water: A Self-Sustained Wireless Water Quality Sensing System.
ACM Transactions on Embedded Computing Systems (2017).

[21] H. Chiang, J. Hong, K. Kiningham, L. Riliskis, P. Levis, and M. Horowitz. 2018.
Tethys: Collecting Sensor Data without Infrastracture or Trust. In Proceedings
of the 3rd IEEE/ACM International Conference on Internet-of-Things Design and
Implementation (IoTDI).

[22] A. Colin and B. Lucia. 2016. Chain: Tasks and Channels for Reliable Intermittent
Programs. In Proceedings of the ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA).

[23] A. Colin, E. Ruppel, and B. Lucia. 2018. A Reconfigurable Energy Storage Ar-
chitecture for Energy-Harvesting Devices. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[24] P. Corke, P. Valencia, P. Sikka, T. Wark, and L. Overs. 2007. Long-Duration
Solar-Powered Wireless Sensor Networks. In Proceedings of the 4th Workshop on
Embedded Networked Sensors (EMNETS).

[25] Datasheet. [n.d.]. ChipCon 1101. Retrieved July 10th, 2020 from https://www.ti.
com/lit/ds/symlink/cc1101.pdf

[26] J. de Winkel, C. Delle Donne, K. S. Yildirim, P. Pawelczak, and J. Hester. 2020.
Reliable Timekeeping for Intermittent Computing. In Proceedings of the Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[27] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler. 2005. Design of a Wireless
Sensor Network Platform for Detecting Rare, Random, and Ephemeral Events.
In Proceedings of the 4th International Symposium on Information Processing in
Sensor Networks (IPSN).

[28] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle, K. Whitehouse,
and D. Culler. 2006. Trio: enabling sustainable and scalable outdoor wireless
sensor network deployments. In Proceedings of the 5th International Conference
on Information Processing in Sensor Networks (IPSN).

[29] Istituto Nazionale Geofisica e Vulcanologia. [n.d.]. Earthquake Data in Italy.
Retrieved July 10th, 2020 from http://cnt.rm.ingv.it

[30] ReVibe Energy. [n.d.]. modelD Piezoelectric Energy Harvester. Retrieved July
8th, 2020 from https://revibeenergy.com/modeld/

[31] ReVibe Energy. [n.d.]. modelQ Piezoelectric Energy Harvester. Retrieved July
8th, 2020 from https://revibeenergy.com/modelq/

[32] V. L. Erickson, S. Achleitner, and A. E. Cerpa. 2013. POEM: Power-Efficient
Occupancy-Based Energy Management System. In Proceedings of the 12th Inter-
national Conference on Information Processing in Sensor Networks (IPSN).

[33] B. J. Fletcher, D. Balsamo, and G. V. Merrett. 2017. Power Neutral Performance
Scaling for Energy Harvesting MP-SoCs. In Proceedings of the Conference on
Design, Automation & Test in Europe (DATE).

[34] F. Fraternali, B. Balaji, Y. Agarwal, L. Benini, and R. Gupta. 2018. Pible: Battery-
Free Mote for Perpetual Indoor BLE Applications. In Proceedings of the 5th Con-
ference on Systems for Built Environments (BUILDSYS).

[35] M. Furlong, J. Hester, K. Storer, and J. Sorber. 2016. Realistic Simulation for Tiny
Batteryless Sensors. In Proceedings of the 4th International Workshop on Energy
Harvesting and Energy-Neutral Sensing Systems (ENSSYS).

[36] A. Gomez, L. Sigrist, M. Magno, L. Benini, and L. Thiele. 2016. Dynamic En-
ergy Burst Scaling for Transiently Powered Systems. In Proceedings of the 2016
Conference on Design, Automation & Test in Europe (DATE).

[37] A. Gomez, L. Sigrist, T. Schalch, L. Benini, and L. Thiele. 2017. Efficient, Long-Term
Logging of Rich Data Sensors Using Transient Sensor Nodes. ACM Transactions
on Embeddded Computing Systems (2017).

[38] M. Guarducci. 2015. Ricordo della Magia in un Graffito del Mitreo del Circo
Massimo. In Mysteria Mithrae. In Italian.

[39] J. Hester, T. Scott, and J. Sorber. 2014. Ekho: Realistic and Repeatable Experi-
mentation for Tiny Energy-harvesting Sensors. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems (SENSYS).

[40] J. Hester and J. Sorber. 2017. Flicker: Rapid Prototyping for the Batteryless
Internet-of-Things. In Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems (SENSYS).

[41] J. Hester and J. Sorber. 2017. The Future of Sensing is Batteryless, Intermittent,
and Awesome. In Proceedings of the 15th ACM Conference on Embedded Network
Sensor Systems (SENSYS).

[42] J. Hester, K. Storer, and J. Sorber. 2017. Timely Execution on Intermittently
Powered Batteryless Sensors. In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems (SENSYS).

[43] R. C. Hibbeler and T. Kiang. 2015. Structural analysis. Pearson Prentice Hall
Upper Saddle River.

[44] T. W. Hnat, V. Srinivasan, J. Lu, T. I. Sookoor, R. Dawson, J. Stankovic, and K.
Whitehouse. 2011. The Hitchhiker’s Guide to Successful Residential Sensing
Deployments. In Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems (SENSYS).

[45] N. Ikeda, R. Shigeta, J. Shiomi, and Y. Kawahara. 2020. Soil-Monitoring Sensor
Powered by Temperature Difference between Air and Shallow Underground
Soil. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT) (2020).

[46] N. Jackson, J. Adkins, and P. Dutta. 2019. Capacity over Capacitance for Reliable
Energy Harvesting Sensors. In Proceedings of the 18th International Conference on
Information Processing in Sensor Networks (IPSN).

[47] H. Jayakumar, A. Raha, W. S. Lee, and V. Raghunathan. 2015. QuickRecall: A
HW/SW Approach for Computing Across Power Cycles in Transiently Powered
Computers. ACM Journal on Emerging Technologies in Computing Systems (2015).

[48] H. Jayakumar, A. Raha, J. R. Stevens, and V. Raghunathan. 2017. Energy-Aware
Memory Mapping for Hybrid FRAM-SRAM MCUs in Intermittently-Powered
IoT Devices. ACM Transactions on Embedded Computing Systems (2017).



SenSys ’20, November 16–19, 2020, Virtual Event, Japan Afanasov et al.

[49] C. Kircher, A. Nassar, O. Kustu, and W. Holmes. 1997. Development of building
damage functions for earthquake loss estimation. Earthquake spectra 13, 4 (1997).

[50] V. Kortbeek, K. S. Yildirim, A. Bakar, J. Sorber, J. Hester, and P. Pawelczak. 2020.
Time-Sensitive Intermittent Computing Meets Legacy Software. In Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

[51] T. T. Lai, W. Chen, K. Li, P. Huang, and H. Chu. 2012. TriopusNet: Automating
wireless sensor network deployment and replacement in pipeline monitoring.
In Proceedings of the 11th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN).

[52] H. N. Lechtman and L. W. Hobbs. 1987. Roman concrete and the Roman archi-
tectural revolution. In High-Technology Ceramics: Past, Present, and Future-The
Nature of Innovation and Change in Ceramic Technology.

[53] E. A. Lee and S. A Seshia. 2016. Introduction to embedded systems: A cyber-physical
systems approach. Mit Press.

[54] Libelium. [n.d.]. Waspmote. Retrieved July 10th, 2020 from http://www.libelium.
com/products/waspmote/

[55] G. Loubet, A. Takacs, and D. Dragomirescu. 2019. Implementation of a Battery-
Free Wireless Sensor for Cyber-Physical Systems Dedicated to Structural Health
Monitoring Applications. IEEE Access (2019).

[56] B. Lubelli, R.P.J. Van Hees, and C.J.W.P. Groot. 2006. Sodium chloride crystal-
lization in a salt-transporting restoration plaster. Cement and concrete research
(2006).

[57] B. Lucia and B. Ransford. 2015. A Simpler, Safer Programming and Execution
Model for Intermittent Systems. In Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI).

[58] G. Lukosevicius, A. R. Arreola, and A. S. Weddell. 2017. Using Sleep States to
Maximize the Active Time of Transient Computing Systems. In Proceedings of the
ACM International Workshop on Energy Harvesting and Energy-Neutral Sensing
Systems (ENSSYS).

[59] K. Maeng, A. Colin, and B. Lucia. 2017. Alpaca: Intermittent Execution Without
Checkpoints. Proceedings of the ACM Programming Languages (2017).

[60] K. Maeng and B. Lucia. 2018. Adaptive dynamic checkpointing for safe effi-
cient intermittent computing. In Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI).

[61] K. Maeng and B. Lucia. 2019. Supporting Peripherals in Intermittent Systems
with Just-in-Time Checkpoints. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI) (PLDI).

[62] A. Y. Majid, C. Delle Donne, K. Maeng, A. Colin, K. S. Yildirim, B. Lucia, and
P. Pawelczak. 2020. Dynamic Task-Based Intermittent Execution for Energy-
Harvesting Devices. ACM Transactions on Sensor Networks (2020).

[63] R. Marfievici, P. Corbalán, D. Rojas, A. McGibney, S. Rea, and D. Pesch. 2017.
Tales from the C130 Horror Room: A Wireless Sensor Network Story in a Data
Center. In Proceedings of the First ACM International Workshop on the Engineering
of Reliable, Robust, and Secure Embedded Wireless Sensing Systems (FAILSAFE).

[64] P. Martin, Z. Charbiwala, and M. Srivastava. 2012. DoubleDip: Leveraging Ther-
moelectric Harvesting for Low Power Monitoring of Sporadic Water Use. In
Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems
(SENSYS).

[65] G. V. Merrett and B. M. Al-Hashimi. 2017. Energy-Driven Computing: Rethinking
the Design of Energy Harvesting Systems. In Proceedings of the Conference on
Design, Automation & Test in Europe (DATE).

[66] L. Mottola, G. P. Picco, M. Ceriotti, S. Guna, and A. L. Murphy. 2010. Not All
Wireless Sensor Networks Are Created Equal: A Comparative Study on Tunnels.
ACM Transactions on Sensor Networks (2010).

[67] F. E. Murphy, E. Popovici, P. Whelan, and M. Magno. 2015. Development of an
heterogeneous wireless sensor network for instrumentation and analysis of bee-
hives. In Proceedings of the IEEE International Instrumentation and Measurement
Technology Conference (I2MTC).

[68] M. Navarro, T. W. Davis, Y. Liang, and X. Liang. 2013. A study of long-term WSN
deployment for environmental monitoring. In Proceedings of the 24th IEEE Annual
International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC).

[69] S. Peng and C. P. Low. 2012. Throughput optimal energy neutral management for
energy harvesting wireless sensor networks. In Proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC).

[70] A. I. Petrariu, A. Lavric, and E. Coca. 2019. Renewable Energy Powered LoRa-
based IoT Multi Sensor Node. In Proceedings of the 25th IEEE International Sym-
posium for Design and Technology in Electronic Packaging (SIITME).

[71] Piezo.com. [n.d.]. Q220-H4BR-2513YB piezoelectric bending transducer. Re-
trieved July 8th, 2020 from https://piezo.com/products/piezoelectric-bending-
transducer-q220-h4br-2513yb

[72] B. Ransford, J. Sorber, and K. Fu. 2011. Mementos: System Support for Long-
running Computation on RFID-scale Devices. ACM SIGARCH Computer Archi-
tecture News (2011).

[73] A. Rodriguez, D. Balsamo, Z. Luo, S. P. Beeby, G. V. Merrett, and A. S. Weddell.
2017. Intermittently-powered energy harvesting step counter for fitness tracking.
In Proceedings of the IEEE Sensors Applications Symposium (SAS).

[74] E. Ruppel and B. Lucia. 2019. Transactional Concurrency Control for Intermittent,
Energy-harvesting Computing Systems. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI).

[75] M. M. Sandhu, K. Geissdoerfer, S. Khalifa, R. Jurdak, M. Portmann, and B. Kusy.
2020. Towards Optimal Kinetic Energy Harvesting for the Batteryless IoT. arXiv
preprint arXiv:2002.08887 (2020).

[76] N. Saoda and B. Campbell. 2019. No Batteries Needed: Providing Physical Context
with Energy-Harvesting Beacons. In Proceedings of the 7th International Workshop
on Energy Harvesting & Energy-Neutral Sensing Systems (ENSSYS).

[77] U. Senkans, D. Balsamo, T. D. Verykios, and G. V. Merrett. 2017. Applications of
Energy-Driven Computing: A Transiently-Powered Wireless Cycle Computer.
In Proceedings of the 5th ACM International Workshop on Energy Harvesting and
Energy-Neutral Sensing Systems (ENSSYS).

[78] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta. 2010. Optimal energy manage-
ment policies for energy harvesting sensor nodes. IEEE Transactions on Wireless
Communications (2010).

[79] L. Spadaro, M. Magno, and L. Benini. 2016. Poster Abstract: KinetiSee - A Perpet-
ual Wearable Camera Acquisition System with a Kinetic Harvester. In Proceedings
of the 15th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN).

[80] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. 2004. An
Analysis of a Large Scale Habitat Monitoring Application. In Proceedings of the
2nd International Conference on Embedded Networked Sensor Systems (SENSYS).

[81] C. Tavolieri and P. Ciafardoni. 2010. Mithra. Un viaggio dall’Oriente a Roma:
l’esempio del Mitreo del Circo Massimo. Archaeology Archives, BA (2010). In
Italian.

[82] Thermalforce. [n.d.]. 254-150-36 TEG. Retrieved July 10th, 2020 from https:
//www.dropbox.com/s/4xx1z2gwddntc42/TG254-150-36l.pdf?dl=0

[83] M. Thielen, L. Sigrist, M. Magno, C. Hierold, and L. Benini. 2017. Human body
heat for powering wearable devices: From thermal energy to application. Energy
conversion and management (2017).

[84] UNESCO. [n.d.]. Heritage Site Rome. Retrieved July 10th, 2020 from https:
//whc.unesco.org/en/list/91/

[85] J. Van Der Woude and M. Hicks. 2016. Intermittent Computation Without
Hardware Support or Programmer Intervention. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (OSDI).

[86] Y. Wang. 2008. Topology Control for Wireless Sensor Networks. In Wireless
sensor networks and applications. Springer.

[87] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. 2006. Fidelity and
Yield in a Volcano Monitoring Sensor Network. In Proceedings of the Symposium
on Operating Systems Design and Implementation (OSDI).

[88] Wikipedia. [n.d.]. COVID-19 pandemic lockdown in Italy. Retrieved July 10th,
2020 from https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdown_in_
Italy

[89] K. S. Yildirim, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, and J. Hester.
2018. InK: Reactive Kernel for Tiny Batteryless Sensors. In Proceedings of the
16th ACM Conference on Embedded Networked Sensor Systems (SENSYS).

[90] J. Zhang, C. Chen, X. Zhang, and S. Liu. 2016. Study on the environmental risk
assessment of batteries. Procedia Environmental Sciences (2016).



Discovering the Hidden Anomalies of Intermittent Computing

Andrea Maioli∗, Luca Mottola∗†, Muhammad Hamad Alizai+, Junaid Haroon Siddiqui+
∗Politecnico di Milano (Italy), †RI.SE (Sweden), +LUMS (Pakistan)

Contact e-mail: andrea1.maioli@polimi.it

Abstract
Energy harvesting battery-less embedded devices com-

pute intermittently, as energy is available. Intermittent exe-
cutions may differ from continuous ones due to repeated ex-
ecutions of non-idempotent code. This anomaly is normally
recognized as a “bug” and solutions exist to retain equiva-
lence between intermittent and continuous executions. We
argue that our current understanding of these “bugs” is lim-
ited. We address this issue by devising techniques to com-
prehensively identify where and how intermittent and contin-
uous executions possibly differ and by implementing them
in SCEPTIC: a code analysis tool for intermittent programs.
Thereby, we find execution anomalies and their manifested
impact on program behavior in ways previously not consid-
ered. This analysis is enabled by SCEPTIC design, implemen-
tation, and performance. SCEPTIC runs up to ten orders of
magnitude faster than the baselines we consider, enabling
many types of analyses that would be otherwise impractical.

1 Introduction
Energy harvesting is enabling a battery-less Internet of

Things (IoT) of resource-constrained devices with small
form factors [17, 34, 35, 39]. However, energy supply from
the environment is generally erratic, causing frequent and
unanticipated device shutdowns. For example, harvesting
ambient RF energy for the execution of a simple CRC cal-
culation leads to 16 power failures over a 6 seconds pe-
riod [32, 6]. Executions thus become intermittent, as they
consist of intervals of active computation interleaved by pe-
riods of recharging energy buffers.

Existing systems rely on small capacitors as energy
buffers and on persistent state to ensure forward progress.
Many solutions target mixed-volatile platforms, which facil-
itate handling persistent state as they map slices of the ad-
dress space to non-volatile memory (NVM) [38, 20, 23].

1. a = 0;
<CHECKPOINT>
2. b = a;
3. b = b+ 1;
4. a = b;

Shutdown

5. ...

a: 0

During
checkpoint

a: 1

After
shutdown

1. a = 0;
<CHECKPOINT>
2. b = a;
3. b = b+ 1;
4. a = b;
5. ...

a: 1

After
restore

a: 2

Fig. 1: Ther re-execution of line 2 incorrectly updates vari-
able a allocated on NVM, leading to a memory anomaly.

Explicit checkpoints create persistent duplicates of volatile
data, including registers and program counter.

Intermittent executions on mixed-volatile platforms intro-
duce the possibility of execution anomalies [9, 31, 23, 38,
29], where programs reach states unattainable in a continu-
ous execution. Anomalies may, for example, occur in mem-
ory due to hazardous read/write patterns caused by the re-
execution of non-idempotent code. Fig. 1 shows an example.
Variable a is allocated on NVM. A checkpoint occurs after
line 1. Lines 2 to 4 eventually modify the value of a. The
execution continues until power fails. When energy is back,
the execution resumes with the state of volatile data from
the checkpoint, that is, it restarts from line 2. However, a
being on NVM, it retains its value from line 4 before the
power failure, that is, the value produced by a later instruc-
tion compared to where execution resumes after the power
failure [31]. Lines 2 to 4 increment a again, producing a
different result than a continuous execution.

As we elaborate in Sec. 2, this type of memory anomaly
is caused by a specific pattern of load-store memory ac-
cesses that creates a write-after-read (WAR) hazard. This
anomaly is arguably the only one the literature distinctly ac-
knowledges [38, 25, 23, 10, 24, 29]. Existing solutions rem-
edy the problem with custom programming abstractions or
compile-time techniques to retain equivalence between inter-
mittent and continuous executions [38, 25, 23, 10, 24]. A few
efforts also exist that aim to locate these anomalies and to
provide guidelines to programmers for refactoring code [29].

We aim at gaining a deeper understanding of how inter-
mittence affects program behavior. In Sec. 3, we describe
techniques to exhaustively check the presence of memory
anomalies. Using SCEPTIC, we demonstrate that intermit-
tent programs are vulnerable to a wide variety of memory
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Fig. 2: Accessing a stale temperature reading.

anomalies, beyond those the literature commonly considers.
The anomalies we recognize still originate from WAR haz-
ards, and possibly manifest from a disparate set of mem-
ory access instructions, such as stack push-pop and function
call-ret. Little discussion exists on these issues [29].

Execution anomalies due to environment interactions are
also possible and generally harder to ascertain [8, 2, 5]. A
power failure may cause programs to process stale environ-
ment state, such as an old sensor reading, or to perform unex-
pected actions on the environment, such as wrongly moving
a rotor multiple times. Fig. 2 shows an example. Suppose a
system suffers an unpredictably long power failure immedi-
ately after the execution of line 2. When the system resumes,
the temperature might have changed, but the if-condition
still evaluates to false with the old value of t. However, we
can construct a different example where stale data may be
valuable; for example, to compute long-term averages.

Determining whether and how execution anomalies affect
environment interactions requires analyzing the causal im-
pact of intermittence on the latter. The literature currently
lacks the concepts and tools for this. In Sec. 4, we describe
custom abstractions to qualify different types of environment
interactions and implement proper support in SCEPTIC. Our
tool tracks accesses to memory locations of interest and rec-
ognizes when a program is vulnerable to processing stale en-
vironment data. SCEPTIC also keeps track of the evolution of
the environment state, for example, as determined by actua-
tion, and determines if repeated executions of certain output
actions can produce undesirable states.

Efficiently enabling the required code analysis is a chal-
lenge. A static analysis of the program would not provide
run-time information required for analyzing the memory and
environment. Checking actual executions in principle re-
quires to analyze any possible combination of checkpoint
placement and number of (re-executed) instructions. Run-
ning programs on target hardware is therefore plainly im-
practical, whereas source-level simulation may miss relevant
read/write patterns that only manifest in machine code.

It would then appear that machine-level emulation is the
only viable choice. That is, however, likely inefficient. A
simple CRC computation [38] includes 5 ·104 machine-code
instructions. If we were to test all possible combinations of
checkpoint placement and number of (re-executed) instruc-
tions, we would need to analyze 2.34 · 1013 machine-code
instructions. As an example, our prototype emulator runs
5 ·104 instructions per second on a modern PC, which would
mean 14 years for testing CRC computation.

Our tool SCEPTIC, described in Sec. 5, makes analysis of
intermittent programs practical. SCEPTIC helps both system
designers and developers analyze various programs, mem-
ory configurations, and forward progress mechanisms, to

identify the most efficient configurations. System design-
ers may also rely on SCEPTIC to evaluate different strate-
gies for their forward progress mechanisms, which may be
tuned accordingly to SCEPTIC results. Our tool is based on
custom techniques we devise for analyzing memory anoma-
lies as well as environment interactions. It takes LLVM
intermediate-representation (IR) instructions as input to re-
tain platform independence, and captures all occurrences of
program anomalies due to intermittence, the conditions that
cause them, and the effects they bear on program behavior.

In Sec. 6, we quantify the performance of SCEPTIC across
different benchmarks and memory configurations. We com-
pare SCEPTIC against a baseline that applies a brute-force ap-
proach to exhaustively analyze any possible intermittent ex-
ecution as a function of checkpoint placement, interaction
with the environment, and point of power failure. We show
that SCEPTIC is up to ten orders of magnitudes faster. This
means returning the results of code analysis in a matter of
minutes rather than hundreds of days, enabling many types
of investigations that would be otherwise impractical.

We end the paper in Sec. 7 with brief concluding remarks.
SCEPTIC is available as open-source software [28].

2 Background and Related Work
We provide here the necessary background and an ac-

count of related work.
Mixed-volatile platforms. Low-power microcontroller
units (MCUs) normally employ traditional SRAM as main
memory. Thus, power failures cause a complete loss of state.

Frequent power failures motivate the design and manu-
facturing of mixed-volatile MCUs [30], where slices of the
address space map to non-volatile memory facilities, such
as FRAM. Data mapped to FRAM do not need to be check-
pointed, as they are already persistent, thus sparing the corre-
sponding overhead. This comes at the expense of increased
energy consumption and slower memory access during nor-
mal operation [16]. FRAM-equipped MSP430 MCUs, for
example, increase energy consumption by 2-3× compared to
their volatile memory counterparts, and the MCU may only
operate up to half of the maximum frequency without intro-
ducing waiting states to synchronize memory accesses [30].

Most importantly, registers and program counter, in addi-
tion to any volatile slice of main memory, need to be check-
pointed anyways. The dichotomy between non-volatile and
volatile memory spaces creates many of the issues we tackle.
Forward progress. Existing checkpoint systems focus on
striking a trade-off between postponing the checkpoint; for
example, to leverage new ambient energy, and anticipating it
to ensure sufficient energy is available to complete it.

For example, Hibernus [3] and Hibernus++ [4] employ
specialized hardware support to monitor the energy left.
They operate in a reactive manner: whenever available en-
ergy falls below a threshold, they react by firing an interrupt
that preempts the application and forces the system to take a
checkpoint. Checkpoints may thus take place at any arbitrary
point along the execution of a program.

Systems such as Mementos [32], HarvOS [7], and Chin-
chilla [25] employ compile-time strategies to insert special-
ized system calls to check the energy buffer. These triggers
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bind checkpoint operations with a certain condition; for ex-
ample, a checkpoint is only taken if available energy voltage
falls below a threshold. Checkpoints thus happen proactively
and only whenever the execution reaches one of these calls.

A similar duality exists in the solutions available to in-
teract with the environment in intermittent programs, as two
approaches exist. The preventive method seeks to achieve
atomic interactions with the environment, and only initi-
ates them when the remaining energy guarantees comple-
tion [21, 12]. Differently, the recovery method represents
the evolution of peripheral states in main memory to bring
the system back to a consistent state when resuming compu-
tations [8, 5, 2, 26]. Both of these methods integrate equally
well with the techniques we explain next.
Debugging intermittent programs. Tools exist for the gen-
eral problem of debugging intermittent programs, regardless
of execution anomalies. For example, Ekho [15] recreates
energy harvesting patterns to enable repeatable in-lab tests.
CleanCut [11] identifies non-termination bugs in systems us-
ing task-based programming with transactional semantics.

Somehow closer to our work are EDB [9] and Siren [14].
In addition to traditional debugging features, EDB can emu-
late power failures and subsequent reboots. Siren introduces
NVM and energy simulation capabilities in MSPSim. Us-
ing either tool, one may recognize a subset of the execu-
tion anomalies we identify by manually placing breakpoints
and resets. This may be extremely laborious without apri-
ori information, for example, a suspect of certain anomalies.
Moreover, with Siren breakpoints and resets must be placed
at the level of machine instructions and, unlike our work, nei-
ther tool provides any automated technique to cover all pos-
sible program executions that may manifest anomalies. They
also do not consider environment interactions as we do.
Execution anomalies. Ransford and Lucia identify spe-
cific instances of memory-related execution anomalies [31].
Their insights provide a foundation for several later works
that mask or avoid their occurrence [23, 10, 24, 38].

A specific analysis technique is presented by Van Der
Woude et al. [38], who also solely acknowledge the same
specific instances. They are, however, unable to assess the
actual effects of anomalies and to recognize other instances,
such as anomalies occurring on the heap.

Surbatovich et al. [37] identify a subset of the issues we
identify for environment interactions. They assume that non-
idempotent behaviors due to repeated I/O operations are to
avoid, and thus provide a tool that determines the reach of
input data through the program so developers fix these be-
haviors.

Our preliminary work on intermittence anomalies [29]
covers only anomalies in main memory and on the stack. We
extend our previous contribution with the support for anoma-
lies happening on the heap. Different than our previous con-
tribution, we also provide an analysis of environment inter-
actions, which current literature overlooks, and a quantitative
evaluation of our tool’s performance.

3 Memory
We present techniques for locating memory anomalies

and for evaluating their effects on program behavior. Both

techniques are sound and complete, namely, they identify all
and only the actual cases of memory anomalies.
3.1 Locating Anomalies

In general, memory anomalies due to intermittent execu-
tions may occur because of hazardous read/write patterns in
NVM and depending on their interleaving with checkpoints.

To locate these anomalies, one should search for the con-
ditions where a checkpoint occurs before a read on NVM,
and there exist a write to the same NVM location before a
following power failure. If so, a memory anomaly may oc-
cur due to WAR hazards, as in Fig. 1. This occurs because of
the re-execution of read instructions after resuming, which
may cause the program to load a value that was written by a
later instruction, but before the power failure.

To be complete in identifying these cases, in principle,
one should check all possible combinations of read/write op-
erations on the same NVM address and all possible interleav-
ings with checkpoint locations. For each different setting,
one should execute the code for understanding how a given
anomaly possibly propagates within the considered execu-
tion. As checkpoints might potentially occur at any point in
the execution [3, 4], this creates an exponential increase in
the number of possible executions that are to be checked, as
discussed in the Introduction.

To address this issue, we determine the minimal amount
of information necessary for the identification of memory
anomalies and devise corresponding analysis techniques.
These are based on the crucial observation that if one is only
interested in locating these anomalies, looking for specific
sequences of read/write accesses on NVM in a single se-
quential execution of the code suffices. Depending on the
memory segment, these operations may take the form of
load/store, push/pop, or call/ret pairs.

Note that we execute the program once to gather informa-
tion that is usually not avaiable at compile time, such as the
address of each accessed memory location, the evaluation of
conditional instructions, and the executed branch paths. We
then rely on developers to provide a sufficient set of tests that
cover all execution paths that are input-dependent.

These techniques and their implementation in SCEPTIC
eventually lead us to confirm current findings [31] and to
recognize additional memory anomalies.
3.1.1 Data Access Anomaly

Fig. 1 is a case of data access anomaly, as reported in
literature [31]. We recognize such an anomaly whenever x
is a memory address in NVM and an ordered sequence of
machine-code instructions I1, ..., In exists such that:

• I1 loads a value from an address x,

• In modifies the value stored at address x,

• no checkpoint exists in the sequence I1, ..., In.
These conditions entail that if a power failure occurs after

In, the system resumes before I1 which is then re-executed; I1
then reads the value produced by In before the power failure,
that is, from a later instruction. A fix for this is placing a
checkpoint between I1 and In to avoid re-executing the load
operation when resuming [38].

Here, we reduce the information necessary for locating
memory anomalies based on two key observations:

3



Addr. Content
0xFFF0 ...

0xFFF1
f1 return
address

0xFFF2 ...S
t
a
c
k

g
r
o
w
t
h

Stack after f1() call

Addr. Content
0xFFF0 ...

0xFFF1
f2 return
address

0xFFF2 ...S
t
a
c
k

g
r
o
w
t
h

Stack after f2() call

6. f1();
1. ...

<CHECKPOINT>
2. ...
3. return x;

7. f2();
1. ...

Shutdown

2. return y;

8. ...

6. f1();
1. ...

<CHECKPOINT>
2. ...
3. return x;

7. f2();
1. ...
2. return y;

8. ...

Addr. Content
0xFFF0 ...

0xFFF1
f2 return
address

0xFFF2

Stack after restore

Unexpected jump due
to a wrong return

address in the stack

Fig. 3: Return address overwritten by call to f2 showing an
activation record anomaly.

1. any non-write access after I1 need not to be checked
separately, because the potential memory anomaly it
may cause is already captured by the analysis from I1;

2. only write accesses occurring in the sequence I1, ..., In
meet the conditions to produce a WAR hazard; in fact,
any other write access that follows a checkpoint after
this sequence can not affect prior read accesses, and be-
comes part of a different sequence In+1, ..., Im.

These two criteria form the basis to efficiently analyze
other, previously unseen kinds of memory anomalies.
3.1.2 Activation Record Anomaly

We uncover executions whereby allocating the stack on
NVM, upon resuming from a power failure, non-volatile in-
formation is read from the activation record of a function to
be executed later. This activation record anomaly may lead
to wrong results, unwanted jumps, or a program crash.

Fig. 3 shows an example. A call to function f1 executes
first and its activation record is placed on the stack. A check-
point takes place after line 2 inside f1. When f1 returns, its
activation record pops from the stack and execution contin-
ues from line 7. The stack content on NVM is not deleted
when returning from f1; only the stack pointer changes.
When placing the activation record of f2 on the stack, the
one of f1 is overwritten. If a shutdown happens during the
execution of f2, the execution resumes inside f1 according to
the checkpoint data, but the activation record is that of f2.

Note that Fig. 3 shows the case where the return address
from f2 is read as the one of f1 when execution resumes.
This is only one of the possible outcomes. Worse is if f2
overwrites f1 return address with data representing an invalid
address, such as a local variable or a saved register, causing
a program crash when execution resumes. In general, the
sequence of pop instruction belonging to the epilogue of f1
may read the values produced by push instructions belong-
ing to the prologue of f2. Also, note that f2 may equally
be a programmer-defined interrupt handler that fires asyn-
chronously, making the issue even more difficult to track.

We find that an activation record anomaly exists when-
ever the stack is allocated on NVM and an ordered sequence
of machine-code instructions I1, ..., In exists such that:

• I1 is a call instruction for function fx,

• the execution of fx includes at least one checkpoint,

• In is a call instruction,

• no checkpoint exists in the sequence I1, ..., In.
The anomaly exists because a checkpoint is saved inside

the context of a function f1, f1 returns, and a subsequent call
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Fig. 4: Example of memory map anomaly.

to f2 overwrites parts of the activation record of f1. Check-
pointing between the return of f1 and the call to f2 addresses
the issue, preventing the execution from resuming inside f1.

Here, we reduce the information to check for locating
these anomalies by applying the two criteria in Sec. 3.1.1, but
also noticing that the analysis need not to consider the code
of fx. Only the fact that fx somewhere includes a check-
point matters. We may analyze the code of fx separately
compared to the search of the conditions above, and no in-
formation from the analysis at the level of function calls need
to percolate into the analysis of callees.

Ratchet [38] identifies a specific instance of the problem
arising with interrupts. The general case is, however, over-
looked in existing literature and may be recognized only by
reasoning at the level of machine code, not source code.
3.1.3 Memory Map Anomaly

When read/write instructions on NVM involve operations
that possibly change the heap state, a memory map anomaly
occurs whereby a dynamic memory operation observes a fu-
ture state of memory upon resuming from a power failure.

Fig. 4 shows an example. Line 2 allocates a heap block
and saves its address in pointer p. A checkpoint occurs be-
fore line 5, which de-allocates the same memory block. If a
shutdown happens after line 5, the execution resumes from
line 4, whose memory access may now lead to unpredictable
results [40] as the block was previously de-allocated.

It would be possible to construct arbitrary combinations
of heap operations before and after a checkpoint, leading to
this kind of anomaly. If pointer information are not updated,
the re-execution targets the memory address before the shut-
down, whereas the memory block may now be freed or re-
allocated somewhere else.

We find that a memory map anomaly exists whenever
the heap is allocated on NVM and an ordered sequence of
machine-code instructions I1, ..., In exists such that:

• I1 is a load or store instruction targeting the heap
block pointed by x,

• In is a free or realloc instruction that modifies the
heap block pointed by x,

• no checkpoint exists in the sequence I1, ..., In.
The anomaly exists because pointer information are not

consistent with the state of the heap. Properly placing check-
points to avoid re-executing instructions based on possibly
inconsistent pointer information solves the issue.

Similar to the stack, the two criteria in Sec. 3.1.1 are valid
here too to help locate heap anomalies efficiently. In ad-
dition, we note how allocating the heap on NVM with a
transactional memory controller [36] does not ensure atom-
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icity for heap modifications, either. Power failures happen-
ing during the execution of any such instructions leave the
heap state partially changed. The re-execution of instructions
that perform destructive changes to the heap, such as free
or realloc, is also a possible source of anomaly, whereas
re-executing memory allocation operations, such as malloc,
does not affect correctness but may yield memory leaks.

Existing literature overlooks the existence of this kind of
anomaly too, which again may only be recognized by reason-
ing at the level of machine code and raw memory accesses.
3.2 Evaluating Effects

The observations above serve to recognize and locate
memory anomalies, but they do not suffice to examine how
their effects change the program state compared to a con-
tinuous execution. Information on this may be crucial for
identifying the cause of a program crash or for performing
a post-mortem analysis, as the change of behavior may, for
example, corrupt the state in subtle ways and thus percolate
throughout possible long-running executions [40].

To this end, a single sequential program execution can
only provide partial information. We rather need to emulate
the code re-execution, by pretending checkpoints at certain
code locations are executed and power failures occur later.
We crucially observe that we may use the conditions we
identify in Sec. 3.1 also to reduce the number of locations
where checkpoints and power failures need to be emulated.
In essence, it is sufficient to first locate the anomaly and only
then, to re-execute the relevant parts of code.

For example, consider analyzing data access anomalies
according to the conditions in Sec. 3.1.1. To understand their
effects, we create a new emulated execution starting at I1
with the state that a continuous execution would have at that
point, and proceed up to In where we pretend a power failure
to happen. Then, we take the state of the NVM there, bring it
back to I1, and combine it with information in the checkpoint
that we assume to occur right before I1. We resume the exe-
cution as if the device had new energy and proceed again up
to In. The program state at this point represents how the data
access anomaly alters the program state. Similar techniques
are applicable for all memory anomalies in Sec. 3.1.

4 Environment Interactions
Interactions with the environment are a key functionality

of embedded sensing devices. As the notion of correctness
here is application-specific, understanding how they affect
intermittent executions requires to develop both appropriate
abstractions and analysis techniques. The problem takes dif-
ferent forms for input (sensing) and output (actuation) in-
teractions. When integrated with approaches to cope with
power failures during the interaction itself, as explained in
Sec. 2, the techniques we explain next apply to both methods
using preventive and recovery techniques.
4.1 Input Interactions

Intermittent executions create a data-time depen-
dency [18]. A piece of urgent data may expire after a long
energy outage, requiring the system to sense again before
resuming the execution. Old data may still be valuable
depending on applications requirements; for example, in
applications that are interested in long term trends.

Abstractions. We define two concepts to qualify how, ac-
cording to the programmers’ intentions, input environment
data should be accessed in intermittent programs. Under a
most-recent access model, a program is expected to access
the input data only if it is gathered within the same power
cycle, that is, no power failure occurs between the time the
data is acquired and when it is used. This is the case where
applications must take decisions based on the most up-to-
date environment data. Differently, under a long-term access
model, a program may access the input data independent of
when it is originally gathered, that is, an arbitrary number of
power failures may occur between when the data is acquired
and when it is used. This is the case where data is valuable
because of its long-term significance.

We ask programmers to tag individual variables storing
sensor data as behaving according to either model. The tech-
niques we illustrate next allow programmers to understand
whether, depending on checkpoint placement, the semantics
of their variables matches the required access model. Note
that this analysis is meaningful for system support employ-
ing proactive techniques [32, 7, 25], as explained in Sec. 2.
Programmers may move the placement of checkpoint calls
to ensure that given variables behave according to the de-
sired access model. Differently, in systems employing re-
active techniques, checkpoints may happen anywhere in the
code [3, 4]. Variables that store sensor data thus behave ac-
cording to a long-term access model, because checkpoints
might potentially happen anytime between when the data is
gathered and when it is later used.
Analysis. We perform a single sequential execution of the
code and use two additional bookkeeping data structures, a
checkpoint clock and an access record. The former estab-
lishes an ordering of the events in the code and is incre-
mented each time we pretend a checkpoint to happen. This
corresponds to every location in the code where a call to the
checkpoint routine is inserted. The access record tracks ac-
cesses to memory locations of interest.

We explain the process with the help of Fig. 2. Initially,
the checkpoint clock is set to 0. After executing line 1, the
access record for variable t is updated as 〈t, temperature,0〉,
where variable t contains the value of a given sensor when
the checkpoint clock is 0. Next, the checkpoint clock is
incremented by one as we encounter a further call to the
checkpoint routine. Thereafter, the execution of line 2
leads to another update in the access record for t with
〈t, temperature,1〉. The variable is thus accessed across
checkpoint call, and thus behaves according to a long-term
access model. If the latter differs from the access model the
variable is tagged with, a warning is returned.

Note that memory buffers for sensed data on NVM may
also suffer from memory anomalies, which can be tested
with the techniques described in Sec. 3.

4.2 Output Interactions
Intermittence may cause an application to perform a stale,

duplicate, or falsified action on the environment. Fig. 5
shows an example. Line 1 rotates the servo relatively by 45◦.
A power failure occurs right after line 1. When execution
resumes from the checkpoint, the servo is rotated again by a
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Fig. 5: The re-execution of instruction 1 yields an unex-
pected environment state.

further 45◦, taking its current position to 90◦. The outcome
does not correspond to a continuous execution.
Abstractions. Similar to Sec. 4.1, we define two semantics
for actuation commands: absolute or relative. The former
models the cases of idempotent actuation commands. The
latter models the opposite, that is, the resulting state of the
environment is a function of the initial state and of actuation.

Application requirements dictate whether to rely on ei-
ther semantics. Unlike Fig. 5, some applications may want
to affect the state of environment whenever an actuation
command is executed, regardless of the number of repeti-
tions. Consider, for example, an application that sends an
announcement whenever it wakes up from a power failure.

To enable code analysis, programmers are required to ex-
press the semantics they expect by tagging the individual
calls to actuation commands as behaving according to either
model. In addition, they are to provide an abstract specifi-
cation of how the environment changes in response to the
(possibly partial) execution of actuation commands. This
specification is primarily meant to check that two environ-
ment states are semantically equivalent. This information is,
in general, application-dependent. Vast literature exists on
the subject [13]. We thus omit the description of such speci-
fication for brevity, which is nonetheless available [27].
Analysis. To understand whether intermittent executions
match the expected actuation semantics, we execute the pro-
gram until encountering an actuation command. There, we
record the state of environment up to the point of the power
failure, either during or after the command execution, ac-
cording to the abstract environment specification. We re-
execute the code from the previous checkpoint up to the same
actuation command. We can now compare the new environ-
ment state with the previously recorded one.

If the states differ, the command behaves as relative, oth-
erwise, it behaves as absolute. If this behavior does not
match the programmers’ expectations, a warning is returned.
Programmers may now change the implementation accord-
ing to application requirements. For example, they may re-
place an actuation command exposing a relative semantics
with one implementing an absolute one, or build a wrapper
around the former to achieve the desired behavior.
5 Implementation

We implement the techniques in Sec. 3 and Sec. 4 in a tool
called SCEPTIC, which works in four different modes:

1. SCEPTIC-LOCATE performs the analysis to locate mem-
ory anomalies, as in Sec. 3.1.

2. SCEPTIC-EVALUATE performs the analysis to locate mem-
ory anomalies and to evaluate their effects, as in
Sec. 3.2.

Table 1: Consumers and producers of memory anomalies.
Data Access - Sec. 3.1.1 Activation Record - Sec. 3.1.2 Memory Map - Sec. 3.1.3

Consumer load ret/pop load, store, realloc, free
Producer store call/push malloc, realloc, free

3. ENVIRONMENT-INPUTS verifies the coherence of in-
put interactions with programmer-specified semantics,
as discussed in Sec. 4.1.

4. ENVIRONMENT-OUTPUTS behaves symmetrically
w.r.t. the previous option for output interactions, as
discussed in Sec. 4.2.

We describe next the architecture of SCEPTIC and the de-
tails of the first two modes. The processing required for the
other two options is a minimal variation of the former.

5.1 Architecture
SCEPTIC is written in Python and processes LLVM inter-

mediate representation (IR) code to gain independence from
specific platforms. It comprises two main modules: the
abstract-syntax tree (AST) builder and the emulator.

The regular LLVM AST builder is augmented with
architecture-specific components such as registers, libraries,
and proxies for emulating environment interactions, as de-
scribed next. The resulting AST is then translated to be exe-
cuted by the emulator module.

SCEPTIC also allows users to annotate functions used for
environment interactions. The annotation takes as input: i)
the type of interaction, namely, input or output; ii) the name
of the function that interacts with the environment; iii) a
list of LLVM IR types, representing the function argument
types; and iv) the type of return value and a logic to generate
such values, for example, a generator function or a statically-
defined list of values.

The SCEPTIC emulator models user-specified general reg-
isters and special purpose registers that exist on all platforms,
such as the program counter (PC) and the stack base pointer
(EBP). The emulator divides the available memory into three
segments: the global symbol table (GST), the stack, and the
heap. The GST segment is further subdivided into volatile
and non-volatile regions, placing the global variables accord-
ing to programmer’s requirements.

5.2 Locating Memory Anomalies
We call producer (consumer) any instruction that alters

(accesses) the content of NVM. By generalizing the concepts
of Sec. 3, we argue that to locate a memory anomaly, we need
to identify an ordered sequence of instructions I1, ..., In, such
that I1 is a consumer, In is a producer, I1 and In operate on
the same NVM location, and no checkpoint occurs between
I1 and In. The pair 〈I1, In〉 is the one causing the memory
anomaly. Tab. 1 indicates the consumers and producers for
the memory anomalies discussed in Sec. 3.

The processing we devise for locating memory anomalies
only requires sequentially executing the program and collect-
ing a trace of NVM memory states. To create the trace, when
a producer or consumer is encountered, we save the state
of the target memory locations, the value of an instruction
counter that corresponds to its execution, the operation type
among those of Tab. 1, and the program counter. We orga-
nize this information into a two-level dictionary that has the
memory address as first key and the operation type as the
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Procedure 1: Locating memory anomalies for a
given NVM location.

1 function SCEPTIC-Locate (trace, consumer, producer, ED)
2 anomalies← /0
3 consumers← trace[consumer]
4 producers← trace[producer]

5 foreach pair 〈counter, consumer pc〉 ∈ consumers do
6 window← SlideWindow(producers, counter, ED)

7 foreach 〈producer counter, producer pc〉 ∈ window do
8 insert 〈consumer pc, producer pc〉 into anomalies

9 return anomalies

10 function SlideWindow (producers, consumer counter, ED)
11 min counter← consumer counter
12 max counter← consumer counter+ED

13 return ∀ producer ∈ producers s.t. min counter ≤
Istruction counter(producer)≤ max counter

I1. b = a;
I2. b = b+ 1;
I3. a = b;

...
I6. c = a;

...
I9. a = 7;

Collect
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Fig. 6: SCEPTIC-LOCATE identifies memory anomalies in the
execution trace by considering a sliding window of producer
instructions altering a given variable.

second one. This allows for an efficient search of memory
anomalies when traversing the trace.

Procedure 1 shows the core logic to process the execu-
tion trace for a given pair of producer and consumer that
possibly cause a memory anomaly. Fig. 6 helps understand
the processing with a concrete example. Starting from every
consumer, that is, a candidate I1 that accesses a given mem-
ory location (line 5), the procedure operates on a window of
producer instructions determined by SlideWindow (line 6),
with a corresponding instruction counter higher than that of
the consumer, and as a function of the checkpoint strategy.
In the example of Fig. 6, this extends up to I9 for consumer
I1. We start from I1 as we emulate a checkpoint immedi-
ately before it; in this case, every producer in the window is
a potential In that causes a memory anomaly (lines 7-8).

The key for correct and efficient analysis rests in the inter-
play between SCEPTIC-Locate and SlideWindow. For the
latter, Procedure 1 shows the case of reactive checkpoints,
which can potentially happen anywhere in the code. Given
the instruction counter corresponding to a consumer opera-
tion we consider as the first instruction after a checkpoint, the
window extends for a number of instructions whose energy
cost equals the energy left after the checkpoint operation and
eventually leading to a power failure. These are the instruc-
tions that would be possibly re-executed upon resuming. We
call this quantity execution depth (ED)

Actual meaningful values for ED depends on the device
energy consumption, capacitor size, and checkpoint energy
consumption. In Sec. 6.1 we show how to accurately cal-

culate ED, as this is essential for obtaining accurate infor-
mation on intermittence anomalies. Underestimating ED
may cause the analysis not to identify some intermittence
anomaly, whereas overestimating ED may cause the analy-
sis to identify bogus intermittence anomalies.

As the analysis of the current window completes, SCEP-
TIC-Locate slides the trace down to the next consumer (line
5), which SlideWindow now considers the first instruction
executing after a potential checkpoint, that is, a new candi-
date I1. In Fig. 6, this happens to be the assignment c=a.
Note how sliding the instruction window down to any in-
struction between the former I1 and the new one does not un-
cover memory anomalies this procedure would not uncover,
and thus represents unnecessary overhead. For example, the
instructions between b=a and c=a in Fig. 6 are covered al-
ready by the first iteration of the procedure.

The case of proactive checkpoints is a simplified version
of Procedure 1. Instead of considering every consumer as
the first instruction executed after a potential checkpoint, we
simply consider as the candidate I1 the set of consumer in-
structions between every statically-inlined checkpoint call
and the next producer In. Considering consumers In+k, k > 0
past the producer In is unnecessary, as they necessarily read
the value produced by In, as in a continuous execution.

Accordingly, SlideWindow now stretches the window of
producer instructions from I1 up to the next statically-inlined
checkpoint call, regardless of ED. This is the most conserva-
tive choice, as it assumes the system has just enough energy
to execute every following instruction, but fails to complete
the next checkpoint call. The number of possibly re-executed
instructions is thus highest. When sliding the window down,
SCEPTIC-Locate proceeds to the set of consumer instruction
after the next checkpoint call, and the procedure repeats.
5.3 Evaluating Effects

The analysis of how memory anomalies possibly impact
the program behavior requires the concrete emulation of
power failures, with the corresponding code re-execution.

Consider again the case of reactive checkpoints; the case
of proactive checkpoints is obtained as a variation of this,
similar to Procedure 1. For the analysis to be complete,
based on the observations illustrated earlier for locating
memory anomalies, it suffices to investigate the case when
checkpoints happen before every consumer instruction. This
is a candidate I1. The window of instructions that we re-
execute extends for ED instructions starting from I1. The
instructions that possibly cause the memory anomaly are the
producers In within this window, whereas the effects of the
memory anomaly are manifest, for example, as a consumer
instruction I1 accesses an altered value when it is re-executed
upon resuming after a power failure.

Procedure 2 shows the core logic for evaluating the ef-
fects of memory anomalies. The example of Fig. 7 helps
understand the processing. Before emulating a consumer
instruction operating on NVM, we run procedure SCEP-

TIC-Evaluate. It starts off by saving a snapshot of the em-
ulation state, including the current instruction counter (line
2). This information is necessary to roll back the emulated
execution to a consistent state in case no memory anoma-
lies are found by re-executing the code from the considered
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Fig. 7: SCEPTIC-EVALUATE procedure to test a checkpoint be-
fore instruction I1.

Procedure 2: Evaluating the effects of memory
anomalies for a given NVM location.

1 function SCEPTIC-Evaluate (state, checkpoint data, ED)
2 snapshot← snapshot o f state
3 target counter← InstructionCounter(state)+ED
4 lookup←{}
5 while InstructionCounter(state)< target counter do
6 pc← ProgramCounter(state)
7 addr← TargetAddress(pc)
8 old content← NVMContent(state, addr)

9 execute pc

10 if pc is consumer then
11 init lookup[addr] with empty values

12 if pc is producer and addr ∈ keys(lookup) then
13 current counter← InstructionCounter(state)
14 lookup[addr]←〈current counter, old content, pc〉
15 if no failure previously simulated after pc then
16 〈state, lookup〉 ←

TestPowerFailure(state, snapshot,
checkpoint data, current counter, lookup)

17 function TestPowerFailure (state, snapshot, checkpoint data,
target counter, lookup)

18 simulate power failure
19 restore checkpoint data

20 while InstructionCounter(state)< target counter do
21 pc← ProgramCounter(state)
22 execute pc

23 if pc is consumer then
24 addr← TargetAddress (pc)

25 if addr ∈ keys (lookup) then
26 val← NVMContent (state, addr)
27 〈counter2, value2, pc2〉 ← lookup[address]

28 if counter2 >
InstructionCounter(state) and val2 6= val
then

29 signal memory anomaly 〈pc, pc2〉
30 if at least one anomaly was found then
31 lookup← /0
32 restore snapshot

33 return 〈state, lookup〉

consumer. Then, it calculates the length of the instruction
window to analyze (line 3) and initializes the lookup infor-
mation used for tracking the NVM state (line 4).

For every consumer operation, SCEPTIC-Evaluate ini-
tializes the lookup information associated to the target ad-
dresses (line 6-11). In Fig. 7, this is shown on the leftmost
box for variable a. As the execution continues and a pro-
ducer is found, SCEPTIC-Evaluate verifies if any lookup
information is present for the target address (line 12). This

may entail that an earlier consumer instruction can access an
altered information in case of a power failure and subsequent
re-execution. If so, we update the lookup information of the
altered memory location (line 13-14). This is the case for
producer I3 in Fig. 7, as shown in the middle box.

If it is the first time we analyze a specific consumer/pro-
ducer pair (line 15), we test the effects of a power failure at
this point with TestPowerFailure. This resets the volatile
state (line 18) and restores the checkpoint (line 19) with the
instruction counter at the time of checkpoint. This effec-
tively rolls back the execution to the consumer that triggered
the processing, that is, I1 in Fig. 7. It re-executes the code
until it reaches the point of the earlier power failure. When-
ever a consumer is executed (line 23), TestPowerFailure
accesses the lookup information to verify if it accesses the
value of a producer in the previous power cycle (line 25-
29). TestPowerFailure thus identifies a memory anomaly.
Fig. 7 shows this happening as soon as I1 is re-executed,
based on the information in the rightmost box.

By continuing the execution, TestPowerFailure as-
sesses the effects that the memory anomaly causes on pro-
gram behavior, including also other memory anomalies, and
up to ED instructions from I1. Upon completion, if any
memory anomaly is found, TestPowerFailure restores the
snapshot and empties the lookup information (line 30-32)
before returning control to SCEPTIC-Evaluate. This allows
the latter to proceed with the analysis from a clean consistent
state, not altered by the effects of memory anomalies.

6 Evaluation
We evaluate our techniques using SCEPTIC on a system

with an Intel Xeon E3-1270, 64 Gb of RAM, Ubuntu 19.04,
and Python 3.7.2. We use Clang 5.0.1-4 with LLVM 5.0 [22]
to produce the LLVM IR [22].
6.1 Memory Anomalies: Setup

We evaluate the performance of the techniques in Sec. 3
by comparing them to a baseline that operates only based
on the conditions that possibly lead to a memory anomaly.
In contrast, existing forward progress mechanisms [23, 24,
25, 38] avoid the occurrence of intermittence anomalies with
analysis techniques that are strictly tied to their system or
memory configuration. These may fail to identify the oc-
currence of anomalies with different memory configurations.
As they operate at compile time, they also cannot identify
the occurrence of intermittence anomalies that happen across
branches, conditional operations, and dynamic memory ac-
cesses. Because of this, we use as baseline a “layman” ap-
proach that does identify the occurrence of all anomalies.
Baseline. Initially, LAYMAN-MEMORY executes the code se-
quentially. Every time it needs to analyze a potential check-
point location, it saves snapshot of the emulation state and
then proceeds with the execution. Following the checkpoint
location in the code, LAYMAN-MEMORY records a snapshot of
the memory state as the execution unfolds, until it emulates
a subsequent power failure. Then, it rolls the execution back
to the checkpoint location, emulates a resume operation, and
proceeds with the (re-)execution by comparing the snapshots
of the memory states produced by the (re-)executed code
against those collected earlier.
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An anomaly is found whenever a mismatch is detected,
as the intermittent execution would be different from the
continuous one. Because the comparison occurs on snap-
shots of the entire memory state, LAYMAN-MEMORY can only
provide coarse-grained memory information and cannot pin-
point what instructions are responsible for a given anomaly.
Benchmarks and configurations. We select three bench-
marks commonly used in intermittent computing [3, 32,
4, 7, 1]: Cyclic Redundancy Check (CRC) for data in-
tegrity, Fast Fourier Transform (FFT) for signal analysis, and
Advanced Encryption Standard (AES) for security. They
span diverse functionality and expose very different program
structures. We use their open-source implementations from
MiBench2 [19], that is, a benchmark suite already used for
evaluating system support for intermittent computing [38].

For each benchmark, we choose two different memory
configurations. One configuration places only global vari-
ables onto NVM, while allocating all other memory seg-
ments, including the stack, on volatile main memory; the
other configuration places only the content of the stack onto
NVM, while allocating all other memory segments, includ-
ing global data, on volatile main memory.

We consider two different use cases. In the a-priori sce-
nario, we use SCEPTIC at a time when the checkpoint strat-
egy is yet to be defined, that is, programmers are to select
the most suitable system support. This means checkpoint
locations in the code are not known, or reactive checkpoint
systems are employed that may preempt the execution at any
point in time. For the analysis to be complete in this sce-
nario, every possible checkpoint location should be exam-
ined along with any potential location of power failure.

In the a-posteriori scenario, we use SCEPTIC when the
checkpoint strategy is fixed and checkpoint calls are stat-
ically placed in the code. This covers the cases where
programmers aim to analyze a specific checkpoint place-
ment [7, 32] or perform a post-mortem analysis of an
already-deployed program. We consider the checkpoint
placement of Mementos [32]. For AES, we consider both
Mementos’ function-return strategy that positions a check-
point after the return of each function and its loop-latch strat-
egy that places a checkpoint at the end of every loop body.
We consider only the latter strategy for the CRC and FFT
benchmarks, since they include no significant function calls.
Metrics. The primary performance figure we consider is the
net execution time required for the analysis, as it determines
how practical is a given technique. Moreover, to perform
the analysis, a certain technique may need to emulate power
failures and possibly re-execute certain instructions, result-
ing in an increase of the number of embedded code instruc-
tions executed. We measure this figure as well, as it impacts
the execution time. Similarly, the different techniques also
collect information about the program state into data struc-
tures that are external to the emulated program, so to verify
the presence of anomalies. These accesses to support mem-
ory introduce an overhead that also influences the execution
time, and is thus worth measuring as well.

Finally, we compare the number of found memory
anomalies by the different systems we test as an indica-

Fig. 8: Execution depth in Hibernus++ [4] with respect to
current draw, capacitance, and checkpoint voltage threshold.

tion of the output noise. As explained in Sec. 3, SCEPTIC-
LOCATE is both sound and complete, and it also returns ev-
ery memory anomaly as a unique data point, essentially pro-
viding the cleanest non-redundant output. Differently, SCEP-
TIC-EVALUATE may return a higher number of found mem-
ory anomalies merely because the effects of the same WAR
hazard may differ at run-time based on actual data. We
refrain to measure this metric for SCEPTIC-EVALUATE. On
the other hand, LAYMAN-MEMORY may point to the same
memory anomaly in multiple seemingly different ways, be-
cause coarse-grained memory information and the inabil-
ity to identify the exact instructions responsible for a given
anomaly prevents it from filtering out redundant information.
Code re-execution. In the a-priori use case where check-
point calls are not statically placed in the code, we need
to specify a realistic value for the ED parameter, discussed
in Sec. 5.2, representing the number of instructions executed
after a checkpoint and before the subsequent power failure.

We consider a configuration similar to the one of Hiber-
nus++ [4], using MSP430 [30] MCUs. When the capaci-
tor voltage goes below a certain threshold Vtrig, Hibernus++
saves a checkpoint. Here, ED corresponds to the number of
instructions that the MCU executes with the remaining en-
ergy, the checkpoint is complete and assuming the ambient
provides no additional energy in the meantime.

The capacitor equipping most intermittently-computing
systems is an electric bipole characterized by the differen-
tial relation

i(t) =C
dv(t)

dt
, (1)

where C is the capacitance, i(t) is the current at time t, and
v(t) is the capacitor voltage at time t. With a constant current
draw, we state

∆t =C
(V2−V1)

I
(2)

to be the time required to discharge the capacitor from volt-
age level V2 to V1, with a constant current draw I.

Let us consider V2 to be the voltage level Vtrig where Hi-
bernus++ [4] triggers a checkpoint and V1 to be the voltage
level Vmin where the MSP430 powers off. We can express
∆t as tchk + tcmp, where tchk is the time required for saving
a checkpoint and tcmp is the remaining running time of the
MCU. From eq (2) we derive
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tcmp = ∆t− tchk =C
(Vtrig−Vmin)

I
− tchk. (3)

Given tcmp as the remaining running time of the MCU,
the number of instructions executed within this time when
running at a clock frequency fMCU is ED = tcmp · fMCU . We
can now calculate

ED = fmcu · (C
(Vtrig−Vmin)

I
− tchk). (4)

The MSP430-FR5737 datasheet [30] states that the cur-
rent draw during the active mode at 1MHz goes from 200µA
up to 420µA, depending on cache hit ratio. A group of rea-
sonable values for current consumption is 250µA, 270µA,
and 310µA, respectively corresponding to a 75%, 66%, and
50% of cache hit. From Hibernus++ [4] we know that tchk is
1.4ms and Vmin is 1.88V . Fig. 8 shows the ED that we cal-
culate according to the above derivations, which ranges from
2470 to 5800 instructions. We run our experiments using
three representative values for ED: 3000, 4000, and 5000.
Measuring the baseline. LAYMAN-MEMORY must generate an
independent test for any possible checkpoint location, which
is at any line of code except the last one. For each of these
potential checkpoint locations, LAYMAN-MEMORY must sim-
ulate a power failure at every instruction that follows the
checkpoint within ED following instructions. As a result,
the entire analysis for LAYMAN-MEMORY would require years
to complete on a standard PC, as we argue earlier.

To obtain a quantitative baseline for comparison, we syn-
thetically calculate the number of instructions executed by
LAYMAN-MEMORY for a given benchmark as

(
nops−1

∑
i=0

(
nops

∑
j=i+1

( j− i)+1))−1, (5)

where i represents the checkpoints, j represents the power
failures, and nops is the number of machine instructions in
a sequential execution of the same code. The execution time
for LAYMAN-MEMORY is consequently obtained by considering
the emulation speed of SCEPTIC, which runs 5 · 104 instruc-
tions per second. With a similar reasoning, we also synthet-
ically calculate the number of accesses to support memory
and memory anomalies that LAYMAN-MEMORY finds.
6.2 Memory Anomalies: Results
A-priori scenario. Checkpoint calls are yet to be placed or
we are employing reactive system support that potentially
triggers checkpoints anywhere in the code. This configu-
ration corresponds to the processing in Procedure 2, where
SCEPTIC-EVALUATE stops at the first anomaly found in a given
window of instructions, assuming that cascading effects of
such anomaly are of no interest. The memory anomaly in-
formation that SCEPTIC-EVALUATE provides is thus equivalent
to SCEPTIC-LOCATE; we only consider the latter.

Fig. 9 shows the results we obtain. Fig. 9a demonstrates
that the execution time of SCEPTIC-LOCATE is 10 orders of
magnitude lower than LAYMAN-MEMORY. In absolute terms,
SCEPTIC-LOCATE constantly concludes the analysis in practi-
cal time across all benchmarks and memory configurations.

 ScEpTIC-Locate (ED 3k)

 ScEpTIC-Locate (ED 4k)

 ScEpTIC-Locate (ED 5k)

 Layman-Memory
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Fig. 9: SCEPTIC-LOCATE is orders of magnitutde faster than
LAYMAN-MEMORY in the a-priori scenario. The X axis repre-
sents the benchmark and the memory slice on NVM.

Fig. 9a also shows that an increase of ED bears a minimal
performance impact on SCEPTIC-LOCATE. The is explained in
the results we obtain for the number of embedded code in-
structions executed and in the number of accesses to support
memory, shown in Fig. 9b and Fig. 9c respectively. SCEPTIC-
LOCATE executes the program sequentially to collect trace in-
formation and later analyzes a sliding window of instructions
to locate memory anomalies. Increasing ED therefore does
not increase the number of instructions that SCEPTIC-LOCATE

executes overall, shown in Fig. 9b. It only slightly increases
the accesses to support memory, shown in Fig. 9c.

Fig. 9d shows the number of found memory anomalies to
analyze the output noise. LAYMAN-MEMORY returns informa-
tion on many more memory anomalies due to the coarse-
grained information it reasons upon. These anomalies are,
however, semantically equivalent to those found by SCEP-
TIC-LOCATE. Programmers gain no insights from these addi-
tional information, which essentially represents a noisy out-
put compared to the programmers’ actual needs.
A-posteriori scenario. Fig. 10 shows the results for the a-
posteriori scenario. For each benchmark, we place check-
points accordingly to the loop-latch (ll) strategy of Memen-
tos [32]. We also consider the function-return (fr) strategy
for the AES benchmark, as it executes a significant number
of function calls. Fig. 10a shows SCEPTIC-LOCATE with the
lowest execution time. SCEPTIC-LOCATE is on average 3 or-
ders of magnitude faster than LAYMAN-MEMORY and 2 orders
of magnitude faster than SCEPTIC-EVALUATE. On the other
hand, SCEPTIC-EVALUATE is on average 5 times faster than
LAYMAN-MEMORY. LAYMAN-MEMORY has better performance
for the AES benchmark as it finds memory anomalies earlier
than SCEPTIC-EVALUATE due to the way the code is structured.

Emulating power failures requires SCEPTIC-EVALUATE and
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Fig. 10: SCEPTIC-LOCATE is about 3 orders of magnitude
faster than LAYMAN-MEMORY in the a-posteriori scenario.

LAYMAN-MEMORY to save a snapshot of the emulation state
at every checkpoint. This is necessary to continue the anal-
ysis from a valid state, rather than an inconsistent one, in
case any of the re-executed instructions yields a memory
anomaly. This causes more accesses to the support memory,
shown in Fig. 10c, that make SCEPTIC-EVALUATE and LAYMAN-
MEMORY slower than SCEPTIC-LOCATE even when they execute
the same number of instructions. This is the case for CRC
and AES with global variables on NVM.

Fig. 10b also shows that when the stack is on NVM, SCEP-
TIC-EVALUATE executes a higher number of instructions com-
pared to LAYMAN-MEMORY. This is expected, because LAYMAN-
MEMORY cannot pinpoint the instructions that cause a mem-
ory anomaly and the ones consuming the altered value. For
this reason, it may not simulate power failures for executions
where it already recognized a memory anomaly, even though
there may be further memory anomalies in the same slice of
execution that involve different instructions.

Despite the difference in the number of instructions ex-
ecuted, Fig. 10a shows that SCEPTIC-EVALUATE is still faster
than LAYMAN-MEMORY. The reason for this is again in the
accesses to support memory, as shown in Fig. 10c: SCEPTIC-
EVALUATE records only write events and then verifies when a
read happens, whereas LAYMAN-MEMORY compares the entire
emulation state with a snapshot, resulting in higher overhead.

6.3 Input Access Analysis: Setup
We evaluate the performance of our analysis of input in-

teractions with the environment, as explained in Sec. 4.1. As
the analysis of output interactions uses almost identical tech-
niques, as illustrated in Sec. 4.2, the conclusions we obtain
also apply to that. In both cases, the actual procedure we
apply is a limited variation of SCEPTIC-LOCATE.

Similar to Sec. 6.1, we employ a LAYMAN-ENVIRONMENT

baseline representative of how one would naturally operate
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Fig. 11: SCEPTIC is 7x faster in determining the access se-
mantics for environment input variables.

to verify that, in the presence of arbitrary checkpoint opera-
tions and power failures, the behavior of a given input vari-
able matches the intended semantics. In essence, this entails
determining whether input variables behave according to a
long-term or most-recent semantics against the re-executions
of arbitrary code segments.
Benchmarks and configuration. The few works [18, 33,
26, 8, 37] considering intermittent executions together with
environment interactions typically employ a typical sense-
process-transmit application.

We consider four different input configurations: from one
to four environment inputs through corresponding sensors.
We use Mementos [32] again as checkpoint mechanism and
rely on its manual strategy to keep checkpoint calls balanced
with respect to calls to probe sensors. For example, with two
inputs we place a checkpoint between their access calls, re-
sulting in the sequence read1()→ checkpoint()→ read2().
This also corresponds to the approach that existing system
support [18, 23, 11] employs to interleave calls to peripher-
als with checkpoints to ensure atomic execution of individual
peripheral interactions.

As the procedure we apply is a variation of SCEPTIC-
LOCATE and the baseline is, in fact, a variation of LAYMAN-
MEMORY, we use the same metrics as in Sec. 6.1. The number
of found anomalies is, however, not applicable in this case.
6.4 Input Access Analysis: Results

Fig. 11 shows the results. Both SCEPTIC and LAYMAN-
ENVIRONMENT execute the benchmark within seconds, with
SCEPTIC performing on average 7 times faster, as Fig. 11a
shows. SCEPTIC takes the same time for the execution of the
different input configurations, since it executes the program
sequentially and requires no re-execution. Instead, the per-
formance of LAYMAN-ENVIRONMENT worsens with the number
of inputs, since it needs to re-execute an increasing number
of instructions as the number of inputs grows.

This performance reflects in Fig. 11b, where SCEPTIC is
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shown to execute almost the same amount of instructions,
independent of the number of inputs. The minor increase
is merely due to separately processing different inputs. In-
stead, the number of instructions that LAYMAN-ENVIRONMENT

executes increases with the number of inputs present in the
benchmark, again because of the increase in the number of
re-executed instructions with more inputs.

Fig. 11c accordingly shows that SCEPTIC accesses the sup-
port memory 1.4 times more than LAYMAN-ENVIRONMENT on
average, as required by the processing applied to the relevant
windows of instructions. The overhead that support mem-
ory accesses introduced in SCEPTIC is, however, significantly
lower than the one of the actual re-execution of code seg-
ments in LAYMAN-ENVIRONMENT, ultimately resulting in faster
executions for SCEPTIC.

7 Conclusion
Intermittent executions of battery-less embedded devices

conceal hidden anomalies whose comprehensive treatment
was not addressed by prior work. We fill this gap by investi-
gating the anomalies occurring on memory and through en-
vironment interactions. Our contributions are made concrete
in SCEPTIC, a code analysis tool for intermittent programs
that uncovers previously unknown anomalies. Our evalu-
ation indicates that SCEPTIC is orders of magnitude faster
than the baselines we consider across a significant set of di-
verse benchmarks and configurations, enabling many types
of analyses that would be otherwise impractical.
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ABSTRACT
We consider a new perspective on intermittence anomalies aris-
ing in intermittently-computing mixed-volatile systems. Existing
forward progress techniques avoid such anomalies by enforcing
a computation that corresponds to a continuous one, introducing
a significant overhead. We take a different stand: by allowing the
presence of specific anomalies, we make the program aware of
intermittence, unlocking new design patterns. We argue about the
various possibilities emerging from this and we make the concept
concrete by applying it to loops. We show how intermittence anom-
alies allow to preserve the results of loop iterations across power
failures, without requiring to save the device’s volatile state after
each iteration. Compared to existing checkpoint mechanisms, our
technique shows on average a 35.2𝑥 lower energy consumption
and a 48.4𝑥 lower execution time across several staple benchmarks.
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1 INTRODUCTION
Ambient energy harvesting for embedded sensing devices removes
the maintenance costs and environment impact associated with
battery replacement and disposal. Being harvested energy erratic
and usually not sufficient to power a device continuously, these de-
vices experience frequent power failures. Executions thus become
intermittent [5], as periods of active computation are interrupted by
periods where the device is powered off and recharges its energy
buffer. Frequent power failures harm program forward progress, as
power outages cause a device to shut down and loose the computa-
tional state, making it restart from scratch when power returns.
Managing persistent state. As we point out in Sec. 2, ensuring
program forward progress across power failures requires saving a
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1. a = 0;
<CHECKPOINT>
2. b = a;
3. b = b+ 1;
4. a = b;

Shutdown

5. ...

a: 0

During
checkpoint

a: 1

After
shutdown

1. a = 0;
<CHECKPOINT>
2. b = a;
3. b = b+ 1;
4. a = b;
5. ...

a: 1

After
restore

a: 2

Figure 1: Example of intermittence anomaly. A checkpoint
saves the volatile state and then line 4 updates a to 1. Next, a power
failure occurrs. When energy returns, computation resumes from line
2. Being a non-volatile, it is not included in the checkpoint and retains
the effects that line 4 produced during the previous power cycle. The
execution produces a different result than a continuous execution.

1. r = −1;
<CHECKPOINT>
2. r = r + 1;
3. if(r < 1){
4. send(r);
5. }

...

Shutdown

r: -1

During
checkpoint

r: 0

After
shutdown

1. r = −1;
<CHECKPOINT>

2. r = r + 1;
3. if(r < 1) { false
4. send(r); skipped
5. }

...

r: 0

After
restore

r: 1

Figure 2: Example of intermittence-aware program. Line 2
experiences the same intermittence anomaly as in Fig. 1. Variable r
tracks the number of power failures.

snapshot of the volatile state, namely a checkpoint, onto a non-
volatile memory (NVM) location, which can be internal or ex-
ternal to the Micro Controller Unit (MCU). When power returns,
restoring a checkpoint allows the MCU to resume the computa-
tion from where it stopped, as checkpoints contain a copy of main
memory, program counter, and register file. Mixed-volatile sys-
tems [10, 11, 18] feature an internal NVM that they use as a portion
of main memory. NVM is not included into checkpoints, as it al-
ready ensures persistency. This reduces checkpoint overhead, as
the system saves only the volatile slice of main memory.

The use of mixed-volatile platforms may cause intermittence
anomalies [11, 14], due to repeated executions of non-idempotent
code. Fig. 1 shows an example. Being variable 𝑎 non-volatile, it
is not included in the checkpoint. The execution reaches line 4,
which alters 𝑎, then a power failure happens. When the device
resumes, it restores the volatile state from the checkpoint, and the
execution resumes from line 2. Being non-volatile, 𝑎 retained the
effect that line 4 produced during the previous power cycle. This
leads to a result that is unattainable in a continuous execution, as
the re-execution of line 4 updates 𝑎 to 2 instead of 1.

Avoiding intermittence anomalies requires to save additional
checkpoints in specific program locations to break harmful se-
quences [14, 18]. For example, in Fig. 1 a checkpoint between line
2 and line 4 solves the issue. Generally, the more portions of the
main memory are non-volatile, the more frequently checkpoints
must be placed to avoid intermittence anomalies. This may nullify
the performance gains due to reduced volatile state.
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Intermittence awareness. Existing checkpoint mechanisms [8,
11, 13, 18] generally aim at enforcing an execution that corresponds
to the continuous one. We take a different stand. We show how de-
liberately allowing the presence of specific intermittence anomalies
in mixed-volatile MCUs may unlock new program design patterns.
We call this concept intermittence awareness.

Intentionally allowing specific intermittence anomalies allows
developers to consider intermittence as a program input. The re-
sulting intermittence-aware program can change its behavior ac-
cording to when and where a power failure happens. Fig. 2 shows
an example. Variable 𝑟 is non-volatile. Similar to Fig. 1, when the
execution resumes after a power failure, 𝑟 retains the effects that
line 2 produced during the previous power cycle. By deliberately
allowing the anomaly to occur, we can use 𝑟 to track the number
of power failures since the last checkpoint, as line 2 increments 𝑟
every time the computation resumes. This ensures that line 4 is
not re-executed when the program resumes, as the 𝑖 𝑓 statement of
line 3 evaluates to false. Such behavior is not possible with existing
approaches [3, 11, 16, 18], as they enforce results equivalent to a
continuous computation, that is, 𝑟 must equal 0 after line 2.

Intermittence awareness gives developers new degrees of free-
dom, as it unlocks new design patterns that would otherwise not
be possible, applicable to either program control flow or data flow.
Fig. 2 shows an example where intermittence awareness allows
developers to affect the program control flow when resuming after a
power failure. In constrast, by allowing the intermittence anomaly
Fig. 1, we make the computation dependent from the number of
power failures by altering its data flow.
Intermittence-aware loops. To demonstrate the use of intermit-
tence awareness, we use it to reduce checkpoint overhead inside
loops, as described in Sec. 3.

Power failures cause a device to loose the work done inside
loops, unless a checkpoint is saved at the end of each iteration.
This introduces a significant overhead, yet it is necessary in the
absence of a priori knowledge on energy provisioning patterns.
We identify a set of variables, called loop state set, that represent
the minimum data to preserve. We instrument a loop by allocating
its loop state set onto NVM, thus making it intermittence aware.
This makes a checkpoint before the loop sufficient for resuming
the computation from the latest loop iteration, ensuring forward
progress with much lower overhead. Checkpoint frequency and
size decrease, as checkpoints inside loops are no longer required
and they do not include the loop state set.

Nonetheless, every time a device resumes from a power failure, it
restores the latest checkpoint, introducing a startup overhead. Our
technique also allows us to reduce this. We exploit intermittence
awareness to skip the latest unfinished loop iteration, instead of
re-executing it. The latter mitigates the startup overhead at the cost
of a decreased precision, resulting in a behavior similar to the loop-
perforation technique [17] used in approximate computing [15].

To enable the application of our loop instrumentation technique,
we design and implement the LAPSUS1 programming abstraction.
LAPSUS exposes a small set of macros that allow developers to
apply our loop instrumentation techniques without manually man-
aging checkpoints, allocating variables, or designing dedicated data

1Low-overhead intermittence-Aware Program inStrumentation techniqUe for loopS

structures. Moreover, LAPSUS allows developers to decide and
fine-tune where to apply our technique for mitigating the startup
overhead when the program resumes after power failures.

In Sec. 4 we evaluate how LAPSUS affects the overhead of ex-
isting checkpoint mechanisms, based on staple intermittent com-
puting benchmarks. Experimental results show that LAPSUS sig-
nificantly lowers the overhead of existing approaches, reducing
on average the number of executed instructions by 48.4𝑥 , and ob-
taining a 35.2𝑥 lower energy consumption and a 48.4𝑥 lower exe-
cution time. In the worst case, that is, the CRC benchmark where
checkpoint size is small, LAPSUS lowers the energy consumption
overehead by 2.08𝑥 . Instead, with higher checkpoint sizes, such
as the implementation of Dijkstra algorithm, LAPSUS lowers the
energy consumption overhead up to 227.79𝑥 .

2 BACKGROUND AND RELATED WORK
We provide the necessary background and a brief discussion of
related work here.
Ensuring forward progress. Various techniques [1–3, 10, 16, 18]
adopt the concept of checkpoint to ensure program forward progress
across power failures. Depending on how and where checkpoints
execute, we classify these techniques as dynamic or static.

Dynamic checkpoint mechanisms, such as Hibernus [1, 2] and
QuickRecall [10], rely on external interrupts that signal a low en-
ergy buffer for saving checkpoints. The program may thus be pre-
empted at arbitrary places to take a checkpoint. Differently, static
checkpoint mechanisms [3, 16, 18] place checkpoint calls in the
program at compile time, fixing where checkpoints execute in the
code. Among these systems, Ratchet [18] always saves a checkpoint
when the execution encounters a checkpoint call. Mementos [16]
and HarvOS [3] execute “trigger” calls to first verify the energy
buffer for deciding whether to save a checkpoint.

In contrast to checkpoint mechanisms that are applicable to
unmodified source code, task-based programming abstractions [4,
6, 12, 19] require programmers to split the application logic in
separate tasks executing with transactional semantics.
Intermittence anomalies. Checkpoint operations save the MCU
volatile state into a NVM location. When power returns, restoring a
checkpoint allows the MCU to resume the computation from where
it stopped. However, the resulting runtime state may differ from
the one of a continuous execution. In such a scenario, we define
the runtime state as anomalous.

Resuming the computation with an anomalous runtime state may
lead to intermittence anomalies [11, 14, 18], consisting in unexpected
behaviors unattainable in a continuous execution. The effects of
intermittence anomalies depend on how the program interacts with
the anomalous part of the runtime state [14]. For example, in Fig. 1,
the re-execution of lines 2-4 introduces a write-after-read (WAR)
hazard [11, 14, 18]. Being 𝑎 non-volatile, the re-execution of line 2
sees the effects that line 4 produced on 𝑎 during the previous power
cycle, as if line 2 re-executes just after line 4.
Avoiding intermittence anomalies. Two classes of techniques
exist to verify the presence of intermittence anomalies [14] and
to avoid their occurence [4, 8, 11, 13, 14, 18, 19]. One class of ap-
proaches breaks the sequence of operations involved in WAR haz-
ards using a checkpoint [13, 14, 18] to avoid the operations accessing
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1. ...
2. checkpoint();
3. for(i = 0; i < N; i++){
4. ...
5. res[i] = ...
6. checkpoint();
7. }

4

(a) Checkpoint

1. ...
2. checkpoint();
3. for(i = 0; i < N; i++){
4. ...

Shutdown

5. res [ i ] = ...

6. }

(i=27)

1. ...
2. checkpoint();
3. for(i = 0; i < N; i++){
4. ...
5. res[i] = ...
6. }

Resumes from
first iteration 7

(b) No checkpoint
Figure 3: Preserving forward progress inside loops. Fig. (a)
shows a checkpoint placement that preserves progress across power
failures. Fig. (b) shows the effects of removing the checkpoint. After a
power failure occurs, the loop restarts all over again.

the anomalous runtime state. For example, in Fig. 1, a checkpoint
between lines 2 and 4 removes the WAR hazard and solves the anom-
aly. The second class of approaches creates multiple versions of the
involved variables [8, 11], ensuring that read and write operations
involved in the WAR hazard access different versions.

To our knowledge, no previous work considers the possibility of
taking advantage from selected intermittence anomalies.

3 INTERMITTENCE-AWARE LOOPS
We show one possible application of the concept of intermittence
awareness for mixed-volatile MCUs. We rely on specific intermit-
tence anomalies to preserve the computation across loops, reducing
checkpoint overhead. In doing so, we primarily target static check-
point mechanisms. Dynamic checkpoint mechanisms may trigger
checkpoints at any place in the code and only when it is strictly
required to do so, essentially yielding no re-executions as the device
likely immediately dies. This spares the overhead of trigger calls,
at the cost of dedicated hardware support [1, 2, 10].

3.1 Example
Existing static checkpoint mechanisms [3, 16, 18] require to possibly
save a checkpoint at the end of each loop iteration to preserve the
work done inside loops. Such a conservative choice is necessary as,
in general, erratic energy patterns may not provide guarantees on
the complete executions of multiple loop iterations.

Consider the example of Fig. 3. A power failure inside the loop
causes the device to resume from the latest checkpoint. The latter
is saved at line 2, thus the computation resumes prior to the loop,
re-executing it from scratch and wasting 28 iterations. Placing
checkpoint calls at the end of each loop iteration introduces an
overhead even if checkpoints do not actually take place, as certain
operations occur anyways when executing the call, such as probing
the energy buffers for their current energy content [3, 16].

Unlike existing techniques [3, 11, 16, 18], intermittence aware-
ness allows specific intermittence anomalies to preserve the loop
computational state across power failures without requiring a check-
point at each iteration. Fig. 4 shows how to apply this concept to the
example of Fig. 3. A checkpoint executes at line 2 and the loop starts
the first iteration. Variables 𝑖 and 𝑟𝑒𝑠 are non-volatile. The execu-
tion reaches line 5, which stores the result of the first iteration into
𝑟𝑒𝑠 [0]. Next, 𝑖 increments to 1, and the second iteration completes.
A power failure occurs during the third iteration. The computation
eventually resumes from the checkpoint of line 2. Being 𝑖 and 𝑟𝑒𝑠

NVM state
before 3rd

iteration

i: 2

res[0]: r0

res[1]: r1

res[2]:
...

res[N]:

1. i = 0;
2. checkpoint();
3. for(; i < N; i++){
4. ...

Shutdown

5. res [ i ] = ...

6. }

1. i = 0;
2. checkpoint();
3. for(; i < N; i++){
4. ...
5. res [ i ] = ...

6. }
Resumes from
latest iteration

NVM state
after

restore

i: 2

res[0]: r0

res[1]: r1

res[2]: r2
...

res[N]:

4

Figure 4: Example of an intermittence-aware loop. A power
failure happens during the third iteration. When the checkpoint is
restored, the computation resumes from the beginning of the loop,
but being i and res non-volatile, they retain the value right before
the previous power cycles. Hence, the loop resumes from the third
iteration, that is, the one interrupted by the power failure.

1. int res [N];

2. int a = 0;

3. for(int i = 0; i < N; i++){
...

4. a = f(a);

5. res [ i ] = g(a);

6. }

(a) Original

1. LOOP-STATE(res[N ], int);
2. C-LOOP-STATE(a, int, 0);
3. PERSISTENT-LOOP(i, i < N) {

...
4. C-WRITE(a, i) = f(C-READ(a, i));
5. res[i] = g(C-USE(a, i));
6. }

(b) Instrumented

Figure 5: Example of LAPSUS instrumentation macros. Fig.
(a) shows the program to instrument; Fig. (b) shows the instrumented
program using LAPSUS macros.

non-volatile, they retain state at the previous power cycle: 𝑖 has a
value of 2, and 𝑟𝑒𝑠 stores the results of the previous loop iterations.
Thus, the loop starts from the third iteration, as if a checkpoint is
saved at the end of the second iteration.

These accesses represent an anomaly, as the value of 𝑖 is produced
during the previous power cycle. By allowing such an anomaly, we
obtain the same results of a checkpoint placed at the end of each
loop iteration, but without its overhead. Existing techniques for
mixed-volatile systems [11, 18] do not allow this behavior. Despite
they allow to directly allocate variables into NVM, as we do, they
enforce executions equivalent to continuous ones. Thus, they would
apply variable versioning [11] or place checkpoints [18] to ensure
that line 3 and 5 do not access the anomalous value of variable 𝑖 .

3.2 Instrumenting Loops
Loop state set. We first need to identify the variables representing
the minimum set of data we must preserve across power failures,
which we call loop state set. This includes, for example, the loop
iterator and the variables carrying loop intermediate or final results.
In the example of Fig. 3a, the loop state set includes variables 𝑖 and
𝑟𝑒𝑠 , which are the loop iterator and the results vector.

We allocate the loop state set into NVM. Variables not included
in the loop state set remain at their original memory location. They
are not necessary for resuming the computation without restarting
the loop from the beginning, and thus we do not require to preserve
them across power failures. A simple example is (volatile) variables
local to the loop body, which are recomputed at every loop iteration.
Altering the loop. We remove any checkpoint inside the loop body
and place a checkpoint before the loop statement. This ensures that
the computation resumes at the beginning of the loop when power
fails during the loop execution. Finally, we remove the initialization
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of the loop iterator from the loop statement, and we place it before
the only checkpoint remaining. This modification ensures that the
loop resumes from the latest iteration and not from the first one, as
the iterator is no longer re-initialized when resuming.

Fig. 4 shows an example. By allocating the loop state set onto
NVM and by removing any checkpoint inside the loop, we are
deliberately allowing intermittence anomalies. In a sense, we make
the loop iterator 𝑖 function as a checkpoint, as it saves onto NVM the
index 𝑖 of the last completed iteration. Once 𝑖 increments, no power
failure can lead to the re-execution of a loop iteration previous to 𝑖 .
LAPSUS. To allow the application of intermittence awareness to
loops, we design a programming abstraction called LAPSUS. We can
use LAPSUS with a broad range of static checkpoint mechanisms,
as our techniques do not rely on specific ones. LAPSUS provides
a set of macros that allow developers to instrument a program by
specifying the loop to be instrumented and its loop state set.

Fig. 5 shows an example. The original code is in Fig. 5a, whereas
Fig. 5b shows the instrumented one. First, we substitute the loop
construct with the macro PERSISTENT-LOOP, which takes two argu-
ments: the loop iterator, and the loop condition. PERSISTENT-LOOP
allocates the loop iterator into NVM and initializes it. Then, PERSI-
STENT-LOOP generates the for loop statement and places a check-
point before it. Next, we specify the loop state set, which includes
the variables 𝑟𝑒𝑠 , 𝑎, and 𝑖 . To that end, we substitute each variable
declaration with the macro LOOP-STATE, except for the loop iter-
ator 𝑖 , which LAPSUS already identifies with PERSISTENT-LOOP.
LOOP-STATE takes three arguments: the variable name, the variable
type, and the initialization value, which is optional. LOOP-STATE
allocates the variables into NVM and initializes them.

3.3 Avoiding Unwanted Anomalies
By allocating the loop state set onto NVM, we may introduce addi-
tional unwanted anomalies. Fig. 6a shows an example. Variable 𝑎 is
non-volatile, as it is included in the loop state set. Line 5 represents
a WAR hazard [11, 14, 18] that leads to an intermittence anomaly.
It first reads the value of 𝑎 from NVM, executes function 𝑓 , then
writes the result back to NVM. As no checkpoint happens between
read and write in line 5, a power failure during or after the function
call causes an unwanted intermittence anomaly.

The technique we describe next remedies this issue for scalar
variables, with additional overhead. It is not applicable for more
complex data structures, such as arrays or linked lists. Addressing
this limitation opens up interesting avenues for future work.
Versioning. To avoid placing a checkpoint inside the loop body,
we apply a versioning technique. Fig. 6b shows how to avoid the
intermittence anomaly of Fig. 6a. Variable 𝑎 becomes a vector of
two elements, each representing a version of 𝑎. At each iteration,
𝑎 write operations target a copy and 𝑎 read operations target the
other. To carry the results across loop iterations, 𝑎 read and write
versions switch after every loop iteration.

This access pattern breaks the sequence of operations involved
in the WAR hazard, as now line 5 read and write operations target
different copies of 𝑎. As such, a power failure can no longer cause
line 5 read operation to access an anomalous value, and we can
avoid the intermittence anomaly without inserting a checkpoint.

NVM

i: 0

a: ai

1. i = 0; a = 0;
2. checkpoint();
3. for(; i < N; i++){
4. ...
5. a= f(a);
6. }

Unwanted
intermittence
anomaly 7

(a)

NVM

i: 0

a[0]: ai
a[1]: 0

1. i = 0; a[1] = 0;
2. checkpoint();
3. for(; i < N; i++){
4. ...
5. a[i%2]= f(a[1− i%2]);
6. } Unwanted

intermittence
anomaly
avoided 4

(b)
Figure 6: Avoiding unwanted intermittence anomalies in an
intermittence-aware loop. In Fig. (a), line 5 read and write op-
erations represents a WAR hazard [11, 14, 18] on variable a. Fig. (b)
shows how to avoid the unwanted anomaly of variable a.

LAPSUS support. LAPSUS includes macros to protect variables
against unwanted intermittence anomalies. We use the example of
Fig. 5a, where variable 𝑎 exposes the same anomaly as Fig. 6a.

Being 𝑎 part of the loop state set, we substitute its declaration
at line 2 with the macro P-LOOP-STATE, where P stands for pro-
tected. P-LOOP-STATE takes the same arguments of LOOP-STATE,
but it also creates the two copies of variable 𝑎 that our technique re-
quires. Next, we make read and write operations target the correct
copy of 𝑎. To this end, LAPSUS provides three macros: P-WRITE,
P-READ, and P-USE. They take two arguments: a variable and the
loop iterator. P-READ and P-WRITE target the copy reserved for
read and write operations, respectively. For example, at line 4 of
Fig. 5a, we substitute the definition of variable 𝑎 with P-WRITE(a,
i). Similarly, we substitute P-READ(a, i) in line 4. Instead, we
use P-USE to access a value written by a previous operation in the
same iteration, as in line 5 in Fig. 5a. Fig. 5b shows the final result.
Note that we must address all protected variable accesses using the
corresponding macro, even for accesses outside the loop.

3.4 Restore Approximation
Intermittence awareness not only reduces checkpoint overhead, but
also makes resume operations more efficient, as the device restores
a lower amount of data from the checkpoint.

Nonetheless, we may further tune our technique to mitigate the
overhead when resuming. Fig. 7 shows an example. Here we inten-
tionally place the increment of the loop iterator 𝑖 at the beginning
of the loop body. Let us suppose a power failure happens during the
third loop iteration. When the computation resumes, 𝑖 increments
as first operation and the loop resumes from the fourth iteration,
jumping the iteration interrupted by the power failure.

As a result, we obtain a behavior similar to loop perforation tech-
niques [17] used in approximate computing [15], where iterations
are skipped to trade accuracy for reduced energy consumption or
execution time. Instead of considering a certain perforation rate to
decide which iteration to skip, we skip iterations every time the
device resumes after a power failure.

LAPSUS supports both the regular and the approximate ap-
proach when resuming. Programmers use macro APPROX-PERSIS-
TENT-LOOP for selecting the approximation strategy, in place of
PERSISTENT-LOOP. The two macros act similarly and take the same
arguments. They declare the loop iterator as non-volatile, initialize
it, and select the appropriate loop construct.

4 EVALUATION
We discuss our experimental setup and early results we gather to
assess feasibility and potential impact of intermittence awareness.
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NVM state
at 3rd

iteration

i: 2

sum: s1

1. i = −1;
2. checkpoint();
3. while(i < N){
4. i++;

5. ...

Shutdown

6. sum = sum + x[i];

7. }
8. mean = sum / N;

1. i = −1;
2. checkpoint();
3. while(i < N){
4. i++;

5. ...
6. sum = sum + x[i];

7. }
8. mean = sum / N;

Resumes from
latest iteration

NVM state
after

restore

i: 3

sum: s1

Skips resumed
iteration

Figure 7: An intermittence-aware loop with restore approx-
imation. At the second iteration, line 2 increments the non-volatile
loop iterator i to 2. Execution then resumes from the beginning of the
loop after a power failure, but i retains the effects produced during the
previous power cycle. Hence, the loop resumes from the third iteration,
decrease result precision for mitigating the startup overhead.

4.1 Setup
We consider the MSP430-FR5969 [9] MCU, an ultra-low power MCU
often adopted in intermittent computing [2, 11, 12, 16, 18].
Baseline and benchmarks. We evaluate the performance of our
technique by comparing it against a generic trigger-based static
checkpoint mechanism that, akin to existing systems [3, 16], uses
NVM only for storing checkpoints. At runtime, when a checkpoint
call executes, it queries the ADC to decide whether to execute
a checkpoint. We use the default compiler configuration when
producing machine code [3, 16]. We call this approach TRIGGER.

We consider benchmarks commonly used in intermittent comput-
ing [1, 2, 8, 10, 16, 18], including Cyclic Redundancy Check (CRC)
for data integrity, Fast Fourier Transform (FFT) for signal analysis,
and the Dijkstra algorithm for finding the shortest path among
nodes in a graph. We take these benchmarks from the open-source
implementation of the MiBench2 [7] benchmark suite.

We do not quantitatively evaluate the approximate restore tech-
nique of Sec. 3.4. As with any approximation technique [15], the de-
gree of acceptable approximation is inherently application-specific
and thus an unbiased comparative evaluation is difficult.
Metrics. We focus on the main loops of each benchmark. We com-
pare the increase in i) number of executed machine-code instruc-
tions, ii) energy consumption, and iii) execution time that LAPSUS
and TRIGGER show compared to the non-instrumented program.

We calculate the increase in the number of machine-code instruc-
tions by identifying the loop body operations that differ from the
non-instrumented program, that are, FRAM accesses, operations
to protect against unwanted intermittence anomalies, trigger calls,
and actual checkpoints. We then calculate the increase in energy
consumption and execution time by considering the executed clock
cycles, the energy consumption of each clock cycle, and the energy
consumption and access latency for the ADC and FRAM usages [9].

We calculate the energy consumption per clock cycle of various
operating modes as 𝑒𝑥 = 𝑉𝑐𝑐∗𝐼𝑥

𝑓𝑚𝑐𝑢
, where 𝑉𝑐𝑐 is the operating voltage

(3𝑉 ) and 𝐼𝑥 is the current draw of the MCU under the operating
mode 𝑥 . We also consider an operating clock frequency 𝑓𝑚𝑐𝑢 of
either 8𝑀ℎ𝑧 and 16𝑀ℎ𝑧, as FRAM accesses require one wait state at
16𝑀ℎ𝑧. Being not specified in the datasheet, we calculate the current
draw 𝐼𝑓 𝑟𝑎𝑚 of the MCU when it stores only the data segment into
FRAM as 𝐼𝑓 𝑟𝑎𝑚_𝑢𝑛𝑖−𝐼𝑠𝑟𝑎𝑚

2 + 𝐼𝑠𝑟𝑎𝑚 , where 𝐼𝑠𝑟𝑎𝑚 and 𝐼𝑓 𝑟𝑎𝑚_𝑢𝑛𝑖 are

the current draws when the MCU operates respectively from SRAM
and FRAM. Note that 𝐼𝑓 𝑟𝑎𝑚_𝑢𝑛𝑖 refers to two FRAM accesses per
clock cycle: one for instruction fetch and one for data access.

We consider trigger calls to happen at every loop iteration and
the possible checkpoint to save the minimum amount of data. This
places the baseline in the best possible conditions.

4.2 Results
Fig. 8 reports in logarithmic scale the overhead of single operations
for LAPSUS and TRIGGER compared to the non-instrumented pro-
gram across the benchmarks we consider. For TRIGGER, we report
both the costs of trigger calls and of actual checkpoints, as trigger
calls do not necessarily yield a checkpoint.

Overall, TRIGGER’s complete checkpoint operations require
on average a 48.4𝑥 more clock cycles and execution time than
LAPSUS, as illustrated in Fig. 8a and Fig. 8b. LAPSUS consumes
on average 35.2𝑥 less energy than TRIGGER complete checkpoint
operations, as Fig. 8c shows. Compared to trigger calls alone, on
average LAPSUS executes 37% fewer clock cycles and has a 37%
lower execution time, but it has a 24% higher energy consumption.
The latter are due to the cost of accessing FRAM.

The results specifically vary depending on the program structure.
In the CRC benchmark, LAPSUS has a lower energy consumption
than trigger calls alone, as Fig. 8c reports. LAPSUS instrumentation
in CRC bears very low overhead, and querying the ADC results in
higher energy consumption. Here we also notice that trigger calls
represent most of the overhead of a complete checkpoint.

This is not the case for the FFT and Dijkstra. At 8𝑀ℎ𝑧, LAP-
SUS introduces a lower number of clock cycles than trigger calls
alone, as Fig. 8a shows. Compared to the same baseline, however,
Fig. 8c reports a higher energy overhead for LAPSUS in the FFT
benchmark, as now FRAM accesses are more costly than querying
the ADC. This is is due to the additional operations to protect the
execution against unwanted intermittence anomalies, as explained
in Sec. 3.3. Increasing the clock to 16𝑀ℎ𝑧 is further detrimental
to LAPSUS performance, as now FRAM accesses require one wait
state. Notwithstanding the higher energy consumption than trigger
calls alone for FTT and Dijkstra, LAPSUS requires 99𝑥 less energy
than complete checkpoint operations, as Fig. 8c shows.

We also investigate how LAPSUS and TRIGGER energy overhead
increase with the frequency of power failures. As TRIGGER exe-
cutes a trigger call at the end of each loop iteration, the frequency of
power failures also represents the number of trigger calls convert-
ing to a checkpoint. Note that Ransford et al. [16] reports 16 power
failures during the execution of the CRC benchmark with 2𝐾𝑏 of
data to checkpoint when using RF energy sources, corresponding
to a 1.56% of trigger calls converting to a checkpoint. Being the FFT
and Dijkstra benchmarks way more complex than CRC, we expect
a higher frequency of checkpoint occurrences there.

Fig. 9 shows the results. LAPSUS performance across the board
is constant, as LAPSUS does not save any checkpoint inside loops.
In constrast, Fig. 9a shows that the energy overhead of TRIGGER
starts above the one of LAPSUS already with infrequent power
failures and slowly grows when power failures occur more often.
Consistently with the earlier discussion, Fig. 9b demonstrates that
LAPSUS energy overhead is larger than TRIGGER only with very
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Figure 8: Overhead per loop iteration. LAPSUS on average requires 48.4x less clock cycles than TRIGGER complete checkpoint operations,
lowering the execution time by 48.4x and the energy consumption by 35.2x. Trigger calls alone in TRIGGER require on average a 37% higher
number of clock cycles and execution time. However, LAPSUS FRAM accesses cause a 24% higher energy consumption than trigger calls.
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(b) FFT benchmark
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(c) Dijkstra benchmark

Figure 9: Energy overhead during complete executions, against a certain rate of power failures. LAPSUS overhead is constant,
whereas TRIGGER overhead increases with more frequent power failures, especially where checkpoints save a significant amount of data. LAPSUS
overhead is lower than TRIGGER, except for cases with a scarce frequency of power failures.

Benchmark LAPSUS per loop iteration TRIGGER per checkpoint

CRC 14 5
FFT 33,5 264
Dijkstra 25 605

Figure 10: Average NVM accesses. Despite TRIGGER requires
fewer NVM accesses than LAPSUS for the CRC benchmark at each
checkpoint, the latter ultimately yields lower energy overhead, as
shown in Fig. 10, because of the energy cost of trigger calls.

rare power failures. As the latter happen more frequently, LAPSUS
becomes most efficient. A similar observation applies to Fig. 9c.

While the energy overhead of LAPSUS is only due to NVM ac-
cesses to handle the loop state set, that of TRIGGER comes from
a combination of NVM accesses for checkpointing and trigger
calls. Fig. 10 reports statistics on NVM accesses for either solution.
For LAPSUS, the NVM accesses are an average per loop iteration,
whereas for TRIGGER they are required for each checkpoint. Inter-
estingly, NVM accesses for TRIGGER with the CRC benchmark are
lower than those for LAPSUS at every loop iteration. We conclude
that the better performance of LAPSUS compared to TRIGGER in
Fig. 9a is due to the overhead of trigger calls that do not yield a
checkpoint. The opposite situation holds for the other benchmarks,
even though the two figures are not directly comparable as LAP-
SUS incurs in the given number of NVM accesses at every iteration,
whereas TRIGGER pays the overhead only when checkpointing.

5 CONCLUSION
Intermittence awareness allows the occurrence of specific anom-
alies to gain new information regarding intermittence, unlocking
new design patterns. Developers exploit intermittence awareness
to make their program react to intermittence, altering the program
control flow and/or data flow accordingly. We make this concept
concrete with an instrumentation technique that uses intermittence
awareness to reduce checkpoints overhead inside loops. Our tech-
nique preserves the loop computational state across power failures,
without requiring to save a checkpoint after each iteration. The
LAPSUS programming abstraction facilitates developers in apply-
ing our technique to loops. We compare LAPSUS against existing
trigger-based checkpoint mechanisms. Across the benchmarks we
test, on average LAPSUS lowers the energy overhead of existing
checkpoint mechanism by 35.2𝑥 and reduces the execution time by
48.4𝑥 , demonstrating the impact of intermittence awareness.

Our technique has limitations, such as handling non-idempotent
accesses to complex data structures. It also introduces some non-
determinism that may complicate testing, as program execution
becomes dependent on energy patterns. As we plant the seed for
intermittence awareness, we also seek to address these issues.
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ABSTRACT
We present ALFRED: a virtual memory abstraction that resolves
the dichotomy between volatile and non-volatile memory in in-
termittent computing. Mixed-volatile microcontrollers allow pro-
grammers to allocate part of the application state onto non-volatile
memory. Programmers are therefore to manually explore the trade-
off between simpler management of persistent state against energy
overhead and possibility of intermittence anomalies due to non-
volatile memory operations. This approach is laborious and yields
sub-optimal performance. We take a different stand with ALFRED:
we provide programmers with a virtual memory abstraction de-
tached from the specific volatile nature of memory and automat-
ically determine an efficient mapping from virtual to volatile or
non-volatile memory. Unlike existing works, ALFRED does not re-
quire programmers to learn a new language syntax and the mapping
is entirely resolved at compile-time, reducing the run-time energy
overhead. We implement ALFRED through a series of machine-level
code transformations. Compared to existing systems, we demon-
strate that ALFRED reduces energy consumption by up to two orders
of magnitude given a fixed workload. This enables workloads to
finish sooner, as the use of available energy shifts from ensuring
forward progress to useful application processing.

CCS CONCEPTS
• Computer systems organization → Embedded software.
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1 INTRODUCTION
Ambient energy harvesting [10] enables deployments of battery-
less sensing devices [1, 20, 23, 27, 48, 50], reducing environment
impact and maintenance costs. However, harvested energy is erratic
and may not suffice to power devices continuously. Frequent power
failures occur that cause executions to become intermittent, with
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periods of active operation interleaved by periods where a device is
off recharging energy buffers. Power failures cause devices to lose
the program state, restarting all over again when energy is newly
available. Forward progress of programs is therefore compromised.
Problem. Several systems exist to ensure forward progress, as
we discuss in Sec. 2. Common to these solutions is the insertion
of state-saving operations within the execution flow. These op-
erations offer the opportunity to create a replica of the program
state, including main memory, register files, and program counter,
onto non-volatile memory. The program state is eventually restored
from non-volatile memory when energy returns, ensuring forward
progress across power failures. The placement of state-saving oper-
ations in the program may be either decided in a (semi-)automatic
fashion [7, 8, 11, 29, 36, 46, 49] or driven by programmers with
custom programming abstractions [16, 34, 35, 44, 47, 52].

Mixed-volatile microcontrollers also exist, which offer the abil-
ity to store slices of the program state directly onto non-volatile
memory. This is achieved using specific pragma statements [28], as

#pragma PERSISTENT(x)
unsigned int x = 5;

Program state allocated on non-volatile memory is automatically
retained across power failures and may be excluded from state-
saving operations, simplifying the management of persistent state.

Using mixed-volatile microcontrollers comes at the cost of in-
creased energy consumption: non-volatile memory operations may
require up to 247% the energy of their volatile counterpart [28, 40].
Storing only parts of the program state on non-volatile memory may
also yield intermittence anomalies [43, 45], due to re-executions
of non-idempotent code, which require further energy to be cor-
rected. Using mixed-volatile platforms, quantifying the advantages
in simpler management of persistent state against the correspond-
ing energy overhead is complex, as these depend on multiple factors
including energy patterns and execution flow.
ALFRED. We take a different stand. Rather than requiring program-
mers to manually determine when to use non-volatile memory for
what slice of the program state, we promote a higher-level of ab-
straction through a concept of virtual memory. Programmers write
intermittent code without explicitly mapping variables to volatile or
non-volatile memory. Given a placement of state-saving operations
in the code, we automatically decide what slice of the program state
must be allocated onto non-volatile memory, and at what point in
the execution. Programmers are therefore relieved from deciding
the mapping between program state and memory. Moreover, the
mapping is not fixed at variable level, but is automatically adjusted
at different places in the code for the same data item, based on
read/write patterns and program structure.
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ALFRED1 is our implementation of virtual memory for intermit-
tent computing, based on two key features:

(1) it is transparent to programmers: no dedicated syntax is to
be learned, and programmers write code in the familiar se-
quential manner without the need to tag variables.

(2) the mapping from virtual to volatile or non-volatile mem-
ory is entirely resolved at compile-time, reducing the energy
overhead that represents the cost of using the abstraction.

The virtual memory abstraction we conceive does not provide
virtualization in the same sense as mainstream OSes. Instead, it
offers an abstraction that shields programmers from the need to stat-
ically determine a specific memory allocation schema. ALFRED is
therefore sharply different compared to mainstream virtual memory
systems [5, 19]. These usually provide an idealized abstraction of
storage resources, so that software processes operate as if they had
access to a contiguous memory area, possibly even larger than the
one physically available. Address translation hardware maps virtual
addresses to physical addresses at run-time. In ALFRED, we target
resource-constrained energy-harvesting devices that compute in-
termittently [23]. The abstraction we offer provides programmers
with a higher-level view on the persistency properties of different
memory areas, and automatically determines the mapping from
the virtual memory to the volatile or non-volatile one. Because of
resource constraints, we determine this mapping at compile-time.

ALFRED determines this mapping using three key program trans-
formation techniques, illustrated in Sec. 3. Their ultimate goal is
simple, yet challenging to achieve, especially at compile-time:

Use the energy-efficient volatile memory as much as possible,
while enabling forward progress using non-volatile memory

with reduced energy consumption compared to existing solutions.

This entails that we need to promote the use of volatile memory
whenever convenient, for example, to compute intermediate results
or to store temporary data that need not survive a power failure,
while allocating the data that does require to be persistent onto
non-volatile memory in anticipation of a possible power failure.
By doing so, we decrease energy consumption by taking the best
of both worlds: we benefit from the lower energy consumption
of volatile memory whenever possible, and rely on the persistency
features of non-volatile memory whenever required.

Applying program transformations at compile-time is, however,
challenging because of the lack of run-time information. Sec. 4 il-
lustrates how we address the uncertainty that arises, using a set of
dedicated program normalization passes. The result of the trans-
formations require a specific memory layout to operate correctly
and a solution to the possible intermittence anomalies. We describe
in Sec. 5 how we deal with these issues, using an approach that is
co-designed with our program transformation techniques.

We build an implementation of ALFRED based on ScEpTIC [38,
43], an extensible open-source emulation environment for inter-
mittent programs. Given fixed workloads and staple benchmarks
in the field [7, 8, 26, 29, 43, 46, 49], we measure ALFRED perfor-
mance in energy consumption, number of clock cycles, memory
accesses, and restore operations. We compare ALFRED with multi-
ple baselines obtained by abstracting the key design dimensions of

1Automatic aLlocation oF non-volatile memoRy for transiEntly-powered Devices.

existing systems in a framework that allows us to instantiate base-
lines matching existing systems, while also exploring alternative
configurations. Depending on the benchmark, ALFRED can provide
several-fold improvements in energy consumption, which allow the
system to shift the energy budget to useful application process-
ing. This correspondingly allows the system to achieve comparable
improvements in the time to complete the workloads.

2 RELATED WORK
Ensuring forward progress is arguably the focus of most existing
works in intermittent computing [23]. Common to these is the use
of some form of persistent state on non-volatile memory.

A significant fraction of existing solutions employ a form check-
pointing to cross power failures [3, 7, 11, 36, 46]. This consists
in replicating the content of main memory, special registers, and
program counter onto non-volatile memory at specific points in
the code. Whenever the device resumes with new energy, state is
retrieved back from non-volatile memory and computations restart.
Systems such as Hibernus [7, 8] operate in a reactive manner: an
interrupt is fired from a hardware device that prompts the applica-
tion to take a checkpoint, for example, whenever the energy buffer
falls below a threshold. Differently, systems exist that place explicit
function calls to perform checkpoints [11, 36, 46, 49]. The specific
placement is a function of program structure and energy patterns.

Other approaches offer abstractions that programmers use to
define and manage persistent state [16, 34, 35, 52] and time pro-
files [24]. For example, DINO [34] allows programmers to split the
sequential execution in individual tasks and ensures transactional
semantics between consecutive task boundaries. Alpaca [35] goes
a step further and provides dedicated abstractions to defines tasks
as individual execution units that run with transactional semantics
against power failures and subsequent reboots.

Using mixed-volatile platforms, intermittence anomalies poten-
tially occur due to repeated executions of non-idempotent code [43,
45]. These are unexpected program behaviors that make executions
differ from their continuous counterparts. Systems are available
that address these issues with dedicated checkpoint placement
strategies [49] or custom programming abstractions [16, 34, 35, 52],
and to test their occurrence [38, 43]. Approaches are available that
conversely take advantage of them to realize intermittence-aware
control flows, promoting the occurrence of power failures to an
additional program input [40]. Additional issues in intermittent
computing include performing general testing of intermittent pro-
grams [15, 17, 21, 22], profiling their energy consumption [2, 15, 21],
and handling peripheral states across power failures [6, 9, 12, 37].

Our work offers a different standpoint. Unlike the works above,
we take the decision about what part of the application state to
allocate on non-volatile memory away from programmers, and
offer a uniform abstraction that does not entail any specific mem-
ory configuration. A set of program transformation techniques
automatically determines an energy-efficient allocation at compile
time, as a function of program structure and read/write patterns.
Most importantly, such an allocation is not fixed once and for all
at variable-level as in current practice, but is possibly adjusted at
different places in the code for the same data item.



ALFRED: Virtual Memory for Intermittent Computing SenSys’21, November 15–17, 2021, Coimbra, Portugal

Instrumentation 
with 

forward progress 
mechanism

Translation to
intermediate

representation 
+ 

Identification of
computation

intervals

Mapping from 
virtual memory 

to 
(non-)volatile

memory

STAGE 
{1}

Virtual 
Memory 

Abstraction

STAGE 
{2}

State 
Save

Virtual 
Memory 

Abstraction

...

M
em

or
y 

Ta
gsState Save

State Save

...

STAGE 
{3}

STAGE 
{4}

...

State Save

State Save

...

STAGE 
{5}

...

State Save

State Save

...

.BIN

STAGE 
{6}

Machine-code
compilation 

+ 
Firmware 

generation

WR

WR

Identification of
WAR hazards 

+ 
Create versions 

of affected 
memory locations 

R W

R

Figure 1: ALFRED compile-time pipeline.

Closest to our work are TICS [31] and the system of Jayakumar
et al. [30]. TICS [31] limits the size of persistent state by solely
saving the active stack frame and modified memory locations out-
side of it, which is conceptually similar to our approach. How-
ever, TICS primarily helps programmers deal with time across
power failures, whereas we specifically target energy efficiency.
TICS also exclusively uses non-volatile memory for global data
and undo-logging [36] to avoid intermittence anomalies [43, 45].
In contrast, we opportunistically allocate slices of program state
onto the energy-efficient volatile memory and employ program
transformation techniques that ensure memory idempotency [49].

The system of Jayakumar et al. [30] adjusts the mapping of global
variables, program code, and stack frames between volatile and non-
volatile memory, doing so at the granularity of individual functions.
They rely on hardware interrupts to trigger state-saving operations
at runtime and tentatively allocate everything to non-volatile mem-
ory first, then incrementally move data or code to volatile memory
until forward progress is compromised. At that point, they back-
track to the latest functioning configuration. Besides working at the
granularity of single data items and at compile-time, rather than at
run-time, our design is fundamentally different, as memory alloca-
tions are thought to systematically improve energy consumption.
Therefore, if forward progress is possible before applying ALFRED,
it remains so afterwards. ALFRED is thus never detrimental to the
application’s ability to do useful work.

3 VIRTUAL MEMORY MAPPING
The program transformation techniques of ALFRED determine the
mapping from virtual to volatile or non-volatile memory. They
are independent of the target architecture, as they are applied on
an architecture-independent intermediate representation of the
input program commonly used in compilers [33]. We illustrate the
compile-time pipeline in Sec. 3.1, followed by an explanation of the
single techniques in Sec. 3.2 to Sec. 3.4.

3.1 Overview
Fig. 1 shows the compile-time pipeline of ALFRED. The input at
stage ⟨1⟩ is a program written using the virtual memory abstraction;
therefore, variables in the program are not explicitly mapped to
either volatile or non-volatile memory.

The program is first processed through the compile-time support
an existing checkpoint system [7, 8, 11, 29, 36, 46, 49] or task-based
programming abstraction [16, 34, 35, 44, 47, 52]. Either way, at
stage ⟨2⟩ the program includes state-save operations inlined in the
execution flow as calls to a checkpointing subsystem or placed at
task boundaries. These operations are meant to dump program state

onto non-volatile memory prior to a power failure and to restore
the program state from non-volatile memory when energy is newly
available. The techniques we explain next are orthogonal to how
state-save operations are placed in the code.

Unlike existing programming systems for intermittent comput-
ing, our techniques work at the level of machine-code. At this level,
memory operations are visible as they are actually executed on the
target platform. At stage ⟨3⟩ in Fig. 1 we translate the program into
an intermediate representation of the source code and initially map
every memory operation to volatile memory. If we were to execute
the code this way, state-save operations would need to dump the
entire main memory to the non-volatile one when executing.

At the same stage we also partition the code into logical units
we call computation intervals. A computation interval consists in a
sequence of machine-code instructions executed between two state-
save operations. For programs using checkpoint mechanisms [7, 8,
11, 29, 36, 46, 49], computation intervals correspond to sequences of
instructions between two checkpoint calls. For programs using task-
based programming abstractions [16, 34, 35, 44, 47, 52], computation
intervals essentially correspond to tasks.

From now on, the three program transformations we illustrate
next are applied in the order we present them. We focus on the
intuition and general application of each transformation and post-
pone the discussion about dealing with compile-time uncertainty
to Sec. 4. Our techniques operate on every memory target in the
program, including not just memory targets that the compiler uses
to map variables in source code, but also memory locations used by
operations that are normally transparent to programmers, such as
PUSH or POP. We detail how we identify the memory addresses of
data items possibly involved in a transformation in Sec. 4 and how
to compute their addresses after the transformations in Sec. 5.

As we hinted earlier, the mapping we want to achieve is one
where volatile memory is used as much as possible for data that
requires no persistency, for example, intermediate results or tem-
porary data, as it is more energy efficient than its non-volatile
counterpart. However, we want to make sure to use the latter, pay-
ing an energy overhead, whenever persisting data to survive power
failures is necessary. Intuitively, the transformations generate a
mapping from virtual to volatile or non-volatile memory where the
former acts as a volatile cache of sorts.

The snippets we show next include both source and machine
code for clarity. Line numbers refer to source code.

3.2 Mapping Write Operations
The first transformation we apply is based on a key intuition: a
memory write operation should target non-volatile memory as soon
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1. save state();
2. a = ...
3. a = a+ 1;
4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

2.1. STORE R0, a

3.1. LOAD a, R1

3.2. STORE R2, a

4.1. LOAD a, R3

5.1. LOAD a, R4

6.1. LOAD a, R5

6.2. STORE R5, anv

redundant

(a) Before the transformation.

1. save state();
2. a = ...
3. a = a+ 1;
4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

2.1. STORE R0, a

3.1. LOAD a, R1

3.2. STORE R2, anv

No longer saves a

4.1. LOAD a, R3

5.1. LOAD a, R4

(b) After the transformation.

Figure 2: Example of mapping write operations.

as the written data is final compared to the next state-save operation,
so it relieves the latter from the corresponding processing.

The notion of final describes situations where the program no
longer alters the data before the next state-save operation. Our
intuition essentially corresponds to anticipating the actions that
the state-save operation would perform anyways. This allows these
operations to spare the overhead for saving data that can be con-
sidered final earlier: after the transformation the data is already on
non-volatile memory when the state-save operation executes.
Example. Consider the program of Fig. 2(a) and let us focus on the
computation interval extending up to line 6. We find two STORE
instructions that target the volatile memory location that variable
𝑎 is initially mapped to. Note that the second STORE instruction
writes the same value that the state-save operation of line 6 stores
for variable 𝑎, because the latter is initially allocated onto volatile
memory and must be preserved across power failures. This is the
case because the data for variable 𝑎 is final already at line 3.

To save the overhead of redundant memory operations, we make
the STORE instruction of line 3 immediately target non-volatile
memory. This transformation allows us to remove the instructions
that are necessary to save variable 𝑎 at the state-save operation
of line 6, along with the corresponding energy overhead, as line 3
already saves the content variable 𝑎 onto non-volatile memory.

Fig. 2(b) shows the resulting program, which has reduced energy
overhead because the state-save operation is no longer concerned
with variable 𝑎 that is made persistent already at line 3. Conceptu-
ally, this corresponds to moving the STORE instruction that would
normally be part of the state-save operation to the last point in the
program where variable 𝑎 is actually written.

This transformation does not alter the target of the STORE in-
struction of line 2, where the data is not final yet. Doing so would
incur an unnecessary energy overhead due to a write operation on
non-volatile memory for non-final data, which is going to be over-
written soon after. In fact, the STORE instruction of line 2 produces
an intermediate result for variable 𝑎, which we need not persist.
Generalization. We apply this technique to an arbitrary compu-
tation interval as follows. For each memory location 𝑥 , we con-
sider the possibly empty set of memory write instructions 𝐼𝑤 =
(𝐼𝑤1, ..., 𝐼𝑤𝑛) that manipulate 𝑥 and are included in the computa-
tion interval; 𝐼𝑤𝑛 is the last such instruction and there is no other
memory write instruction before the next state-save operation.

We relocate the target of 𝐼𝑤𝑛 to non-volatile memory, as what-
ever data 𝐼𝑤𝑛 stores is final. The targets of all other write instruc-
tions 𝐼𝑤1, ..., 𝐼𝑤 (𝑛−1) remains on volatile memory, as they produce
intermediate results that 𝐼𝑤𝑛 eventually overwrites. Note that this
transformation is sufficient to preserve the value of the memory

4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

R.1. LOAD anv , R0

R.2. STORE R0, a

state restore();

7.1. LOAD a, R1

7.2. STORE R2, a

redundant

(a) Before the transformation.

4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

state restore();

7.1. LOAD anv, R1

7.2. STORE R2, a

No longer restores a

(b) After the transformation.

Figure 3: Example of mapping read operations.

location 𝑥 across power failures, while reducing the number of
instructions targeting non-volatile memory.

By applying this transformation to all computation intervals
and all memory locations, state-saving operations at stage ⟨4⟩ in
Fig. 1 are left with only register file and special registers to handle,
and accordingly modified. If a memory location is altered in a
computation interval, our technique identifies when such a change
is final and persists the data there. Otherwise, if 𝐼 = ∅ there is
no need to persist the data, as some previous state-save operation
already did that the last time the data changed.

This processing not only reduces the operations on non-volatile
memory, but also reduces the overhead of state-saving operations.
A regular checkpoint mechanism would save the entire content of
volatile memory onto the non-volatile one [7, 8, 11, 46], including
unmodified memory locations. In our case, memory locations not
modified in a computation interval are excluded from processing.
We thus achieve differential checkpointing [3] with zero run-time
overhead in both energy and memory consumption.

Next, consider the read instructions possibly included in the
computation interval between 𝐼𝑤𝑛 and the state-save operation. As
the data is now on non-volatile memory, in principle, they should
also be redirected to non-volatile memory. Whether this is the most
efficient choice, however, is not as simple. The third transformation,
described in Sec. 3.4, addresses the related trade-offs.

3.3 Mapping Read Operations
The second transformation is based on the dual intuition: when
resuming, restore routines may be limited to register file and special
registers, while memory read operations from non-volatile memory
should be postponed to whenever the data is needed, if at all.

This transformation effectively corresponds to postponing the
restore operation to when the data is actually used and a read opera-
tion would execute anyways. By doing so, we spare the instructions
in the restore routines that would load the data back to volatile
memory from the non-volatile one. This is the case after applying
the first transformation, which makes state-save operations be lim-
ited to restoring the register file and special registers. The content
of main memory is persisted earlier, when it becomes final.
Example. Consider the program of Fig. 3(a). Following a power
failure, the execution resumes from line 6 as the restore routines
loads the value of the program counter from non-volatile memory,
along with register file, other special registers, and the slice of main
memory that was persisted prior to the power failure. However,
note that the LOAD instruction of line 7 reads the same value for
variable 𝑎 that is loaded earlier as part of the restore routine.

A more efficient strategy is to limit the restore routine to register
file and special registers, and make the LOAD instruction of line 7
target the non-volatile memory where the data resides. Compared
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1. save state();
2. a = ...
3. a = a+ 1;
4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

3.2. STORE R2, anv

3.3. STORE R2, a

Target volatile copy

Create volatile copy

4.1. LOAD a, R3

5.1. LOAD a, R4

Figure 4: Consolidating read operations.

to a regular checkpoint mechanism, this transformation allows us
to remove the instructions that restore variable 𝑎 from checkpoint
data, as the first read instruction that is actually part of the program
is relocated to the right address on non-volatile memory.

Fig. 3(b) shows the program after this transformation, which
bears reduced energy overhead because the restore routine is no
longer concerned with variable 𝑎, as it is loaded straight from non-
volatile memory if and when necessary. This corresponds to moving
the LOAD instruction normally be part of the restore to routine for
variable 𝑎 to where in the program variable 𝑎 is actually read.
Generalization. Similar to the previous transformation, we apply
this technique to an arbitrary computation interval as follows. First,
we limit restore routines to register file and special registers. Next,
for each memory location 𝑥 , we consider the possibly empty set
of memory read instructions 𝐼𝑟 = (𝐼𝑟1, ..., 𝐼𝑟𝑛) that manipulate 𝑥
and are included in the computation interval. Dually to the first
transformation, 𝐼𝑟1 is the first such instruction and there is no
other memory read instruction after the state-save operation at the
start of the computation interval. We relocate the target of 𝐼𝑟1 to
non-volatile memory, as that is where the data is to be loaded from.

Whether the remaining 𝑛 − 1 read operations 𝐼𝑟2, ..., 𝐼𝑟𝑛 in a
computation interval are to target volatile or non-volatile memory
is determined by applying the program transformation that follows.

3.4 Consolidating Read Operations
Starting with a program that exclusively uses volatile memory at
stage ⟨3⟩ in Fig. 1, the first two transformations relocate the target
of selected read or write operations to non-volatile memory. As data
now resides on non-volatile memory near state-save operations,
further relocations to non-volatile memory may be required for
other read operations. This is the case, for example, for read opera-
tions following the last non-volatile write operation that makes data
final, as mentioned in Sec. 3.2. Whether this is the most efficient
choice, however, is not straightforward to determine.

The third transformation is based on the intuition that whenever
memory operations are relocated to non-volatile memory, it may be
convenient to create a volatile copy of data to benefit from lower
energy consumption for read operations.
Example. The program in Fig. 2(b) includes further read operations
after line 3 and memory location 𝑎 is on non-volatile memory as a
result of the first transformation. In principle, we should relocate
the read instructions on line 4 and 5 to non-volatile memory, as that
is where the sought data resides. Because of the higher energy con-
sumption of non-volatile memory, doing so may possibly backfire,
outweighing the gains of the first transformation.

We must thus determine whether it is worth paying the penalty
for creating a volatile copy of variable 𝑎 to benefit from the more
energy efficient operations there. Such a penalty is represented

by an additional STORE instruction to create a copy of the data on
volatile memory, as shown in Fig. 4. The new STORE uses the same
source register, hence it represents the only added overhead. The
benefit is the improved energy consumption obtained by making
the instructions of line 4 and 5 target volatile memory, instead of
the non-volatile one. Note that the exact same situation occurs for
read instructions following the first LOAD instruction in Fig. 3(b).

Consider the frequently used MSP430-FR5969 [16, 28, 34, 35, 40]
with internal FRAM as non-volatile memory, and say it runs at
16𝑀𝐻𝑧, where FRAM accesses require an extra clock cycle. Based
on the datasheet [28], we calculate that if read operations in line 4
and 5 target non-volatile memory, the program consumes 1.522𝑛𝐽
for these operations. I we pay the penalty of the additional STORE
instruction, but use volatile memory for all other read operations,
the program consumes 1.376𝑛𝐽 for the same processing. This is
a 10.6% improvement. We accordingly insert an additional STORE
instruction after line 3 to copy 𝑎 to volatile memory and we keep
the read operations of line 4 and 5 target volatile memory.
Generalization. For each memory location 𝑥 , we consider the
𝑛 read instructions 𝐼𝑟1, ..., 𝐼𝑟𝑛 in a computation interval that we
need to consolidate, thus excluding those altered by the second
transformation. We compute the energy consumption of a single
non-volatile memory read instruction as

𝐸𝑟𝑒𝑎𝑑_𝑛𝑣 = 𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 ∗ (1 +𝐶𝐶𝑟𝑒𝑎𝑑 ), (1)
where 𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 is the energy consumption per clock cycle of
the non-volatile memory read instruction and 𝐶𝐶𝑟𝑒𝑎𝑑 are the extra
clock cycles possibly required, as mixed-volatile microcontrollers
may incur in extra clock cycles when operating on the slower non-
volatile memory. These clock cycles consume the same energy as a
regular non-volatile read operation.

The break-even point between paying the penalty of an ad-
ditional STORE instruction to benefit from more energy-efficient
volatile read operations, versus the cost of allocating all read opera-
tions to non-volatile memory is determined according to inequality

𝐸𝑟𝑒𝑎𝑑_𝑛𝑣 ∗ 𝑛 < 𝐸𝑤𝑟𝑖𝑡𝑒 + 𝐸𝑟𝑒𝑎𝑑 ∗ 𝑛, (2)
where 𝐸𝑟𝑒𝑎𝑑_𝑛𝑣 is the one of Eq. 1, 𝑛 is the number of considered
memory read instructions, and 𝐸𝑟𝑒𝑎𝑑 and 𝐸𝑤𝑟𝑖𝑡𝑒 represent the en-
ergy consumption of a volatile memory read and write instruction,
respectively. This can be rewritten as

0 < 𝐸𝑤𝑟𝑖𝑡𝑒 − 𝑛 ∗ (𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 ∗ (1 +𝐶𝐶𝑟𝑒𝑎𝑑 ) − 𝐸𝑟𝑒𝑎𝑑 ). (3)
As the energy figures are fixed for a given microcontroller, Eq. 3
is exclusively a function of 𝑛, that is, the number of memory read
instructions to consolidate in the computation interval. We can
accordingly state that creating a volatile copy of the considered
memory location is beneficial as long as

𝑛 > 𝑛𝑚𝑖𝑛 , with 𝑛𝑚𝑖𝑛 =

⌊
𝐸𝑤𝑟𝑖𝑡𝑒

𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 ∗ (1 +𝐶𝐶𝑟𝑒𝑎𝑑 ) − 𝐸𝑟𝑒𝑎𝑑

⌋
,

(4)
where 𝑛𝑚𝑖𝑛 is the minimum number of memory read instructions
to ensure that creating a volatile copy of a memory location incurs
in lower overall energy consumption. If the condition of Eq. 4 is not
met, we make the 𝑛 read operations target non-volatile memory.

Interestingly,𝑛𝑚𝑖𝑛 is independent of the specific read/write mem-
ory patterns and of program structure. It only depends on hardware
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1. save state();
2. for(i = 0; i <N; i++) {
3. sum = sum+ a[i];
4. x = a[i];
5. y = a[N − i+ 1];
6. ...
7. }
8. save state();

3.1. LOAD i, R0

3.2. LOAD [a+R0], R1

tag: i

tag: a[i]

4.1. LOAD i, R2

4.2. LOAD [a+R2], R3

tag: i

tag: a[i]

5.1. LOAD i, R4

5.2. SUB R5, N , R4

5.3. ADD R6, R4, 1
5.4. LOAD [a+R6], R7

tag: i
tag: N-i
tag: N-i+1
tag: a[N-i+1]

Figure 5: Example of the same group of instructions accessing
multiple memory locations.

features. As an example, 𝑛𝑚𝑖𝑛 is 0 (2) for the MSP430-FR5969 at a
clock frequency of 16𝑀𝐻𝑧 (8𝑀ℎ𝑧). This means that if the micro-
controller runs at 16𝑀𝐻𝑧, it is always beneficial to create a volatile
copy of the relevant memory locations.

4 COMPILE-TIME UNCERTAINTY
The transformation techniques of Sec. 3 rely on program infor-
mation, such as the order of instruction execution and accessed
memory addresses, that may not not be completely available at com-
pile time. Constructs altering the control flow, such as conditional
statements or loops, and memory accesses through pointers make
these information a function of the run-time state. We describe next
how we resolve this uncertainty, making it possible to apply the
techniques of Sec. 3 to arbitrary programs.

We distinguish between two types of compile-time uncertainty.
Memory uncertainty occurs when the exact memory address that a
read/write operation targets cannot be determined. We resolve this
uncertainty using virtual memory tags, as described in Sec. 4.1. In-
struction uncertainty occurs when the order of instruction execution
is not certain. Addressing this issue requires different techniques de-
pending on program structure. In the interest of brevity, we give an
intuition of how we can achieve this in the case of loops in Sec. 4.2.
The corresponding generalization is available nonetheless [41].

Here again, the code snippets include both source and machine
code for easier illustration, with line numbers pointing to the former,
yet ALFRED operates entirely on machine code.

4.1 Memory Uncertainty
Our key observation here is that the techniques of Sec. 3 do not
necessarily require exact memory addresses to operate; rather, they
must identify the groups of instructions accessing the same memory
location, whatever that may be.
Example. Fig. 5 shows an example. Lines 3, 4, and 5 target multiple
memory locations across different iterations of the loop. The corre-
sponding physical addresses in memory change at every iteration.

To apply the techniques of Sec. 3, however, exact knowledge
of the physical addresses in memory is not required. We rather
need to determine that, at any given iteration of the loop, lines 3
and 4 target the same memory location, whereas line 5 targets a
different one. Note that the information available in machine code
is insufficient to this end: from that, we can only conclude that lines
3, 4, and 5 access all the addresses in the range (𝑎[0], 𝑎[𝑁 − 1]).

We automatically associate a virtual memory tag to every mem-
ory locations an instruction targets, as shown in Fig. 5. A virtual
memory tag is an abstraction of physical memory that aids the
application of the techniques of Sec. 3 by succinctly capturing what
memory locations are the same in a computation interval.

1. save state();
2. for(i = 0; i <N; i++) {
3. tmp = sum;
4. tmp = tmp+ a[i];
5. sum = tmp;
6. }
7. save state();

3.1. LOAD sum, R0

• During first iteration, it needs to
read sum from NVM

• During other iterations, it needs
to read sum from volatile memory

✗ Ir1 uncertain

5.1. STORE R2, sum

• During last iteration, it needs to
write sum onto NVM

• During other iterations, it needs
to write sum onto volatile memory

✗ Iwn uncertain

(a) Example of a compile-time uncertainty in a loop.

1. save state();
2. sum = sum;
3. for(i = 0; i <N; i++) {
4. tmp = sum;
5. tmp = tmp+ a[i];
6. sum = tmp;
7. }
8. sum = sum;
9. save state();

2.1. LOAD sum, R0

Dummy write to fix Ir1

3.1. LOAD sum, R1

• During all the iterations, it needs
to read sum from volatile memory

✔ Uncertainty removed

5.1. STORE R2, sum

• During all the iterations, it needs
to write sum onto volatile memory

8.1. STORE R3, sum

Dummy write to fix Iwn

✔ Uncertainty removed

(b) Normalized form of the loop that removes the compile-time uncertainty.

Figure 6: Example of compile-time uncertainty with loops.

In the program of Fig. 5, we attach the tag 𝑎[𝑖] to the memory lo-
cations read in lines 3 and 4. Instead, we attach the tag 𝑎[𝑁 − 𝑖 + 1]
to the memory location read in line 5. This information is sufficient
for the technique mapping read operations, described in Sec. 3.3, to
understand that line 3 and 4 are to be considered as one sequence
𝐼 ′𝑟 , whereas line 5 is to be considered as a different sequence 𝐼 ′′𝑟 .

Virtual memory tags are, in a way, similar to debug symbols
attached to machine code. They are obtained by inspecting the
source code ahead of the corresponding translation, through mul-
tiple passes of a dedicated pre-processor. The transformations of
Sec. 3 look at these information, instead of the memory locations in
machine code. To handle pointers, we combine virtual memory tags
with memory alias analysis [14, 32] to identify cases of indirect ac-
cess to the same memory location. Unlike debug symbols, however,
these information is removed from the program at stage ⟨5⟩.

4.2 Instruction Uncertainty → Loops
Key to the application of the program transformations in Sec. 3.2 and
Sec. 3.3 is the identification of the last (first) memory write (read)
instruction in a computation interval. This may be affected by loops,
conditional statements, and function calls that alter the order of
instruction execution. Further, whenever the execution of state-save
operations depends on run-time information, for example, when a
checkpoint call lies in a loop, the span of computation intervals is
also undefined at compile time.

We describe next how we address these issues in the case of
loops; how we deal with all other cases is available elsewhere [41].
Example. Fig. 6(a) exemplifies the situation. Say we are to apply
the mapping of write operations, described in Sec. 3.2. Doing so
requires to identify the last memory write instruction 𝐼𝑤𝑛 before
the state-save operation. Depending on the value of 𝑖 compared to
𝑁 , the write operation in line 5 may or may not be the one that
makes the data final for variable sum. The same reasoning is valid
when we are to apply the mapping of read operations, described
in Sec. 3.3. Depending on the value of 𝑖 compared to 𝑁 , the read
operation in line 3 may or may not be the first for variable sum
after the state restore. As a matter of fact, 𝑖 and 𝑁 are in control of
what write (read) instruction is the 𝐼𝑤𝑛 (𝐼𝑟1).
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One may operate pessimistically and make both the LOAD on
line 3 and the STORE on line 5 target non-volatile memory. This
choice may be inefficient, because for all values of 𝑖 that are neither
0 nor 𝑁 − 1, the loop computes intermediate results that are going
to be overwritten anyways, so the cost of non-volatile memory
operations is unnecessary. To complicate matters, the value of 𝑁
itself may vary across different executions of the same fragment of
code, as it may depend on runtime state.
Normalization. We apply techniques of program normalization [4,
51] to resolve this uncertainty, as well as all others that possibly
arise when the order of instruction execution depends on run-time
information. Program normalization refers to a set of established
program transformations designed to facilitate program analysis
and automatic parallelization. Many compilers [18] for multi-core
processors, for example, include multiple normalization passes.

To resolve the uncertainty in Fig. 6(a), we need to be in the
position to persist the value of sum once we are sure the loop
is over and before the state-save operation. Fig. 6(b) shows one
way to achieve this. We add a dummy write consisting in a pair of
LOAD and STORE instructions for variable sum after the loop. These
instructions are inserted after code elimination steps and bear no
impact on program semantics, but fix where in the code the data
for sum is final, regardless of the value of 𝑖 and 𝑁 . We add a similar
instruction prior to the loop to fix where the first read for sum
occurs. We can now make both STORE on line 8 and the LOAD on
line 2 target non-volatile memory without unnecessary overhead.
All other operations now concern intermediate results that may
be stored on volatile memory. As a result, 𝑖 and 𝑁 are no longer
in control of what is the 𝐼𝑤𝑛 (𝐼𝑟1) write (read) instruction that the
transformation in Sec. 3.2 and Sec. 3.3 would consider.

The normalization step introduces an overhead. To reduce that,
whenever possible we leverage information cached in registers. For
example, in Fig. 6(b), the value for sum stored in a register in line 6
may be picked up later in line 8, instead of re-loading the value
from main memory. Applying this kind of optimization is, however,
not always possible, as the content of registers may be overwritten
by other instructions that execute in between. In Sec. 6 we prove
that, despite the overhead of normalization, ALFRED programs are
more energy-efficient than their regular counterparts.

We apply similar normalization passes to resolve the uncertainty
possibly arising with conditional statements, function calls, and
when the span of computation intervals is undefined at compile
time. Further optimizations to abate the overhead we generate are
also possible depending on the programming construct [41].

5 MEMORY HANDLING
To make the techniques of Sec. 3 and Sec. 4 work correctly, we devise
a custom memory layout that can be determined at compile-time
and a schema to address the possible intermittence anomalies.

5.1 Memory Layout
Despite virtual memory tags ensure we can correctly group in-
structions, we still need to identify the addresses of the volatile or
non-volatile versions of the same memory location. We address
this problem by placing the volatile and non-volatile versions of a

1. save state();
2. tmp = a
3. tmp = tmp+ 1;
4. a = tmp;
5. y = f(a);

6. save state();

Power failure

LOAD anv, R0

STORE R1, anv

LOAD anv, R2

NVM

a: 0

NVM

a: 1

1. save state();
2. tmp = a
3. tmp = tmp+ 1;
4. a = tmp;
5. y = f(a);
6. save state();

NVM

a: 1

NVM

a: 2

✗ Result differs from equivalent continuous execution

(a) Example of an intermittence anomaly.

1. save state();
2. tmp = a
3. tmp = tmp+ 1;
4. a = tmp;
5. y = f(a);

6. save state();

Power failure

LOAD ar, R0

STORE R1, arw

LOAD arw, R2

NVM

ar: 0

arw: ...

NVM

ar: 0

arw: 1

1. save state();
2. tmp = a
3. tmp = tmp+ 1;
4. a = tmp;
5. y = f(a);
6. save state();

NVM

ar: 0

arw: 1

✔ Result equivalent to continuous execution

(b) Example of how to avoid the intermittence anomaly with memory versioning.

Figure 7: Example of an intermittence anomaly.

memory location at the same offset with respect to the correspond-
ing base address. Note that the compiler treats the two segments as
separate memory sections and makes them start at a fixed offset.
This ensures that the volatile and non-volatile versions of the same
memory location are at a fixed offset, too.

We can then express the address of the non-volatile version of a
memory location as a function of the address of its volatile version,
and vice versa. This allows us to allocate memory operations to
either memory segment with ease, even in the presence of indirect
accesses through pointers. To make an instruction that originally
operates on volatile memory now target the non-volatile one, we
add the offset between volatile and non-volatile segments to its
target address. We operate the other way around when we make
an instruction target volatile memory from the non-volatile one.
When the instruction executes, it retrieves the address information
that are unknown at compile-time and calculates the actual target.

5.2 Dealing with Intermittence Anomalies
Using mixed-volatile platforms, the re-executions of non-idempotent
portions of code may cause intermittence anomalies [34, 42, 43, 45,
49], consisting in behaviors unattainable in a continuous execution.
The problem possibly arises regardless of whether the code is writ-
ten directly by programmers [34, 42, 43, 49] or is the result of the
program transformations of Sec. 3.
Example. Consider the program of Fig. 7(a). Variable 𝑎 is non-
volatile. Following the state-save operation on line 1, the current
value of variable 𝑎, that is 0, is initially retrieved from non-volatile
memory. The execution continues and line 4 updates the value of
variable 𝑎 on non-volatile memory to 1. This is how a continuous
execution would normally unfold.

Imagine a power failure happens right after the execution of
line 4. When the device resumes as energy is back, the program
restores the program state from non-volatile memory, which in-
cludes the program counter. The program then resumes from line 2,
which is re-executed. As variable 𝑎 on non-volatile memory retains
the effects of the operations executed before the power failure, the
value read by line 2 is now 1, that is, the value written in line 4
before the power failure in the previous power cycle. This causes
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line 4 to produce a result that is unattainable in any continuous
execution, as it updates the value of variable 𝑎 to 2, instead of 1.

Many such situations exist that possibly cause erratic behaviors,
including memory operations on the stack and heap [42, 43, 49].
Memory versioning. Intermittence anomalies happen whenever
a power failure introduces a Write-After-Read (WAR) hazard [34,
42, 49] on a non-volatile memory location. In Fig. 7(a), the memory
read of line 2 and the memory write of line 4 represent a WAR
hazard for variable 𝑎. Several techniques exist to avoid the occur-
rence of intermittence anomalies [26, 34–36, 42, 43, 49]. In general,
it is sufficient to break the sequences of instructions involved in
WAR hazards [34, 42, 43, 49] so the involved instructions neces-
sarily execute in different power cycles. Existing solutions place
additional checkpoints [49] or enforce transactional semantics to
specific portions of code [26, 34–36].

We use a different approach that tightly integrates with the
compile-time operation of ALFRED. First, to reduce the number of
instructions possibly re-executed, every call to a state-save oper-
ation in ALFRED systematically dumps the state on non-volatile
memory, regardless of the current energy level. This is different
than in many checkpoint systems, where the decision to take a
checkpoint is subject to current energy levels [7, 8, 11, 46]. The
overhead we impose by doing this is very limited, as state-save
operations are limited to register file and program counter after
applying the transformations of Sec. 3.

For each computation interval, we then create two versions of
each non-volatile memory location possibly involved in a WAR
hazard. One version is a read-only copy and contains the result
produced by previous computation intervals; the other version is a
read-and-write copy and contains the result of the considered com-
putation interval. We direct the memory read (write) instructions
to the read-only (read-and-write) copy. This ensures that in case
of a re-execution, the read operations access the values produced
by the previous computation interval, as the (partial) results of the
current computation interval remain invisible in the read-and-write
copies. When transitioning to the next computation interval, the
read-only and read-and-write copies are swapped to allow the next
computation interval to access the (now, read-only) data of the
computation interval just concluded.

Fig. 7(b) shows how this solves the intermittence anomaly of
Fig. 7(a). Line 2 reads variable 𝑎’s read-only copy, whereas line 4
writes variable 𝑎’s read-and-write copy. Line 4 accordingly reads
variable 𝑎’s read-and-write copy, as it needs the data that line 4 pro-
duces. If a power failure happens after line 4 and line 2 is eventually
re-executed, that read operation still targets𝑎 read-only copy, which
correctly reports 0. Instead, after swapping the two copies, the next
computation interval correctly accesses the copy of variable 𝑎 that
reports value 1, equivalently to a continuous execution.

We apply this technique as a further code processing step, as
shown in stage ⟨5⟩ of Fig. 1. First, we identify the WAR hazards.
For each memory write instruction 𝐼𝑤 on a non-volatile memory
location with tag 𝑥 , we check if there exists a memory read instruc-
tion 𝐼𝑟 such that i) 𝐼𝑟 targets a non-volatile memory location with
the same memory tag 𝑥 , and ii) 𝐼𝑟 may execute before 𝐼𝑤 , that is, 𝐼𝑟
happens before 𝐼𝑤 in the control-flow graph. If such 𝐼𝑟 exists, the
pair (𝐼𝑤 , 𝐼𝑟 ) represents a WAR hazard.

Next, we create the read-only and read-and-write copies by dou-
bling the space that the compiler normally reserves to the data
structure 𝑥 refers to. As we allocate the two copies in contiguous
memory cells, their relative offset is fixed and may be used at com-
pile time to direct the memory operation to either copy. We then
make 𝐼𝑟 target the read-only copy, together with every memory
read instruction that operate on 𝑥 and executes before 𝐼𝑤 . In con-
trast, we make 𝐼𝑤 target the read-and-write copy of 𝑥 , together
with all corresponding memory read instructions that happen af-
ter 𝐼𝑤 . As this processing occurs after program normalization, the
compile-time uncertainty in the order of instruction execution or in
the span of computation intervals is already resolved at this stage.

6 EVALUATION
Our evaluation of ALFRED considers multiple dimensions. We
describe next the experimental setup and the corresponding results.

6.1 Setting
We opt for system emulation over hardware-based experimentation,
as it enables better control on experiment parameters and allows
us to carefully reproduce program execution and energy patterns
across ALFRED and the baselines we consider. Because of the highly
non-deterministic behavior of energy sources, achieving perfect
reproducibility is extremely challenging using real devices [22].
Tool and implementation. We use ScEpTIC [38, 43], an open-
source extensible emulation tool for intermittent programs. ScEp-
TIC emulates the execution of the LLVM Intermediate Representa-
tion (IR) [33] of a source code and provides bindings for implement-
ing custom extensions to i) apply program transformations and ii)
map specific performance metrics of the IR to those of machine-
specific code, for example, to measure energy consumption.

ScEpTIC organizes the LLVM IR into a set of Abstract Syntax
Trees (ASTs), one for each function in source code. Each of these
ASTs is generated by augmenting the original LLVM AST with
dedicated ScEpTIC elements, which represent information on the
emulated instructions and architectural elements, such as I/O op-
erations and registers. We implement the pipeline of Fig. 1 from
stage ⟨3⟩ onwards as a set of further transformations of these ASTs.
A detailed description of this implementation is available [41], along
with an open-source prototype release of our ScEpTIC extension
implementing ALFRED transformations [39].

We also implement a machine-specific ScEpTIC extension to
map the execution of the IR to the energy consumption of the
MSP430-FR5969 [28], a low-power MCU that features an inter-
nal and directly-addressable FRAM as non-volatile memory. The
MSP430-FR5969 is often employed for intermittent computing [8,
34, 35, 46, 49]. Our extension takes as configuration parameters the
energy consumption per clock cycle of various operating modes of
the MSP430-FR5969 [28], such as regular computation, (non-)vo-
latile memory read/write operations, and peripheral accesses.

Dimension Possible instances
Memory configuration Volatile, NonVolatile
Checkpoint call placement Loop-Latch, Function-Return,

IdempotentBoundaries
Checkpoint execution Probe, Execute

Figure 8: Design dimensions for baselines.
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Figure 9: Energy consumption and number of clock cycles
comparing ALFRED with a baseline using Volatile, Probe,
and either Loop-Latch or Function-Return. For a baseline,
’ll’ or ’fr’ indicate Loop-Latch or Function-Return.

Baselines and benchmarks. We compare ALFRED with check-
point mechanisms that instrument programs automatically [11, 36,
46, 49] by placing calls to a checkpoint library at specific places
in the code. We do not consider, instead, checkpoints mechanisms
that use interrupts to trigger the execution of checkpoints [7, 8, 29–
31], including TICS [31] and the work of Jayakumar et. al [30], as
checkpoints do not execute at pre-defined places in the code and
thus boundaries of computation intervals cannot be identified. The
latter is required for ALFRED to apply the transformations of Sec. 3.

Due to the variety of existing compile-time checkpoint systems,
we abstract the key design dimensions in a framework that allows
us to instantiate baselines that correspond to existing works, while
retaining the ability to explore configurations not strictly corre-
sponding to available systems. Fig. 8 summarizes these dimensions.

On such design dimension is the memory configuration. We con-
sider two possible instances, Volatile and NonVolatile. Volatile
allocates the entire main memory onto volatile memory. To ensure
forward progress, each checkpoint must therefore save the content
of main memory, register file, and special registers onto non-volatile
memory. This is the case, for example, in Mementos [46] and Har-
vOS [11]. Instead, the NonVolatile instance allocates the entire
main memory onto non-volatile memory. Here checkpoints may
be limited to saving the content of the register file and program
counter onto non-volatile memory, as main memory is already
non-volatile. This is the case of Ratchet [49].

A given memory configuration is typically coupled to a dedicated
strategy for placing checkpoint calls in the code. Systems that only
use volatile main memory, as in Volatile, may place checkpoints
using the Loop-Latch or Function-Return placement strategies
of Mementos [46]. Systems that only use non-volatile main mem-
ory, as in NonVolatile, place checkpoints using the strategy of
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Figure 10: Memory accesses comparing ALFRED with a
baseline using Volatile, Probe, and either Loop-Latch or
Function-Return.

Benchmark Baseline VM
(bytes)

Baseline NVM
(bytes)

ALFRED VM
(bytes)

ALFRED NVM
(bytes)

CRC (ll) 8Mhz 812 1688 6 850
CRC (ll) 16Mhz 812 1688 26 850
CRC (fr) 8Mhz 812 1636 26 810
CRC (fr) 16Mhz 812 1636 30 810
FFT (ll) 8Mhz 16708 33514 64 29082
FFT (ll) 16Mhz 16708 33514 2188 29082
AES (ll) 8Mhz 1276 2614 40 1334
AES (ll) 16Mhz 1276 2614 42 1334
AES (fr) 8Mhz 1276 2614 58 1338
AES (fr) 16Mhz 1276 2614 62 1338

Figure 11: Volatile memory (VM) and non-volatile memory
(NVM) in ALFRED against a baseline using Volatile, Probe,
and either Loop-Latch or Function-Return.

Ratchet [49]. This entails identifying idempotent sections of the
code and placing checkpoint calls at their boundaries. We accord-
ingly call this strategy IdempotentBoundaries. This ensures that
intermittence anomalies are solved by construction, as re-execution
of code only occurs across idempotent sections of code.

Once checkpoint calls are placed in the code, the checkpoint ex-
ecution policy dictates the conditions that possibly determine the
actual execution of a checkpoint. Indeed, a checkpoint call may
systematically cause a checkpoint to be written on non-volatile
memory, or rather probe the current energy levels first, for ex-
ample, through an ADC query, and postpone the execution of a
checkpoint if energy is deemed sufficient to continue without it.
The former kind of behavior, which we call Execute, is the case of
Ratchet [49], Chinchilla [36], and TICS [31] when it relies on check-
points manually placed by developers; the latter kind of behavior
we call Probe and reflects HarvOS [11] and Mementos [46].

A combination of memory configuration, strategy for placing
checkpoint calls, and checkpoint execution policy represents the
single baseline. Note that not all combinations of these dimensions
are necessarily meaningful. For instance a NonVolatile memory
configuration necessarily requires checkpoints to behave in an Ex-
ecute manner, or the risk of intermittence anomalies would be too
high and the overhead to address them correspondingly prohibi-
tive [45]. As ALFRED requires as input a placement of state-saving
operations, when comparing with a certain baseline we use the
same such placement. Moreover, being the FRAM performance and
energy consumption affected by the MCU operating frequency [28],
we consider both 8𝑀ℎ𝑧 and 16𝑀ℎ𝑧 clock configurations.

Applications deployed onto battery-less devices typically consist
in a sense-process-transmit loop [1, 13, 27]. Checkpoint techniques
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Figure 12: Energy consumption and number of clock cycles
comparing ALFRED with a baseline using NonVolatile,
Execute, and either Loop-Latch or Function-Return.

and memory configurations mainly affect processing, whereas sens-
ing and transmissions impose the same overhead regardless of the
former. For this reason, similar to related literature, we focus on pro-
cessing functionality and consider a diverse set of benchmarks com-
monly used in intermittent computing [7, 8, 26, 29, 43, 46, 49]: Cyclic
Redundancy Check (CRC) for data integrity, Advanced Encryption
Standard (AES) for data encryption, and Fast Fourier Transform
(FFT) for signal analysis. We use Clang version 7.1.0 to compile their
open-source implementations, as available in the MiBench2 [25]
suite, using the default compiler settings. The binaries output by
the compiler never exceed 30𝑘𝐵.
Metrics and energy patterns. We focus on energy consumption
and number of clock cycles necessary to complete a fixed workload.
Being harvested energy scarce, the former captures how battery-
less devices perform when deployed and represents an indication
of the perceived end-user performance [1, 13, 27]. The latter al-
lows us to identify how the overhead of ALFRED affects perfor-
mance, as it mainly consists in the additional instructions required
to address the compile-time uncertainties, as described in Sec. 4.
Note that the two metrics are not necessarily proportional, because
non-volatile memory accesses may require extra clock cycles and
consume more energy than accesses to volatile memory [28]. AL-
FRED may also introduce an overhead in the form of additional
memory occupation, as the same data may need space in both
volatile and non-volatile memory. To measure this, we keep track
of the use of volatile/non-volatile memory spaces during the execu-
tion. To gain a deeper insight into the performance trends we also
record volatile/non-volatile memory accesses, and the execution of
checkpoint and restore operations.
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Figure 13: Memory accesses comparing ALFRED with a base-
line using NonVolatile, Execute, and either Loop-Latch
or Function-Return.

Patterns of ambient energy harvesting may be simulated using
IV surfaces [21, 22] or by repetitively simulating power failures
after a pre-determined number of executed clock cycles [40, 49].
The former makes simulated power failures happen at arbitrary
points in times and provides little control on experiment executions,
making it difficult to sweep the parameter space. The latter may be
tuned according to statistical models, and offers better control on
experiment executions by properly tuning model parameters. The
behavior of ALFRED is largely independent of the specific number
of executed clock cycles between consecutive power failures; we
therefore opt for the second option.

We model an RF energy source. To determine the number of
executed clock cycles between two power failures, we rely on the
existing measurements from ten real RF energy sources used for
the evaluation of Mementos [46], which features a MCU configu-
ration compatible with our setup. To evaluate multiple scenarios,
including the worst and best possible ones, we execute each bench-
mark considering the minimum, average, and maximum number
of executed clock cycles between power failures, modeled after
the aforementioned real measurements. We report on the results
obtained in the average scenario, as there is no sensible difference
among the three scenarios. Note that, when using the Probe strat-
egy, we make sure that the last checkpoint call before a power
failure is the one that does save a checkpoint, as this represents the
same behavior of real scenarios.

6.2 Results
We consider three combinations of the design dimensions of Fig. 8.
Checkpointing from volatile memory. We begin comparing
with a baseline configuration using Volatile, Probe, and either
Loop-Latch or Function-Return. This configuration represents
Mementos [46] and solutions inspired by its design [11, 36].

Fig. 9 shows the results we obtain. Fig. 9(a) shows how, depending
on the benchmark, ALFRED provides up to several-fold improve-
ments in energy consumption to complete the fixed workload. CRC
computation is the simplest benchmark and has little state to make
persistent. The improvements are marginal here, especially when
using Function-Return as the checkpoint placement strategy,
which is unsuited to the structure of the code in the first place.
The improvements grow as the complexity of the code increases.
Computing FFTs is the most complex benchmark we consider, and
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Figure 14: Energy consumption and number of clock cycles
comparing ALFRED with a baseline using NonVolatile,
Execute, and IdempotentBoundaries.

the improvements are largest in this case. These observations are
confirmed by the measurements of clock cycles, shown in Fig. 9(b).

Fig. 10 provides a finer-grained view on the results in this specific
setting. The small state in CRC corresponds to the fewest number
of memory accesses, especially in volatile memory, as little data
is to be made persistent to cross power failures. In both AES and
FFT, ALFRED greatly reduces the number of memory accesses.
Checkpoint operations in these benchmarks must load a significant
amount of data from volatile memory and copy it to non-volatile
memory for creating the necessary persistent state. These accesses
are not necessary in ALFRED, as data is made persistent as soon as
it becomes final; therefore, checkpoint operations do not process
main memory, but only register file and program counter. As for the
nature of memory accesses, ALFRED can promote, on average, 65%
of the accesses the baseline executes on non-volatile memory to
volatile memory instead, with a minimum of 20% in 𝐶𝑅𝐶 at 8𝑀ℎ𝑧
with a Loop-Latch configuration and a maximum of 95% in 𝐶𝑅𝐶
with a Function-Return configuration. This is a key factor that
grants ALFRED better energy performance.

Fig. 11 reports on the use of volatile/non-volatile memory. In the
baseline, the state to be preserved across power failures includes
the entire volatile memory, the register file, and special registers.
Requiring to double-buffer the state saved to non-volatile mem-
ory, its use in the baseline amounts to more than double the use
of volatile memory. In both CRC and AES, ALFRED requires to
double buffer less than 4% of the program state to avoid intermit-
tence anomalies, resulting in a drastically lower use of non-volatile
memory. Interestingly, despite a significant improvement in energy
consumption, ALFRED promotes very few memory locations to
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Figure 15: Memory accesses comparing ALFRED with a base-
line using NonVolatile, Execute, and IdempotentBound-
aries.

Benchmark Baseline VM
Size (Bytes)

Baseline NVM
Size (Bytes)

ALFRED VM
Size (Bytes)

ALFRED NVM
Size (Bytes)

CRC 8Mhz 0 826 6 854
CRC 16Mhz 0 826 16 854
FFT 8Mhz 0 16730 40 29074
FFT 16Mhz 0 16730 1116 29074
AES 8Mhz 0 1294 24 1342
AES 16Mhz 0 1294 40 1342

Figure 16: Volatile memory (VM) and non-volatile memory
(NVM) in ALFRED against a baseline using NonVolatile,
Execute, and IdempotentBoundaries

volatile memory. These correspond to the memory locations that
are most frequently accessed, as shown in Fig. 10.
Moving to non-volatile memory. Fig. 12 shows the results we
obtain comparing with configuration using NonVolatile, Execute,
and either Loop-Latch or Function-Return. This combination
represents a hybrid solution combining features of several existing
systems [11, 36, 46]. As Loop-Latch and Function-Return do not
necessarily guarantee that intermittence anomalies cannot occur,
we lend our versioning technique, described in Sec. 5, to the baseline.
The major difference between ALFRED and the baseline, therefore,
is in the use of volatile or non-volatile memory.

Fig. 12(a) shows that the program transformations we devise
are effective at improving the energy performance of intermittent
programs. Significant improvements are visible across all bench-
marks. Configurations exist where the baseline cannot complete
the workload using the energy patterns we consider, as in the case
of the CRC benchmark when using Function-Return to place
checkpoints. In contrast, ALFRED reduces energy consumption to
an extent that allows the workload to successfully complete.

The corresponding results in the number of executed clock cycles,
shown in Fig. 12(b), enables a further observation. When running
at 16𝑀ℎ𝑧, the baseline shows a significant increase of clock cycles,
at least 20% with respect to the same benchmark running at 8𝑀ℎ𝑧.
The cause of this increase is in the extra clock cycles required
to access the FRAM when the MCU is clocked at 16𝑀ℎ𝑧. In the
same scenarios, ALFRED shows a lower increase of clock cycles
when comparing the 8𝑀ℎ𝑧 and 16𝑀ℎ𝑧 configurations, especially
in the AES benchmark. Rather than massively employing non-
volatile memory, ALFRED switches to volatile memory whenever
possible within a computation interval. This not only reduces the
clock cycles spent waiting for non-volatile memory access, but also
enables energy savings in the operations that involve temporary
data or intermediate results that do not need persistency.
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Figure 17: Restore operations to complete the fixed workload in ALFRED compared to the three baselines.

Fig. 13 confirms this reasoning, showing that ALFRED promotes
an average of 65% of the non-volatile memory accesses in the base-
line to the more energy-efficient volatile memory. This functionality
grants ALFRED the completion of the CRC benchmark when us-
ing the Function-Return configuration. As the baseline directs
all memory accesses to non-volatile memory, the resulting energy
consumption causes CRC to be stuck in a livelock, as energy is in-
sufficient to reach a checkpoint that would enable forward progress.
This situation is called “non-termination” bug [17]. Instead, in the
case of CRC, ALFRED promotes more than 95% of the non-volatile
memory accesses in the baseline to volatile memory. This signifi-
cantly reduces the energy consumption of memory accesses to an
extent that allows ALFRED to complete the workload.

Note that the use non-volatile memory in the baseline is the
same as ALFRED, shown in Fig. 11, as they employ the same tech-
nique to avoid intermittence anomalies. The difference in memory
occupation consists in the data that ALFRED allocates onto volatile
memory, which ultimately yields lower energy consumption.
Ruling out intermittence anomalies. We compare the perfor-
mance of ALFRED with a configuration using NonVolatile, Exe-
cute, and IdempotentBoundaries, as in Ratchet [49]. Because of
the specific placement of checkpoint calls and the Execute policy,
intermittence anomalies cannot occur by construction. ALFRED
and the baseline here only differ in memory management.

Fig. 14 shows the results. Fig. 14(a) illustrates the performance in
energy consumption; this time, the improvements of ALFRED are
generally less marked than those seen when using Loop-Latch or
Function-Return to place checkpoints. The results in the number
of executed clock cycles are coherent with these trends, as illus-
trated in Fig. 14(b). This is because IdempotentBoundaries tends
to create much shorter computation intervals, sometimes solely
worth a few instructions; therefore, ALFRED has fewer opportuni-
ties to operate on the energy-efficient volatile memory. ALFRED
still improves the energy efficiency overall, especially for the AES
benchmark and the configurations running at 16𝑀ℎ𝑧. At this clock
frequency, non-volatile memory operations induce higher overhead
due to the necessary wait cycles. Sparing operations on non-volatile
memory allows the system not to pay this overhead.

Fig. 15 and Fig. 16 provide an assessment on ALFRED’s ability to
employ volatile memory whenever convenient. ALFRED promotes
the use of volatile memory from the non-volatile use in the baseline
in up to 30% of the cases. The impact of this, however, is more limited
here because of the shorter computation intervals, as discussed
above. In this plot, it also becomes apparent that sometimes, the

total number of memory accesses in ALFRED is higher than in the
baseline. This is a combined effect of the program transformation
techniques of Sec. 3 and of the normalization passes in Sec. 4. The
increase in the total number of memory accesses, however, does
not yield a penalty in energy consumption, as a significant fraction
of these added accesses operate on volatile memory.

These results are confirmed in Fig. 16. Despite being the program
partitioned in non-idempotent code sections, our techniques to ad-
dress compile-time uncertainties introduce intermittence anomalies
that require ALFRED to double-buffer a portion of the program
state. This situation is particularly evident with FFT. Fig. 16 pro-
vides additional evidence of how ALFRED employs volatile memory
for frequently-accessed data, which ultimately yields lower energy
consumption across all benchmarks executed at 16𝑀ℎ𝑧.
Restore operations. We complete the discussion by showing in
Fig. 17 the number of restore operations executed in ALFRED com-
pared to those in the three baseline configurations we consider.

The plots demonstrate that the better energy efficiency provided
by ALFRED allows the system to restore the state less times. This
trend is especially visible in Fig. 17(a) and Fig. 17(b). As a result,
ALFRED shifts the available energy budget to useful application
processing, leading to workloads that finish sooner compared to
the performance offered by the baselines.

7 CONCLUSION
ALFRED is a virtual memory abstraction for intermittent comput-
ing that spares programmers the need to manage application state
across memory facilities, and efficiently employ volatile and non-
volatile memory to improve energy consumption, while ensuring
forward progress. The mapping from virtual to volatile or non-
volatile memory is decided at compile time to use volatile memory
whenever possible because of the lower energy consumption, resort-
ing to non-volatile memory to ensure forward progress. In contrast
to existing works, the memory mapping is not fixed at variable
level, but is adjusted at different places in the code, based on read-
/write patterns and program structure. Our evaluation indicates
that, depending on the workload, ALFRED provides several-fold
improvements in energy consumption compared to the multiple
baselines we consider, leading to a similar improvement in the num-
ber of restore operations required to complete a fixed workload.
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ABSTRACT
We propose a framework to efficiently design battery-less MCUs
with Dynamic Voltage and Frequency Scaling (DVFS) capabilities.
Battery-less devices are highly resource constrained and lack any
DVFS controller due to its additional power draw, as they are pow-
ered only with the energy harvested from the environment and
consume up to milliwatts of power. Hence, battery-less devices
currently use statically-configured clock frequencies, which result
in poor performance, as this makes devices unable to adapt their
power consumption depending on fluctuations of harvested energy.
Our design technique enables battery-less devices to efficiently use
DVFS without relying on a dedicated controller. We propose two
system designs and fabricate a DVFS-enable device. Compared to
static frequencies configurations, our designs demonstrate up to
a 170% reduction of energy consumption and a reduction of the
workload completion time up to 12𝑥 .

1 INTRODUCTION
Ambient energy harvesting [9] enables battery-less devices to work
as sustainable sensors for the Internet-of-Things [2, 9, 16, 21, 23, 52,
58], resulting in reduced maintenance costs and a lower environ-
mental impact.

However, harvested energy is scarce and usually insufficient
to power battery-less devices continuously. Despite the use of ca-
pacitors to buffer harvested energy and to smooth its flactuations,
battery-less devices experience frequent and unpredictable power
failures. Consequently, the resulting computation is intermittent:
periods of active computation are interleaved by periods where
they are powered off to recharge their energy buffer.

Power failures cause battery-less devices to immediately shut
down, causing the loss of the computational and peripheral state.
To ensure forward progress across power failures, multiple tech-
niques [7, 8, 10, 34, 51, 57] allow battery-less devices to periodi-
cally save their state onto a non-volatile memory location, which
is persistent across power failures. Restoring the saved state from
non-volatile memory allows battery-less devices to resume the com-
putation from where the state was saved. Similarly, re-initializing
and restoring peripheral state require additional operations [11]. To
complicate matters, when resuming the computation, battery-less
devices may re-execute portions of programs that can potentially
cause unexpected behaviours [45, 46, 55], which are unattainable
in an equivalent continuous execution. Preventing this situation
requires battery-less devices to save the state more frequently or
to execute additional operations [46, 55].
System efficiency. These additional operations required to en-
sure intermittent computations across power failures introduce a
significant computation and energy overhead. In fact, the device
pauses the program execution and executes the additional opera-
tions required to save or restore the state from non-volatile memory,
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Figure 1: Measurements [4] of the energy consumption per
clock cycle of various voltage and frequency ranges of the
MSP430-G2553 [26].

to re-initialize peripherals, and to avoid unexpected behaviours.
Further, accesses to non-volatile memory are slower and less en-
ergy efficient than volatile memory accesses [30, 44, 45], further
increasing the computation and energy overhead.

The number of instructions a device can execute within the active
portion of a power cycle primarily depends on two factors: the
amount of energy harvested from the environment and the device
energy consumption. Despite using techniques such as MPPT [6]
to maximize harvested energy, harvested energy is unpredictable
and we can only control the device energy consumption. However,
the increase in the energy consumption due to the execution of
operations that enable intermittent computations cause a decrease
in the number of instructions the device is able to execute within
a single power cycle. To reduce the overhead of such operations
and extend the computation done in a power cycle, the research
community is focusing on improving the performace of state-saving
operations [10, 39, 41, 59], memory accesses [35, 43, 44], specific
workloads [18, 43], and peripheral state retention and accesses [11,
40]. However, these solutions are workload-specific [18, 43] or
target specific elements of the computation [18, 44].

In general, the efficiency of a system depends on its energy
consumption and on its computational speed, which are directly
affected by the system operating voltage and frequency. However,
identifying the setting that maximizes battery-less systems effi-
ciency is non-trivial.

Let us consider the MSP430-G2553 [26] from Texas Instruments,
a Micro Controller Unit (MCU) from the MSP430 family, that is, a
family of ultra-low-power MCUs popularly used in intermittent
computing. Fig. 1 depicts the energy consumption per clock cycle of
four factory-calibrated operating frequencies. The higher the clock
frequency, the faster is the computation and the lower is the energy
consumption per clock cycle. For example, the clock frequency of
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Figure 3: Dynamic Frequency Scaling (DFS) and Dynamic
Voltage Scaling (DVS) techniques applied to the MSP430-
G2553 [26] to improve system efficiency and prolongue sys-
tem computation.

16𝑀𝐻𝑧 is, on average, 47% more energy efficient and 16𝑥 faster
than 1𝑀𝐻𝑧. However, compared to 1𝑀𝐻𝑧, 16𝑀𝐻𝑧 has a narrow
operating voltage range.

Further, conversely from mainstream computation, where a sta-
ble power supply provides a constant voltage, battery-less devices
use a capacitor as energy buffer, whose voltage eventually decreases
due to the lack of new incoming harvested energy. Consequently, in
battery-less systems, the reduced voltage range of higher frequen-
cies pones severe limitations that potentially worsen the overall
system performance. Fig. 2 shows the number of clock cycles exe-
cuted by the MCU when no energy is harvested. Despite granting a
faster and more efficient computation, the reduced operating volt-
age range of 16𝑀𝐻𝑧 results in 3.75𝑥 less number of clock cycles
than the slower and less energy efficient 1𝑀𝐻𝑧. For this reason,
identifying the most efficient system setting for battery-less devices
is a non-trivial operation.
Increasing system performance. A common technique used to
reduce the device energy consumption while ensuring the best
possible performace is Dynamic Voltage and Frequency Scaling
(DVFS). The key idea behind DVFS consists in dynamically tuning
the device operating frequency and voltage to ensure it always
operates in the most efficient setting.

In the example of Fig. 2, despite being the operating frequency
with the highest energy consumption, 1𝑀𝐻𝑧 is the configuration
that lead to the highest number of clock cycles executed within
a single power cycle. Note that this happens due to the extended
operating voltage range of 1𝑀𝐻𝑧, as we show in Fig. 1. Instead

of statically configuring the system with the static frequency of
1𝑀ℎ𝑧, we can dynamically alter the operating frequency and select
at any instant the highest frequency supported by the current op-
erating voltage, as Fig. 3(a) shows. This is recognized as Dynamic
Frequency Scaling (DFS) and has the effect of always selecting the
faster and most energy efficient operating frequency, resulting in a
24% performace increase with respect to 8𝑀𝐻𝑧, as Fig. 2 shows.

Further, in combination of DFS, we can lower the MCU oper-
ating voltage to the minimum possible voltage that allows using
the selected operating frequency, as Fig. 3(b) shows. The resulting
behaviour is recognized as DVFS and further increases the system
performace by 7%, as Fig. 2 shows. As a result, applying DVFS to
the MSP430-G2553 leads to a 32% performace increase, compared
to the most performing static configuration.
Problem. The concept behind the DVFS technique we just de-
scribed is simple and it is usually available in mainstream proces-
sors. However, applying DVFS to battery-less devices is non-trivial
for multiple reasons.

First, DVFS is architecture-specific, as different MCU/CPUs have
different hardware capabilities, operating voltages, and frequency
ranges. Dynamically changing the operating voltage and frequency
requires capabilities that need to be available both at hardware and
software level. However, battery-less devices do not have such ca-
pabilities, as they consist in ultra-low-power MCUs with basic hard-
ware capabilities. Despite common MCUs can be configured with
multiple frequencies [26], they lack both hardware components
and an operative system able to dynamically tune the operating
frequency, let alone the operating voltage.

Second, the hardware and software components enabling DVFS
must be very efficient and not increase significantly the MCU energy
consumption, as harvested energy is scarce. Note that the power
consumption of battery-less devices usually does not exceed the
order of tens of𝑚𝑊 [].

Third, differently from mainstream devices, battery-less devices
are powered with an unstable power source that is subject to signifi-
cant and frequent voltage flactuations. As such, the DVFS logic must
account for such voltage changes and quickly adapt to them. This re-
quires to constantly track the energy buffer voltage, whose probing
through the MCU built-in ADC is extremely expensive [26, 43, 44].

Finally, DVFS aims at achieving the best possible performace
for a given workload. The usual performace metric considered in
mainstream computation is either the energy consumption or the
computation time. Instead, intermittently-computing battery-less
devices we aim at prolonging the lenght active portions of power
cycles, even if this means using a less energy-efficient or slower
operating frequency, as we describe in the example of Fig. 2.
Solution. As we point out in Sec. 2, very little research is available
to apply DVFS to battery-less devices [5, 15]. The available works
mainly target multi-core processors with DVFS hardware capa-
bilities and focus on reaching power neutrality by tuning system
power consumption to match harvested energy from solar panels.

In this paper we propose a framework to efficiency design battery-
less devices with DVFS capabilities. Fig. 4 shows the principles
behind our design framework, which we describe in Sec. 3. Our
framework consists in two phases. First, at design time, system
designers identify the performance windows setting, consisting in
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Figure 4: DVFS framework for battery-less devices.

the most efficient combinations of voltage and frequency. Each per-
formace window is then mapped to the energy buffer level where
it should be applied. These information is then used to design the
MCU hardware and software components that provide the DVFS
capability. The MCU needs to constantly check the energy buffer
level and, when it detects a change, it changes accordingly its oper-
ating voltage and frequency to match the correspoding performace
window setting.

In Sec. 4, we show how our framework allows designing DVFS-
enabled battery-less devices and we provide two different system
designs, D2VFS and FBTC. We provide the schematics for both the
two system designs and we fabricate FBTC.

Finally, in Sec. 5, we evaluate the two system designs against a
MSP430-G2553 statically configured with four factory-calibrated
frequencies. We show that D2VFS and FBTC require a smaller en-
ergy buffer than the considered baselines and allow for up to 3.75𝑥
lower energy consumption and 12𝑥 faster execution time.

2 BACKGROUND
We first discuss existing works in the area of intermittent computing
to high their limitations and challenges that has hampered the
integration of DVFS techqniue for transiently powered systems.

2.1 Intermittent Computing
System powered by harvested energy are unable to gather enough
energy to complete application execution in one charge of the cy-
cle. As a result the system under goes numerous power failures in
a single execution of the application. System support exists that
enables batteryless devices to ensure forward progresss by either
inserting checkpoints at compile using program analysis tecqhni-
uesor by employing additional hardware that allows them to check
the current voltage of the system [7, 8]. Orthogonally, works also
exist that expose APIs to the programmer to divide a batteryless
application into set of atomic tasks with each task performs a light-
weight checkpoint at the end of its execution [12, 38, 47]. These
solutions, however, are focused more on reducing the computa-
tional/energy overhead incurred on maintaining forward progress
of the application. Furthermore, these systems are designed with
static configuration and are oblivious to the changing input en-
ergy and its effect on MCU frequency. Since the number of clock
cycles available in an active period are constant, existing works
belonging to both categories are focused on reducing the additional
computations performed because of a checkpoint thus allowing the
device to perform more useful computations. None of the existing
system focus on reducing the energy consumption during program
execution and increasing the number of computations performed

by the batteryless device in the given energy budget. These systems
are oblivious to the underlying MCU’s frequency and its behavior
with the changing input voltage and focus only on reducing the
number of unnecessary computations to ensure energy-efficiency.

2.2 Dissecting DVFS
DVFS is a standard technique used in main-stream computers and
comprise of two optimizations: voltage and frequency scaling. Each
processor has different operational zones and each zone is defined
by a frequency and voltage tuple (f,V); the frequency of operation
and voltage required to operate on that frequency. This optimiza-
tion is different from hibernation as it allows the device to conserve
energy by consuming lower energy-per-cycle thus allowing the
system to go farther on the same charge thus allowing the system
to improve batterylife and increasing the length of active period
for the device on a given energy budget. Modern computers have
sophisticated software and hardware components that enable the
fine-grained control over dynamic switching of different opera-
tional zones.

Existing literature has explored application of DVFS real-time
embedded systems and energy havesting devices with a focus on
adapting voltage and frequency scaling based on the power con-
sumption of real-time tasks and ensuring that these tasks meet
deadlines. Some of these works have also used DVFS in mixed criti-
cality systems to help execute critical tasks in an efficient manner.
Other works have also explored application of DVFS for power
neutral systems where frequency scaling [5] and volatge scaling is
employed to adapt system performance in response to the changing
incoming energy [6, 15]. This allows the system to execute more
number of instructions as compared to the static approaches. Al-
though these solutions lay the foundation for applying DVFS in
embedded systems, the design goals revolve around simulation and
there is no concrete implementation for energy harvesting systems.

2.3 Challenges
Transiently-powered system harvest energy from the environment
ot power themselves that has high spatio-temporal variability. Un-
fortunately, such techqniues can be deployed as-is for transiently-
powered systems as they have limited energy at their disposal.
Following are some of the chanllenges that have hampered the
adoption of DVFS for intermittent computing devices.

Energy/Size Overhead Due to limited energy at their disposal,
transiently-powered systems cannot support any new sophicated
hardware/software support available in main-stream computers as
it adds to the energy consumption of the system. Furthermore, it in-
creases the form-factor of the device. Transiently-powered systems
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are deployed in far-to-reach areas and are design to easily weave
into the daily fabric of human life. To enable this, the size of these
devices has to be small enough. Adding sophisticated hardware
increases the form-factor of these devices in addition to consuming
more energy.

Adaptation Main-stream computers assume energy as a "lim-
ited but continous" resource. This assumption fails for transiently-
powered systems as it is "unlimited but variable". This requires
these system to adopt reactive mechanisms to adapt according to
the chaging energy condition in the environment and re-configure
the system based on the new energy parameters. This require more
system support thus burdening the energy buffer even further.

2.4 Way Forward
Figure 2 shows the number of clock cycles gained only by using the
DVFS technqiue. We can clearly see that the number of clock cycles
available for the system using DVFS are significantly more than
the any of the static configurations. However, to take this benefit,
we have to design the system as efficient as possible so that we
can reduce the energy/size overhead of the DVFS tecqhniue while
being adaptive to the chaging energy conditions.

3 DVFS FOR INTERMITTENT COMPUTING
We anticipate in Sec. 1 that applying DVFS to transiently-powered
devices require to tackle multiple challenges due to the energy
and computational constraints of such devices. We thus design
a framework that allows system designers to implement DVFS
into transiently-powered devices, which can be applied to any
architecture and unlocks DVFS under a transiently-powered supply
scenario.

Fig. 4 depicts the main steps of our framework.
Design time. At design time, system designers firstly identify the
performace windows setting for the target MCU, which consists
in the combinations of voltage and frequency settings that grant
the most efficient computation. Note that in this phase, system
designers have to identify a reasonable subset of the possible oper-
ating frequencies of a given MCU and map them to their minimum
operating voltage, that is, the voltage granting the lowest possible
energy consumption. For example, for the MSP430-G2553 [26], we
can consider the four factory-calibrated operating frequencies, thus
identifying four performace windows: (i) 16𝑀𝐻𝑧 at 3.3𝑉 , (ii) 12𝑀𝐻𝑧
at 2.8𝑉 , (iii) 8𝑀𝐻𝑧 at 2.2𝑉 , and (iv) 1𝑀𝐻𝑧 at 1.8𝑉 .

Next, system designers have to map the identified performance
windows to an energy level of the energy buffer, that is, a voltage
range of the energy buffer. For example, for the four performace
windows of the MSP430-G2553 [26], we identify the following
energy levels: (i) 16𝑀𝐻𝑧 in the range 3.6𝑉 − 3.3𝑉 (ii) 12𝑀𝐻𝑧 in
the range 3.3𝑉 − 2.8𝑉 , (iii) 8𝑀𝐻𝑧 in the range 2.8𝑉 − 2.2𝑉 , and
(iv) 1𝑀𝐻𝑧 in the range 2.2𝑉 − 1.8𝑉 . Note that the energy buffer
level associated to the performace windows should not overlap.

Now system designers need to design and identify the hardware/-
software components required to apply the identified performance
windows.

For transiently-powered MCUs, this step primarely requires sys-
tem designers to discretize the energy levels associated to each

performace window, as otherwise the MCU would need to con-
stantly probe the energy buffer level, thus wasting precious energy.
The resulting hardware/software system relies on discrete energy
levels to apply a given performace window. A discrete energy level
(DEL) consists in a discretization of a continuous energy level level
of a performace window, and can be implemented as a digital sig-
nal that specifies to the MCU the energy level without having it
constantly probe the energy buffer level. Such digital signal can be
generated with circutry external to the MCU or by reling on existing
components internal to the MCU, such as a voltage detector.

Further, here system designers need to include in their design
all the components that allows to tune the device operating voltage
and frequency. For example, to set the operating voltage, an external
voltage regulator may be required, as this is usually not included
inside the MCU package. Instead, system designers can rely on exist-
ing MCU functionalities to change the operating frequency through
software components. For example, in the MSP430-G2553 [26], the
operating frequency can be set by changing the value of a specific
register through software.

We describe in Sec. 4 two different designs that discretize the en-
ergy levels of the performace windows for the MSP430-G2553 [26].
System Runtime. The overall system runtime applies the DVFS
technique. it periodically identifies the current DEL and detects
when there is a change, meaning that the performace window has
changed. When such event occurs, the system runtime needs to
change the MCU setting and make it operate using the voltage and
frequency associated to the new performace window. Note that
the DVFS system functionalities are split between software and
hardware. DEL change detection, operating voltage changes, and
operating frequency changes may rely only on hardware or soft-
ware components, depending on the choices of system designers.

Fig. 6 shows an example of the system runtime, where we con-
sider the performace windows of the MSP430-G2553 [26] that we
previously identify. On startup, the system is set to the first perfor-
mace window, that is, 16𝑀𝐻𝑧 and 3.3𝑉 . The current DEL is the one
associated to 3.6𝑉 − 3.3𝑉 . When the energy buffer voltage drops
to 3.3𝑉 , the system detects a new DEL, that is, the one associated
to 3.3𝑉 − 2.8𝑉 . Consequently, the system sets the MCU operating
frequency to 12𝑀𝐻𝑧 and the operating voltage to 2.8𝑉 .

Note that the order to set the operating voltage and frequency is
crucial to ensure correct operations: setting the operating voltage
to 2.8𝑉 as first operation would cause the system to shut down,
as it is below the minimum operating voltage required by 16𝑀𝐻𝑧,
that is, 3.3𝑉 . When scaling the frequency down, the system needs
to scale down the frequency and then the voltage. Counversely,
when scaling the frequency up, the system needs to scale up the
voltage and then the frequency.

The system repeats the same behaviour when the DEL changes
to the one associated to 2.8𝑉 − 2.2𝑉 (2.2𝑉 − 1.8𝑉 ), by setting the
operating voltage to 2.2𝑉 (1.8𝑉 ) and the MCU operating frequency
to 8𝑀𝐻𝑧 (1𝑀𝐻𝑧).

The system has a similar behaviour when the energy buffer level
increases: the operating frequency and voltage are increased instead
of decreased. Here, however, to avoid flactuations of performace
windows, the system needs to delay the increase of the operating
frequency and voltage. This is required because, when increasing
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to a higher performace window, that is, a performace window with 
a higher frequency, the system energy consumption increases. If 
the device is unable to harvest enough energy, the energy level 
decreases due to the increaase in the energy consumption, and 
the system would scale the operating setting back to the previ-
ous performace window. As now the system energy consumption 
decreases, the energy level may increase, repeating this pattern 
all over again. Consequently, the system would be stuck in con-
stantly chaning the performace window instead of executing useful 
computation.

The delay necessary to avoid flactuations depends on the system 
design, and may require the system to offset the changes to higher 
performace windows by the span of an entire DEL. We describe 
in Sec. 4 two different approaches that we consider in our DVFS 
designs for the MSP430-G2553 [26].

4 IMPLEMENTATION
We use our framework to devise two different system designs, Dis-
crete Dynamic Voltage and Frequency Scaling (D2VFS) and Fixed 
Boot Threshold Circuit (FBTC).  We describe in this section the two 
designs, their components, and their logic. Both system designs con-
sider the MSP430-G2553 [26] as target MCU and the TPS62740 [28] 
as voltage regulator.

4.1 D2VFS
Fig. 5 shows the system design of D2VFS, where Fig. 5(a) depicts 
the core logic of D2VFS and Fig. 5(b) shows the corresponding 
schematics.

We consider four performance windows for the MSP430-G2553 [26]:
(i) 16𝑀𝐻𝑧 at 3.3𝑉 when the capacitor voltage (𝑉𝑐𝑎𝑝 ) is in the range
3.6𝑉 −3.3𝑉 (ii) 12𝑀𝐻𝑧 at 2.8𝑉 when𝑉𝑐𝑎𝑝 is in the range 3.3𝑉 −2.8𝑉 ,
(iii) 8𝑀𝐻𝑧 at 2.2𝑉 when 𝑉𝑐𝑎𝑝 is in the range 2.8𝑉 − 2.2𝑉 , and
(iv) 1𝑀𝐻𝑧 at 1.8𝑉 when 𝑉𝑐𝑎𝑝 is in the range 2.2𝑉 − 1.8𝑉 .

First, D2VFS discretizes the energy level at the Energy Buffer
Level Detection stage of Fig. 5(a). In such step, D2VFS relies on 
four voltage comprator of the BU49XXG [53] series from Texas 
Instruments, one for each voltage associated to the performance 
windows, as shown in Fig. 5(b). Each comparator takes as input the 
capacitor voltage 𝑉𝑐𝑎𝑝 and outputs a signal that specifies if 𝑉 𝑐𝑎𝑝 is 
higher than the comparator threshold.

D2VFS has a hardware interrupt driver that signals the MCU 
when the performance window changes. The interrupt driver con-
sists in three components: (i) a flip flop D (SN74LV175A [24] of 
Fig. 5(b)) that keeps track of the current performance window (Previ-
ous Energy Buffer State of Fig. 5(a)), (ii) a 4-bit magnitude compara-
tor (74HC85 [49] of Fig. 5(b)) that compares the saved performance 
window against the one detected in the energy buffer level detec-
tion step (Energy Buffer State Comparator of Fig. 5(a)), and (iii) a 
AND gate (SN74AUP1G08 [29] of Fig. 5(b)) that triggers the update 
of the performance window saved in the Previous Energy Buffer 
State stage (Save Energy Buffer State Controller of Fig. 5(a)).. The 
voltage detectors of the energy buffer level detection send their 
signals to the interrupt driver. The energy buffer state comprator 
compares the saved energy buffer state against the current one, 
that is, the one detected in the energy buffer level detection.

When a change is detected, the energy buffer state comprator
triggers an interrupt to the MCU, which triggers the execution
of the DVFS driver at software level. The DVFS driver verifies
the current energy buffer level by looking at the signals of the
energy buffer level detection and it identifies the new performance
window parameters. Then, it sets the new performance window by
setting the new MCU operating frequency and updating the GPIOs
controlling the voltage regulator output.

Note that, when the performance window increases to a higher
frequency, the voltage regulator output is updated before switching
to a higher frequency. Instead, the DVFS driver does the opposite
when switching to a lower frequency.
D2VFS runtime behaviour. Fig. 6 shows an example of the sys-
tem behaviour. The capacitor voltage 𝑉𝑐𝑎𝑝 is initially set to 3.6𝑉 ,
and the DVFS driver sets the voltage regulator to 3.3𝑉 and the
MCU operating frequency to 16𝑀𝐻𝑧. 𝑉𝑐𝑎𝑝 start falling and when
it reaches 3.3𝑉 , the interrupt driver fires an interrupt. The DVFS
driver identifies the new performance window by checking the
discrete energy level from the signals of the voltage detectors. Thus,
it sets the voltage regulator to 2.8𝑉 and the frequency to 12𝑀𝐻𝑧.
This same behaviour is repeated when 𝑉𝑐𝑎𝑝 drops below 2.8𝑉 and
2.2𝑉 .

To avoid the flactuation problem we describe in Sec. 3, the DVFS
driver delays the performance windows when scaling the frequency
up. Let us now focus on Fig. 6, when𝑉𝑐𝑎𝑝 is at 1.8𝑉 and rising. The
MCU is set at the operating frequency of 1𝑀𝐻𝑧 and the voltage
regulator is at 1.8𝑉 . 𝑉𝑐𝑎𝑝 rises to 2.2𝑉 and the interrupt driver
fires an interrupt. The DVFS driver identifies the new performance
window by checking the discrete energy level from the signals of
the voltage detectors. However, to avoid flactuations, it waits for the
next interrupt to set the new performance window setting. Thus,
when 𝑉𝑐𝑎𝑝 rises to 2.8𝑉 , the interrupt driver fires a new interrupt
and the DVFS driver sets the voltage regulator to 2.2𝑉 and the MCU
frequency to 8𝑀𝐻𝑧.

4.2 FBTC
Fig. 7 shows the system design of FBTC, where Fig. 7(a) depicts the
core logic of FBTC and Fig. 7(b) shows the corresponding schemat-
ics.

We consider the same four performance windows of our D2VFS
system design.

FBTC Power State Controller of Fig. 7(a) turns on the system only
when the energy buffer voltage is inside the MCU operating range.
In the Operating Range Detection step of Fig. 7(a), FBTC identifies if
𝑉𝑐𝑎𝑝 is within such operating range, relying on two BU49XXG [53]
voltage detectors, as shown in Fig. 7(b). The first voltage detector
triggers when 𝑉𝑐𝑎𝑝 reaches the MCU minimum operating voltage
𝑉𝑚𝑖𝑛 , that is 1.8𝑉 , whereas the second voltage detector triggers
when𝑉𝑐𝑎𝑝 reaches a pre-defined power on voltage𝑉𝑜𝑛 . Note that in
our schematics we report a 3.6𝑉 voltage detector as second voltage
detector. However, in our fabricated board, we allow users to select
among four different voltage detectors to configure 𝑉𝑜𝑛 , as the
PVComp and PVT ports of Fig. 8 show. To save energy, only the
selected voltage detector is powered on and active.

Next, in the System Enable step of Fig. 7(a), FBTC combines the
signals of the Operating Range Detection step and decides when
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Figure 5: D2VFS system design.
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Figure 6: Example of D2VFS behaviour.

the voltage regulator must be powered on. The System Enable step
relies on two components, a SN74AUP1G04 [27] NOT gate and on
a SN74AUP2G02 [25] 2-input NOR gate used as a flip-flop set-reset,
as shown in Fig. 7(b). The NOT gate takes as input the signal of the
first voltage detector, that is, the voltage detector that identifies if
𝑉𝑐𝑎𝑝 exceeds𝑉𝑚𝑖𝑛 . Hence, the NOT gate verifies if𝑉𝑐𝑎𝑝 goes below
𝑉𝑚𝑖𝑛 and such signal is used to reset the flip-flop output. Instead,
the signal of the second voltage detector sets the flip-flop output.

When 𝑉𝑐𝑎𝑝 exceeds the configured 𝑉𝑜𝑛 , the flip-flop output is
set to a logical high and the voltage regulator is powered on. When
𝑉𝑐𝑎𝑝 goes below 𝑉𝑚𝑖𝑛 , the flip-flop output is reset to a logical low
and the voltage regulator is powered off.

To set the voltage regulator output on system startup, we use four
user-configurable pull-up resistors that selects the correct power
on voltage. Such resistors are 𝑅6 − 𝑅9 in the schematics of Fig. 7(b)
and 𝑅1−𝑅4 in our fabricated board shown in Fig. 8. Note that this is
required as the voltage regulator output is controlled by the MCU,
which cannot set the voltage regulator output before completing
its startup phase.

Changepoint detector. FBTC hardware components do not keep
track of the current performance window and, instead of explicitly
discretizing the energy level, FBTC directly identifies when the
performance window changes by comparing the capacitor voltage
(𝑉𝑐𝑎𝑝 ) against the voltage regulator output (𝑉𝑟𝑒𝑔). The Interrupt
Driver of Fig. 7(a) provides such functionality through a Charge De-
tector and a Discharge Detector. These two hardware components
are based on the same logic, which we identify as Changepoint
Detector. A Changepoint Detector identifies when the performance
window changes and relies on two components: (i) a voltage di-
vider to reduce𝑉𝑐𝑎𝑝 signal, that is, the 𝑅1−𝑅2 (𝑅3−𝑅4) resistors of
Fig. 7(b) and (ii) a TS881 [54] operational amplifier that compares
the reduced 𝑉𝑐𝑎𝑝 signal against 𝑉𝑟𝑒 𝑓 . Depending on the configura-
tion of the operational amplifier inputs, the Changepoint Detector
can identify when the energy buffer is charging (Charge Detector)
or discharging (Discharge Detector). To detect the energy buffer
discharge,𝑉𝑟𝑒𝑔 is connected to the non-inverting input of the opera-
tional amplifier and the𝑉𝑐𝑎𝑝 voltage divider output at the inverting
input, as shown near the discharge label of Fig. 7(b). To detect the
energy buffer charge, the connections to the operational amplifier
inputs are inverted.

The Changepoint Detector compares 𝑉𝑟𝑒𝑔 against 𝑉𝑐𝑎𝑝 and fires
an interrupt to the MCU whenever a change is detected. To un-
derstand its functionality, let us focus on Fig. 9. The blu curve rep-
resents 𝑉𝑐𝑎𝑝 , whereas the orange one represents 𝑉𝑟𝑒𝑔 . The two
voltage dividers of the Charge and Discharge Detectors offset the
𝑉𝑐𝑎𝑝 signal in such a way that the considered input voltage equals
𝑉𝑟𝑒𝑔 whenever the conditions to change the performance window
are detected.

Let us focus on the red curve, that is, the voltage divider output
of the Discharge Detector. In Fig. 9, the MCU frequency is initially
set to 16𝑀𝐻𝑧, 𝑉𝑟𝑒𝑔 to 3.3𝑉 , 𝑉𝑐𝑎𝑝 is 3.6𝑉 , and the energy buffer is
discharging. When 𝑉𝑐𝑎𝑝 reaches 3.3𝑉 , the 𝑉𝑟𝑒𝑔 line (orange line)
exceeds the scaled 𝑉𝑐𝑎𝑝 curve (red curve). Hence, the Discharge
Detector outputs a logical high (brown line), triggering an interrupt
to the MCU. We can notice that the scaled 𝑉𝑐𝑎𝑝 curve is used as
reference point for 𝑉𝑟𝑒𝑔 to scale the MCU frequency.

The MCU runs a software-level DVFS driver that is triggered
whenever the Discharge and Charge Detectors fire an interrupt.
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Figure 7: FBTC system design.

Figure 8: FBTC board.

Depending on the component that is firing an interrupt, the DVFS
driver increases or decreases the MCU frequency and voltage regu-
lator output. Similarly to D2VFS, whenever the DVFS driver needs
to decrease the MCU frequency, it first decreases the MCU operating
frequency and then the voltage regulator output. Instead, the DVFS
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Figure 9: Example of FBTC behaviour.

driver executes these two operations in reverse order whenever it
needs to increase the MCU frequency.

Let us focus back on Fig. 9. The Discharge Detector fired an
interrupt, and the DVFS driver changes 𝑉𝑟𝑒𝑔 to 2.8𝑉 and scales
the MCU operating frequency to 12𝑀𝐻𝑧. The scaled 𝑉𝑐𝑎𝑝 curve
(red curve) is now far from the 𝑉𝑟𝑒𝑔 line (orange line). The energy
buffer continues discharging and when it reaches 2.8𝑉 , the 𝑉𝑐𝑎𝑝
curve exceeds the 𝑉𝑟𝑒𝑔 line. As such, the Discharge Detector fires
an interrupt and the DVFS driver changes 𝑉𝑟𝑒𝑔 to 2.2𝑉 and scales
the MCU operating frequency to 8𝑀𝐻𝑧. This behaviour is repeated
when 𝑉𝑐𝑎𝑝 reaches 2.2𝑉 .

Note that, in Fig. 9, when𝑉𝑐𝑎𝑝 is approaching 1.8𝑉 ,𝑉𝑟𝑒𝑔 (orange
line) constantly exceeds the scaled𝑉𝑐𝑎𝑝 signal (red curve). However,
here there is no performance window to change, as the MCU is
already at 1𝑀𝐻𝑧 and𝑉𝑟𝑒𝑔 at 1.8𝑉 , that is, the settings of the lowest
possible performance window. To avoid unexpected behaviours
and ignore this situation, the DVFS driver disables the interrupts
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from the Discharge Detector when it sets the lowest possible per-
formance window and enables them back whenever scaling to a
higher performance window.

The green curve in Fig. 9 represents the voltage divider for 𝑉𝑐𝑎𝑝
used by the Charge Detector. It is crucial that, whenever the perfor-
mance window changes, the new voltage regulator output𝑉𝑟𝑒𝑔 does
not trigger a change back to the previous performance window. For
example, during the discharge of the energy buffer in Fig. 9, the
𝑉𝑟𝑒𝑔 line (orange line) never exceeds the green curve. Note that
the graph resolution is not sufficient to verify such situation. If
this condition is not met, we have a bouncing problem: the Dis-
charge (Charge) Detector changes 𝑉𝑟𝑒𝑔 and its new value triggers
the Charge (Discharge) Detector as the 𝑉𝑟𝑒𝑔 line exceeds the green
(red) curve of the 𝑉𝑐𝑎𝑝 voltage divider for the Charge (Discharge)
Detector, resulting in FBTC being stuck in constantly changing
the performance window back and forth. To avoid this problem,
we need to carefully select the values for the resistors used in the
voltage dividers for the Charge and Discharge Detectors, as we
later describe.

FBTC behaviour during the energy buffer charge is similar to
the one we describe for the discharge, where𝑉𝑟𝑒𝑔 line (orange line)
is instead compared against the green curve, that is, the scaled𝑉𝑐𝑎𝑝
signal of the Charge Detector. However, during the energy buffer
charge of Fig. 9, FBTC does not need the same delay of D2VFS
to avoid flactuations between two performance windows. This is
thanks to the possibility of tuning the voltage at which the Charge
Detector identifies the new performance window, which allows
the Charge Detector to signal the new performance window to
the MCU only when 𝑉𝑐𝑎𝑝 exceeds by 𝜖𝑐 the minimum operating
voltage of the next performance window. We explain how to tune
this parameter later in this section.
Voltage divider configuration. We now describe how to identify
the optimal values for the resistors used in the voltage dividers of
the Charge and Discharge Detectors. Considering the schematics
of Fig. 7(b), the operational amplifiers inputs are:

𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 =
𝑅2

𝑅1 + 𝑅2 ·𝑉𝑐𝑎𝑝 = 𝛿𝑑 ·𝑉𝑐𝑎𝑝 (1)

𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 =
𝑅4

𝑅3 + 𝑅4 ·𝑉𝑐𝑎𝑝 = 𝛿𝑐 ·𝑉𝑐𝑎𝑝 (2)

Note that we call 𝛿𝑐 (𝛿𝑑 ) as the charge (discharge) voltage regulator
resistance ratio.

An interrupt to change the performance window is raised when-
ever 𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 < 𝑉𝑟𝑒𝑔 or 𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 > 𝑉𝑟𝑒𝑔 . Hence, the
bouncing problem happens whenever one condition is verified and
the change to 𝑉𝑟𝑒𝑔 verifies the other condition:

when 𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 > 𝑉𝑟𝑒𝑔 [𝑖] → 𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 < 𝑉𝑟𝑒𝑔 [𝑖 + 1] (3)
when 𝑉𝑟𝑒 𝑓 _𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 < 𝑉𝑟𝑒𝑔 [𝑖] → 𝑉𝑟𝑒 𝑓 _𝑐ℎ𝑎𝑟𝑔𝑒 > 𝑉𝑟𝑒𝑔 [𝑖 − 1] (4)

Eq. (3) refers to a scenario where the energy buffer is charging,
whereas Eq. (4) refers to a discharging scenario. Note that 𝑉𝑟𝑒𝑔 [𝑖]
identifies the voltage regulator output of the performance window 𝑖
and the performance windows are ordered by ascending operating
frequency/voltage. We rewrite Eq. (1) and Eq. (2) by sobstituting
Eq. (3) and Eq. (4):

when 𝛿𝑐 ·𝑉𝑐𝑎𝑝 > 𝑉𝑟𝑒𝑔 [𝑖] → 𝛿𝑑 ·𝑉𝑐𝑎𝑝 < 𝑉𝑟𝑒𝑔 [𝑖 + 1] (5)
when 𝛿𝑑 ·𝑉𝑐𝑎𝑝 < 𝑉𝑟𝑒𝑔 [𝑖] → 𝛿𝑐 ·𝑉𝑐𝑎𝑝 > 𝑉𝑟𝑒𝑔 [𝑖 − 1] (6)

To avoid the bouncing problem, for each performance window 𝑖 ,
Eq. (3) and Eq. (4) must never be satisfied. This means that we need
to satisfy the following constraints:

when 𝛿𝑐 ·𝑉𝑐𝑎𝑝 > 𝑉𝑟𝑒𝑔 [𝑖] → 𝛿𝑑 ·𝑉𝑐𝑎𝑝 ≥ 𝑉𝑟𝑒𝑔 [𝑖 + 1] (7)

when 𝛿𝑑 ·𝑉𝑐𝑎𝑝 < 𝑉𝑟𝑒𝑔 [𝑖] → 𝛿𝑐 ·𝑉𝑐𝑎𝑝 ≤ 𝑉𝑟𝑒𝑔 [𝑖 − 1] (8)

Eq. (7) refers to a scenario where the energy buffer is charging and
gives us a set of constraints on the discharge voltage regulator
resistance ratio 𝛿𝑑 , whereas Eq. (8) refers to a discharging scenario
and gives us a set of constraints on the charge voltage regulator
resistance ratio 𝛿𝑐 .

To identify the list of constraints, for each performance window
𝑖 with an associated voltage range (𝑉𝑚𝑎𝑥 ,𝑉𝑚𝑖𝑛):

• we consider Eq. (7) with 𝑉𝑐𝑎𝑝 = 𝑉𝑚𝑎𝑥 + 𝜖𝑑 if there exists a
performance window 𝑖 + 1

• we consider Eq. (8) with 𝑉𝑐𝑎𝑝 = 𝑉𝑚𝑖𝑛 + 𝜖𝑐 if there exists a
performance window 𝑖 − 1

Note that 𝜖𝑑 (𝜖𝑐 ) is the minimum voltage sensitivity we want to
obtain for the discharge (charge) detector. We consider these pa-
rameters to compensate for irregularities of real circuit components
and to avoid flactuations when the energy buffer is charging. Note
that we use 𝜖𝑑 (𝜖𝑐 ) with the constraints for 𝛿𝑐 (𝛿𝑑 ), as they refer to
a condition for the charge (discharge) detection.

Let us now consider the four performance windows for the
MSP430-G2553 [26]:

1) 1𝑀𝐻𝑧 with 𝑉𝑟𝑒𝑔 = 1.8𝑉 and 𝑉𝑐𝑎𝑝 in (2.2𝑉 , 1.8𝑉 )
2) 8𝑀𝐻𝑧 with 𝑉𝑟𝑒𝑔 = 2.2𝑉 and 𝑉𝑐𝑎𝑝 in (2.8𝑉 , 2.2𝑉 )
3) 12𝑀𝐻𝑧 with 𝑉𝑟𝑒𝑔 = 2.8𝑉 and 𝑉𝑐𝑎𝑝 in (3.3𝑉 , 2.8𝑉 )
4) 16𝑀𝐻𝑧 with 𝑉𝑟𝑒𝑔 = 3.3𝑉 and 𝑉𝑐𝑎𝑝 in (3.6𝑉 , 3.3𝑉 )

We consider 𝜖𝑐 = 𝜖𝑑 = 50𝑚𝑉 . We explain later the selection of
these values.

We consider the performance windows 1,2, and 3 with Eq. (7),
obtaining the following constraints on 𝛿𝑑 :

• 𝑉𝑐𝑎𝑝 = 2.20𝑉 + 50𝑚𝑉 = 2.25𝑉 , 𝑉𝑟𝑒𝑔 [1] = 1.8𝑉 , 𝑉𝑟𝑒𝑔 [2] =
2.2𝑉 → 𝛿𝑑 ≥ 2.2𝑉

2.25𝑉
• 𝑉𝑐𝑎𝑝 = 2.80𝑉 + 50𝑚𝑉 = 2.85𝑉 , 𝑉𝑟𝑒𝑔 [2] = 2.2𝑉 , 𝑉𝑟𝑒𝑔 [3] =

2.8𝑉 → 𝛿𝑑 ≥ 2.8𝑉
2.85𝑉

• 𝑉𝑐𝑎𝑝 = 3.30𝑉 + 50𝑚𝑉 = 3.35𝑉 , 𝑉𝑟𝑒𝑔 [3] = 2.8𝑉 , 𝑉𝑟𝑒𝑔 [4] =
3.3𝑉 → 𝛿𝑑 ≥ 3.3𝑉

3.35𝑉
The constraints obtained from Eq. (7) provide a lower bound for 𝛿𝑑 .
Hence, we need to consider the constraint with the highest value
for 𝛿𝑑 , that is, 𝛿𝑑 ≥ 3.3𝑉

3.35𝑉 = 0.9851. Note that we want to select the
lowest possible value for 𝛿𝑑 , that is, 𝛿𝑑 = 0.9851, as otherwise we
would increase the minimum voltage sensitivity 𝜖𝑐 . Recalling that
𝛿𝑑 = 𝑅2

𝑅1+𝑅2 , we can identify that 𝑅1 = 150𝑘Ω and 𝑅2 = 10𝑀Ω.
We consider the performance windows 2,3, and 4 with Eq. (8),

obtaining the following constraints on 𝛿𝑐 :
• 𝑉𝑐𝑎𝑝 = 2.20𝑉 + 50𝑚𝑉 = 2.25𝑉 , 𝑉𝑟𝑒𝑔 [1] = 1.8𝑉 , 𝑉𝑟𝑒𝑔 [0] =

1.8𝑉 → 𝛿𝑐 ≤ 1.8𝑉
2.25𝑉

• 𝑉𝑐𝑎𝑝 = 2.80𝑉 + 50𝑚𝑉 = 2.85𝑉 , 𝑉𝑟𝑒𝑔 [2] = 2.8𝑉 , 𝑉𝑟𝑒𝑔 [1] =
2.2𝑉 → 𝛿𝑐 ≤ 2.2𝑉

2.85𝑉
• 𝑉𝑐𝑎𝑝 = 3.30𝑉 + 50𝑚𝑉 = 3.35𝑉 , 𝑉𝑟𝑒𝑔 [3] = 3.3𝑉 , 𝑉𝑟𝑒𝑔 [2] =

2.8𝑉 → 𝛿𝑐 ≤ 2.8𝑉
3.35𝑉
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The constraints obtained from Eq. (8) provide a upper bound for 𝛿𝑐 .
Hence, we need to consider the constraint with the lowest value
for 𝛿𝑐 , that is, 𝛿𝑐 ≥ 1.8𝑉

2.25𝑉 = 0.8. Note that we want to select the
highest possible value for 𝛿𝑐 , that is, 𝛿𝑐 = 0.8, as otherwise we
would decrease the minimum voltage sensitivity 𝜖𝑑 . Recalling that
𝛿𝑐 = 𝑅4

𝑅3+𝑅4 , we can identify that 𝑅3 = 2𝑀Ω and 𝑅4 = 8𝑀Ω.
Selecting 𝜖c. When selecting 𝜖𝑐 , we need to consider a value that
allows the energy buffer to keep sufficient energy to sustain the com-
putation in the new performance window for a reasonable amount
of instructions. An extra voltage of 𝜖𝑐 in a capacitor corresponds to
1
2𝐶𝜖𝑐

2 energy. By considering a maximum energy consumption per
clock cycle of 𝑒𝑐𝑐 , the number of extra clock cycles 𝑛𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠
that 𝜖𝑐 allows to execute is:

𝑛𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 =
1
2𝐶𝜖𝑐

2

𝑒𝑐𝑐
(9)

In the worse case, the DVFS driver of FBTC requires 18 machine-
code instructions to change the performance window, that is, 18
clock cycles. Hence, to justify switching to a higher frequency, we
need to satisfy the following equation:

𝑛𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑝𝑙𝑜𝑤𝑒𝑟 ≥ 18 + 𝑛𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒𝑠 (10)
where 𝑝𝑙𝑜𝑤𝑒𝑟 represents the energy consumption increase of a
lower operating frequency with respect to a higher one that can
be sustained at the same voltage level. For the MSP430-G2553 [26],
the average 𝑝𝑙𝑜𝑤𝑒𝑟 among the three switching points (i.e., 1𝑀𝐻𝑧 −
8𝑀𝐻𝑧, 8𝑀𝐻𝑧−12𝑀𝐻𝑧, and 12𝑀𝐻𝑧−16𝑀𝐻𝑧) is 1.17. Note that this
means that, switching to a higher frequency provides, on average,
a 17% better energy efficiency. Hence, for the MSP430-G2553 [26],
𝑛𝑖𝑛𝑠𝑡𝑟 ≥ 106 clock cycles.

FBTC sets the MCU to operate at the minimum possible voltage
for each operating frequency. Hence, to identify the highest energy
consumption per clock cycle of the MCU, we need to consider the
operating frequency with the highest energy consumption at its
minimum operating voltage. Among the four operating frequencies
of the MSP430-G2553 [26], 16𝑀𝐻𝑧 is the one with such highest
energy consumption and it consumes 0.85𝑛𝐽 per clock cycle, as
shown in Fig. 1.

By sobstituting these values in Eq. (9) and by considering a target
capacitor of 100`𝐹 , 𝜖𝑐 must be at least 0.042𝑉 .

5 EVALUATION
We evaluate the performance of D2VFS and FBTC under different
system settings and energy harvesting scenarios. We describe next
the experiments and system setup, the considered energy scenarios,
and the experiments results.

5.1 Setting → System and Experiments
Reproducing energy harvesting sources using real hardware is ex-
tremely challenging, as their behavior is highly non-deterministic [17,
20]. For this reason, we opt for software-based system emulation
to execute our experiments, as this not only ensures experiments
reproducibility, but also allows us to better control the system set-
ting.
System emulation. We run our experiments using ScEpTIC [45,
46], a versatile and easily-extendable emulator for intermittent pro-
grams. To execute our experiments, we extend ScEpTIC to emulate

(i) the energy consumption of common intermittent system compo-
nents, (ii) the energy harvested from the environment, and (iii) the
logic and energy consumption of custom circuitry.

Our extension of ScEpTIC allows us to configure and design
the emulated system components, including the energy harvesting
source, the MCU, and components external to the MCU, such as the
energy buffer, peripherals, non-volatile memories, voltage regula-
tors, and custom circuits. Note that we emulate energy harvesting
sources by reproducing a voltage trace [3, 20, 51], which can be
either synthetic or gathered from a real harvester. Further, we rely
on our extension to implement the system and circuitry compo-
nents that emulate the energy consumption and logic of D2VFS
and FBTC boards.

To run our experiments, we implement a ScEpTIC simulation
that emulates intermittent executions of the configured system.
During the emulation of the program execution, we make ScEp-
TIC track the level of the energy buffer by emulating the energy
consumption of the configured system and the energy harvested
from the configured energy source. Then, whenever the level of the
energy buffer falls below a user-specified threshold, such as the min-
imum MCU operating voltage, ScEpTIC emulates the occurrence
of a power failure.

The code and documentation of our ScEpTIC extension are avail-
able as open-source release [42].
Platform and system setting. We consider as target platform the
MSP430-G2553 [26], a MCU from the MSP430 family of extremely-
low-power MCUs from Texas Instruments [32], as this is the same
platform used to evaluate D2VFS [3]. We implement into ScEpTIC
an energy model of the MCU which accounts for its different op-
erating modes. Note that we use existing measures [4] to model
the MCU energy consumption in active mode, as in such operat-
ing mode the MSP430-G2553 experiences flactuations in its power
consumption that are not represented in its datasheet [4]. We in-
stead rely on datasheet information [26] to model the MCU energy
consumption in low-power mode, and the energy consumption
and latency of peripheral accesses, such as ADC probing. Further,
we model FBTC energy consumption using both its datasheet in-
formation and real measures taken from the fabricated board. We
compare the two models in Sec. 5.3.

To store the state across power failures, we equip the system
with a MB85RC64V [36] non-volatile memory, that is, a 8𝐾𝑏𝑦𝑡𝑒
FRAM accessible thorugh the 𝐼2𝐶 protocol at a maximum speed of
1𝑀𝐻𝑧.

We evaluate the performance of D2VFS and FBTC considering
two different well-established system supports for intermittent com-
puting: Hibernus [8] and Mementos [51]. Both mechanisms save
the program state, consisting in register file, special registers, and
main memory, onto a non-volatile memory location whenever the
voltage of the energy buffer𝑉𝑏𝑢𝑓 𝑓 falls below a specified threshold
𝑉𝑠𝑎𝑣𝑒 . For doing so, Hibernus relies on system interrupts that fire
whenever the 𝑉𝑠𝑎𝑣𝑒 is reached; Mementos instead relies on special
function calls, statically placed at specific program locations, that
probe 𝑉𝑏𝑢𝑓 𝑓 through an ADC and then decide whether to save the
state.

To reproduce the behaviour of these two forward progress mech-
anisms, we extend ScEpTIC to automatically identify the optimal
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𝑉𝑠𝑎𝑣𝑒 . Then, for Hibernus, we consider an external voltage divider
of 200𝐾Ω [8] and we model into ScEpTIC the execution of state-
saving operations whenever 𝑉𝑏𝑢𝑓 𝑓 falls below the optimal 𝑉𝑠𝑎𝑣𝑒 .
Instead, for Mementos, we use its loop-latch placement strategy [51]
to statically place probe function calls in the benchmarks source
code. Then, we model into ScEpTIC the probe function call logic,
and the timing and energy consumption of the ADC using the data
found in the MSP430-G2553 datasheet [26].

Note that, to reproduce the setup of a real-world deployment,
we assume that, similarly to Mementos [51], Hibernus state-saving
operations save only the used portion of main memory (i.e., the one
delimited by the stack pointer) instead of its whole content [8], as
this removes an unnecessary overhead of state-saving operations.

Finally, we must note that at a clock frequency of 1𝑀𝐻𝑧, the
MSP430-G2553 minimum operating voltage is 1.8𝑉 , whereas the
ADC minimum operating voltage is 2.2𝑉 . As a consequence, when-
ever the voltage of the energy buffer falls below 2.2𝑉 , the ADC may
return a value that does not reflect the current level of the energy
buffer, causing an unexpected behaviour of Mementos, which may
execute state-saving operations when not necessary or not execute
them when necessary. To account for this situation, we consider
three possible scenarios for Mementos: (i) Default, where function
calls do not probe the ADC and instead directly save the state when-
ever 𝑉𝑏𝑢𝑓 𝑓 < 2.2𝑉 , (ii) NOADCOFF, where we assume the ADC can
operate in the same voltage range of the MCU, and (iii) ADCMINV,
where we set the MCU to power off at 2.2𝑉 .
Benchmarks and baselines. Battery-less devices usually act as
sensors of a Wireless Sensor Network and their common workload
can be summarized into three phases [2]: (i) environment sensing,
(ii) data processing and computation, and (iii) data communication.
The computation executed during environment sensing and data
communication (phase i and iii) is usually off-loaded to peripherals
external to the MCU, whereas data processing and computation
(phase ii) usually executes on the MCU. D2VFS and FBTC techniques
change the operating frequency of the MCU, but not the one of
peripherals, thus affecting only the performance of the computation
executed on the MCU itself. For these reasons, we focus only on
benchmarks that represent data processing and computation (phase
ii), as this phase usually executes entirely on the MCU.

We thus select a set of benchmarks that summarize different
types of data processing computations commonly used in intermit-
tent computing [46, 51, 57]: (i) Dijkstra algorithm for computing the
shortest path between two nodes of a graph, (ii) Fast Fourier Trans-
form (FFT) for signal analysis, and (iii) RSA for data encryption.
We consider the open-source implementation of each benchmark
available in the MiBench2 [19, 22] benchmark suite and we com-
pile them using Clang [37] version 8.0.1 with the default compiler
settings.

We consider as baseline a group of static frequency configu-
rations for the MSP430-G2553 [26]: 1𝑀𝐻𝑧, 8𝑀𝐻𝑧, 12𝑀𝐻𝑧, and
16𝑀𝐻𝑧.
Metrics. To evaluate the performance of D2VFS and FBTC, we
mainly focus on the time required to complete a given workload and
on the device energy consumption, as these are the metrics affected
by the voltage and frequency changes of D2VFS and FBTC.
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Figure 10: Energy sources voltage trace

When measuring the time required to complete a given workload,
we differentiate between the time of active periods, that is, the
execution time, and the time of inactive periods, that is, the re-
charge time. This allows us to identify (i) where performance is
lost, (ii) how different configurations of voltage and frequency
affect the execution time, and (iii) how the external circuitry of
D2VFS and FBTC affect the recharge time. Moreover, this allows
us also to identify how different voltage operational ranges affect
performance, as different frequencies have different voltage ranges
that affect both the execution and re-charge time.

Moreover, to compare different energy consumption levels, we
also measure the number of power failures happening during the
execution of a workload. We consider this metric as an indicator
showing how energy consumption affect performance. In fact, a
higher energy consumption implies a significantly worse perfor-
mance level when it causes additional power failures, as a power
failure further increases both the execution and recharge time due
to additional restore operations and energy buffer recharge.

Finally, to identify the energy overhead intoduced by D2VFS and
FBTC, we measure the energy consumption of their circuitry.

5.2 Setting → Energy
To evaluate D2VFS and FBTC under different energy conditions,
we must account for the knobs that influence the energy and power
capabilities of an intermittent system, such as the considered energy
harvesting source, the energy buffer size, and the power-on voltage.
We discuss next how we select these parameters.
Energy harvesting sources. The energy supply capability of an
energy harvesting source defines the timespan of the active and
inactive periods of a power cycle, influencing the number of power
cycles required to complete a given workload. In our experiments,
we consider a group of energy sources that represents three possible
energy supply scenarios.
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Figure 11: Minimum capacitance required to execute bench-
marks at a given frequency.

First, we consider a high-capability energy supply scenario, char-
acterized by long active periods and a low power failure rate. A
high-capability energy source supplies sufficient energy to sustain
the device workload during its active period, significantly extending
the active period timespan and consequently reducing or completely
removing the number of power failures happening during the exe-
cution of a given workload. In our experiments, we reproduce this
scenario by considering the voltage trace of a solar energy source,
measured from a solar panel outside our lab while walking [3].
Fig. 10(a) depicts its voltage trace.

Next, we consider a medium-capability energy supply scenario,
characterized by medium active periods and a medium power fail-
ure rate. A medium-capability energy source sporadically supplies
energy during the device active period, increasing the length of
the active period. However, the supplied energy is usually not suffi-
cient to sustain the device workload, causing a medium number of
power failures. In our experiments, we reproduce this scenario by
considering the voltage trace of a RF energy source, taken from the
voltage traces used for the evaluation of Mementos [1, 51]. Fig. 10(b)
depicts its voltage trace.

Finally, we consider a low-capability energy supply scenario,
characterized by short active periods and a high power failure rate.
A low-capability energy source rarely supplies energy during the
device active period, causing short active periods and very frequent
power failures. As such, the supplied energy usually recharges the
device energy buffer only during its inactive period. In our experi-
ments, similarly to previous works [33], we reproduce this scenario
by implementing a synthetic 5𝑉 energy source that supplies energy
only when the device is powered off, that is, during its inactive
period. Fig. 10(c) depicts a possible example of its voltage trace.
Note that the source supplies 0𝑉 when the MCU is not in active
mode of operation (e.g., low-power mode, powered off).

Note that, similarly to previous works [3, 51], we consider a
30𝐾Ω equivalent resistance for the energy harvesting circuit of
each energy source.
Energy buffer size and Von. We consider a capacitor as energy
buffer. The capacitor size and the power-on voltage influence the
length of power cycles and the time required to resume the compu-
tation after a power failure. High-capacitance capacitors increase
the duration of a power cycle, as they store more energy. However,
they also increase the time required to recharge the energy buffer.
This not only affects the duration of a power cycle, as the harvested
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Figure 12: Minimum 𝑉𝑜𝑛 required for benchmark execution.

energy produces a lower increase in the capacitor’s voltage, but
also increases the recharge time, that is, the time required to reach
𝑉𝑜𝑛 while the device is powered off. Similarly, a high 𝑉𝑜𝑛 extends
the timespan of a power cycle active period, as it results in a higher
energy availability during the computation, but it also increases
the recharge time. Note that the identification of the optimal capac-
itance 𝐶 and 𝑉𝑜𝑛 is not the scope of this paper.

However, there are lower bounds for 𝐶 and 𝑉𝑜𝑛 that cannot be
exceeded, which are frequency and workload dependent.𝐶 and𝑉𝑜𝑛
delimit the energy available in the active period of a power cycle,
that is, 𝑒𝑎𝑐𝑡𝑖𝑣𝑒 , which must be higher than the energy consumed
by state-saving and state-restoring operations. Otherwise a device
would not achieve forward progress across power failures, as 𝑒𝑎𝑐𝑡𝑖𝑣𝑒
would not be sufficient to progress in the program execution or
complete state-saving operations.

Hence, to evaluate the behaviour of D2VFS and FBTC under
different conditions, we consider multiple combinations of lower
bounds for 𝐶 and 𝑉𝑜𝑛 . We extend ScEpTIC to identify the lower
bounds of 𝐶 and 𝑉𝑜𝑛 for a given workload, which we use to select
a set of values for 𝐶 and 𝑉𝑜𝑛 that reflect a reasonable choice in a
real-world deployment.

Fig. 11 shows the lower bound of𝐶 for the baselines, D2VFS, and
FBTC across all the benchmarks and forward progress mechanisms.
In general, the execution of all the benchmarks at 16𝑀𝐻𝑧 and
12𝑀𝐻𝑧 require at least a 80`𝐹 and 20`𝐹 capacitor, respectively.
Instead, 1𝑀𝐻𝑧, 8𝑀𝐻𝑧, D2VFS, and FBTC require no more than a
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Figure 13: Maximum capacitor voltage using the RF energy
source.

10`𝐹 capacitor, that is, the minimum decoupling capacitance of
the MSP430-G2553 suggested by Texas Instruments is 10`𝐹 [31].
Note that Fig. 11(a) depicts that D2VFS requires a 10`𝐹 capacitor to
execute the Dijkstra and RSA benchmarks with Hibernus, whereas
1𝑀𝐻𝑧 and FBTC require only a 5`𝐹 capacitor. This is a consequence
of D2VFS higher quiescent current consumption compared to FBTC.

Following these results, we choose to execute our experiments
using two capacitor sizes: (i) 80`𝐹 to run experiments using all
baseline operating frequencies, and (ii) 20`𝐹 to run experiments
using all baselines operating frequencies except 16𝑀𝐻𝑧.

Then, we identify the𝑉𝑜𝑛 lower bound for each possible capacitor
size. Fig. 12 shows the minimum values of 𝑉𝑜𝑛 across each bench-
mark and capacitor size. In general, the minimum𝑉𝑜𝑛 trend follows
the voltage operating range of the various frequencies: 16𝑀𝐻𝑧 has
the highest 𝑉𝑜𝑛 , whereas 1𝑀𝐻𝑧 has the lowest. Note that D2VFS
and FBTC have a 𝑉𝑜𝑛 within the same one of 1𝑀𝐻𝑧, as they have
the same voltage operating ranges.

To ensure that all the baselines selected for a given capacitor size
can achieve forward progress, we choose the highest𝑉𝑜𝑛 across the
ones of the baselines. Otherwise, a baseline may not have sufficient
energy to save the state and it may be forever stuck in re-executing
the same portion of a workload [13]. We thus select 3.6𝑉 for all the
capacitor sizes.

Note that, despite some configurations have smaller lower bounds
for 𝐶 or 𝑉𝑜𝑛 , we consider the same values for 𝐶 and 𝑉𝑜𝑛 across the
baselines, D2VFS, and FBTC, as this give us comparable results
within the same experiment. Moreover, in our experiments we
assume that the capacitor voltage cannot exceed 3.6𝑉 and each
experiment starts with the capacitor voltage equals to 𝑉𝑜𝑛 .
Quiescent currents and energy harvesting. The capacitor leak-
age current 𝐼𝑙𝑒𝑎𝑘 and the quiescent current consumption 𝐼𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡
of external circuitry, such as the one of Hibernus [8], D2VFS, and
FBTC, cause a capacitor discharge even when the MCU is powered
off. Depending on these current consumptions, the capacitor size𝐶 ,
and the power-on voltage 𝑉𝑜𝑛 , the energy harvesting source may
not supply sufficient energy to recharge the energy buffer to 𝑉𝑜𝑛 ,
potentially leading to a scenario where the MCU never powers on.
Recalling that a capacitor is recharged whenever the energy harvest-
ing source supplies a voltage higher than the capacitor voltage, this
problem may happen with energy sources that supply short bursts
of energy with a voltage higher than 𝑉𝑜𝑛 . With a high value of 𝐶
or 𝑉𝑜𝑛 , such energy sources are unable to recharge the capacitor to

𝑉𝑜𝑛 in a single burst, as these parameters highly affect the capaci-
tor voltage increase and consequently its recharge time. As such,
after an energy burst partially recharges the capacitor, the MCU is
still powered off, and 𝐼𝑙𝑒𝑎𝑘 and 𝐼𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡 consume the previously
harvested energy stored in the capacitor, potentially depleting it. If
subsequent energy bursts do not supply sufficient energy to com-
pensate for the energy consumed by 𝐼𝑙𝑒𝑎𝑘 and 𝐼𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡 , or do not
recharge the capacitor to𝑉𝑜𝑛 , the MCU never powers on. Note that
that is the case for the RF source of Fig. 10(b) with 𝐶 = 100`𝐹 and
𝑉𝑜𝑛 = 3.6𝑉 .

To avoid this problem, one may lower 𝐶 or 𝑉𝑜𝑛 , allowing the
energy harvesting source to recharge the capacitor to 𝑉𝑜𝑛 within a
single energy burst. However, this is not possible when𝐶 or𝑉𝑜𝑛 are
already set to their lower bound to execute a given workload, that
is, our experiments configuration with all the baselines included.

To overcome the problem in such situations, we instead consider
the addition of a voltage doubler between the energy buffer and
the energy harverster, as in the WISP platform [48], consisting
in a circuit that doubles the voltage reaching the capacitor. By
doubling the voltage of an energy source, energy bursts whose
voltage exceeds 𝑉𝑜𝑛 are both more frequent and longer, allowing
the capacitor to reach 𝑉𝑜𝑛 , despite the energy consumed by 𝐼𝑙𝑒𝑎𝑘
and 𝐼𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡 . Note that we implement the voltage doubler logic
in our extension of ScEpTIC.

To investigate where a voltage doubler may be necessary, we
implement in our extension of ScEpTIC an analysis that identifies
the maximum voltage reached by the capacitor during the inactive
period of a power cycle for a given energy harvesting source. Note
that such analysis accounts only for the quiescent current consump-
tion 𝐼𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡 of D2VFS, FBTC, and Hibernus circuitry, whereas we
ignore the capacitor leakage voltage, as this is significantly lower
than 𝐼𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡 .

From our experiments, the high-capability and low-capability
energy sources do not require any voltage doubler for any configu-
ration. Instead, the medium-capability energy source requires one
voltage doubler for the configuration with𝐶 = 80`𝐹 and𝑉𝑜𝑛 = 3.6𝑉 .
In fact, as Fig. 13 depics, starting from a capacitance of 30`𝐹 , the
maximum voltage reached by the capacitor drops below 3.6𝑉 , that
is, the 𝑉𝑜𝑛 we selected for every experiment configuration.

However, note that using a voltage doubler may not always be an
option, as (i) voltage doublers usually require AC input current [14],
whereas an energy harverster may output DC current [9], and
(ii) similarly to voltage regulators, voltage doublers never have a
100% efficiency [14], wasting a portion of harvested energy. These
are the reasons behind our choice of executing the experiments
with two capacitor configurations, as one requires a voltage doubler,
that is, 80`𝐹 , and the other does not, that is, 20`𝐹 .

Finally, D2VFS has a higher quiescent current draw than FBTC
and static frequency configurations, which reults in a lower equiv-
alent resistance. The quiescent current consumption of Hibernus
circuitry is dominant with respect to the one of D2VFS and FBTC.
Hence, when using Hibernus, D2VFS lower equivalent resistance
results in a faster recharge of the capacitor, which reaches higher
voltages compared to FBTC and static frequencies, as Fig. 13(a)
shows. Instead, in Mementos, starting from a capacitance of 50`𝐹 ,
the higher quiescent current of D2VFS overcomes the advantage of
a lower equivalent resistance, nullyfing such benefit, as Fig. 13(b)
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Figure 14: Comparison of FBTC datasheet-based model
against FBTC measures-based model.

shows. Note that, for Mementos, we estimate that in the static fre-
quencies configuration the capacitor always reaches 3.6𝑉 , as we
assume no 𝐼𝑞𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑡 .

5.3 Energy Model Validation
We model D2VFS and FBTC energy consumption using real mea-
sures of a MSP430-G2553 [26] MCU and the datasheet information
for the various circuitry components of DVFS and FBTC boards.
To validate our model, we measure the energy consumption of the
FBTC board we fabricated. We use a PeakTech 6225A [50] vari-
able power supply to vary the voltage of the FBTC board between
3.6𝑉 and the minimum operating voltage for the considered clock
frequency, using steps of 0.01𝑉 . We measure the FBTC board cur-
rent draw using a UNI-T UT61E multimiter [56]. We repeate the
measures for each one of the operating frequencies we consider,
namely, 16𝑀𝐻𝑧, 12𝑀𝐻𝑧, 8𝑀𝐻𝑧, and 1𝑀𝐻𝑧, and we use them to
create a measures-based model for the FBTC board.

Fig. 14 compares FBTC datasheet-based model against the fab-
ricated FBTC board. Fig. 14(a) compares the energy consumption
per clock cycle of the datasheet-based FBTC model against our
measures. Our model assumes an average efficiency of 90% for the
TPS62740 [28] voltage regulator, as indicated in the datasheet [28].
However, this does not represent the actual behaviour of the volt-
age regulator. The measures of Fig. 14(a) show that the voltage
regulator has a non-linear behaviour and its efficiency depends
on the input/output voltages. In particular, in the range between
3.6𝑉 and 3.3𝑉 , that is, the operating voltage range of 16𝑀𝐻𝑧, our
model underestimates the energy consumption by up to 50% and,
on average, by 38%. This discrepancy decreases down to 34% (23%)
in the voltage range associated to 12𝑀𝐻𝑧 (8𝑀𝐻𝑧), that is, between
3.3𝑉 (2.8𝑉 ) and 2.8𝑉 (2.2𝑉 ), with an average underestimation of
28% (13%). Note that in the range between 2.2𝑉 and 1.8𝑉 , that is,
the voltage range associated to 1𝑀𝐻𝑧, our model overestimates the
energy consumption by up to 2%.

To evaluate the effects of the differences between the datasheet-
based model and the real measures of the FBTC board, we create a
measures-based model and we compare the workload achieved in a
single discharge of a 100`𝐹 capacitor. The lower energy consump-
tion of the datasheet-based model results in the execution of 16%
more clock cycles than the measures-based model, as the datasheet-
based model executes 907365 (763751) clock cycles. The capacitor
discharge time depicted in Fig. 14(b) shows an interesting behaviour.
The significant difference in the energy estimation between 3.6𝑉
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Figure 15: Benchmarks results with the high-capability en-
ergy source, Hibernus, C = 80`F, and Von = 3.6V.

and 3.3𝑉 barely affects the discharge time. The the overall differ-
ence between the discharge times is 4%, which is mainly caused
by the differences in the energy estimation between 3.3𝑉 and 2.2𝑉 .
This is due to the non-linear relation between the capacitor voltage
and the capacitor energy, which makes the MCU sustain lower
frequencies for longer periods. Consequently, the discrepancy in
the energy estimation of higher frequencies has a low impact on
the overall simulation.

For these reasons, despite the energy estimation difference be-
tween the two FBTC models, there is no difference in the perfor-
mance trend of the FBTC models against static frequencies and
D2VFS across our experiments, which we run considering both
the datasheet-based and measures-based FBTC models. The only
significant difference stands in the RSA benchmark with the low-
capability energy source, where the measures-based FBTC model
experiences an extra power failure than the datasheet-based model.

For this reason, we report in this paper the experiments results
for the datasheet-based FBTC model, as the lack of real measures
for the D2VFS board would make a comparison against the FBTC
measures-based model not fair. Further, the datasheet-based model
of FBTC allows us to identify the energy consumption of the FBTC
components external to the MCU, whereas the measures-based
FBTC model does not allow such distinction.

5.4 Results → High-capability Energy Source
Experiments with the high-capability energy source experience no
power failures, as such energy source supplies sufficient energy to
sustain the workload within a power cycle for any experiment con-
figuration. For this reason, we do not report the number of power
failures and the recharge time, as they are always equal to zero.
Similarly, we do not report the execution time, as it corresponds to
the completion time.

Further, in our experiments, the energy source always keeps
the capacitor at its maximum voltage, independently of its size.
Consequently, we discuss here only the experiment results with
a 80`𝐹 capacitor, as experiments with a 20`𝐹 capacitor do not
produce different results.
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Figure 16: Benchmarks results with a high-capability energy
source, Mementos, C = 80`F, and Von = 3.6V.

Hibernus. Fig. 15 shows the experiment results with Hibernus
and a 80`𝐹 capacitor, where D2VFS and FBTC demonstrate the
best performance. Fig. 15(a) depicts the completion time of each
benchmark. D2VFS and FBTC require the same time of the static
16𝑀𝐻𝑧 configuration to complete the benchmarks and are up to
16𝑥 faster than the other baselines. This behaviour is a consequence
of having always a full energy buffer: the harvested energy keeps
the energy buffer in the operating range of 16𝑀𝐻𝑧, which not only
is the fastest and most efficient operating frequency, but also is the
frequency that D2VFS and FBTC set.

In fact, the combination of voltage and frequency scaling tech-
nique of D2VFS and FBTC keeps the MCU in the most efficient
configuration, resulting in up to 1.7𝑥 lower energy consumption,
as Fig. 15(b) shows. Moreover, despite executing benchmarks at
16𝑀𝐻𝑧, D2VFS and FBTC have a 9% lower energy consumption
than the static 16𝑀𝐻𝑧 configuration. This is a consequence of the
voltage scaling technique of D2VFS and FBTC, which, despite (i) the
energy lost due to the voltage regulator and (ii) the energy con-
sumed by their additional components, supplies the lowest possible
voltage to the MCU, keeping the energy consumption lower than
the static 16𝑀𝐻𝑧 configuration.

Finally, D2VFS and FBTC additional components have a very
low impact on the overall energy consumption. Fig. 15(c) shows
that, across all benchmarks, D2VFS and FBTC additional compo-
nents are responsible only for the 0.67% and 0.1% of the overall
energy consumption, respectively. As such, FBTC has a 0.57% lower
energy consumption than D2VFS, while demonstrating the same
completion time.
Mementos. As we previously argue, the high-capability energy
source supplies sufficient energy to ensure that the capacitor volt-
age never drops below the minimum ADC operating voltage. This
causes the three configuration scenarios for Mementos to produce
the same results, as the voltage is always in the ADC operating volt-
age range. As such, we report only the results of the Default Me-
mentos configuration.

Fig. 16 shows the experiment results with Mementos in Default
configuration and a 80`𝐹 capacitor. Fig. 16(a) depicts that the com-
pletion time shows the same pattern of the experiments with Hiber-
nus: D2VFS and FBTC require the same time of the static 16𝑀𝐻𝑧
configuration to complete the benchmarks and they are up to 12𝑥
faster than the other baselines.

However, as Fig. 16(b) shows, D2VFS and FBTC no longer have
the same advantage of energy consumption that have in the experi-
ments with Hibernus. This is a consequence of the executions of
Mementos’ probe function, which turns the ADC on, waits for a
sample of the capacitor voltage, and turns the ADC back off. These
operations have an access latency and introduce a penalty in terms
of wait cycles, consisting in clock cycles where the MCU wait for
the operation completion by executing null operations (NOPs).

The number of NOPs is proportional to the MCU operating
frequency. In the MSP430G2553, the ADC access latency is 1.32`𝑠 ,
consisting in a power-on latency of 0.1`𝑠 [26] and a sampling time
of 1.22`𝑠 [26]. At 16𝑀𝐻𝑧 (8𝑀𝐻𝑧), the MCU needs to wait 22 (11)
clock cycles to retrieve an ADC sample. As a consequence, higher
frequencies are subject to a higher penalty, as they execute a higher
number of wait cycles. As Fig. 16(d) shows, the MCU at 16𝑀𝐻𝑧
executes, on average, 40% (20%) more clock cycles than at 1𝑀𝐻𝑧
(8𝑀𝐻𝑧), with a maximum of 52% (25%) more clock cycles in RSA,
where probe function calls happen more frequently. The higher is
the operating frequency, the higher is the number of wait cycles,
and the higher is the energy that wait cycles consume, potentially
wasting all the energy saved by operating at a more efficient clock
frequency.

Despite the penalty of ADC accesses, D2VFS and FBTC still
consume less energy than the static 1𝑀𝐻𝑧, 12𝑀𝐻𝑧, and 16𝑀𝐻𝑧
configurations across all benchmarks, as Fig. 16(b) shows. This is
thanks to D2VFS and FBTC voltage scaling technique, which lower
the voltage to the mimimum possible to operate at 16𝑀𝐻𝑧. Note
that the significantly lower access penalty that 1𝑀𝐻𝑧 has, that is, 2
clock cycles instead of 22, is still not sufficient to overcame the bet-
ter energy per cycle of 16𝑀𝐻𝑧. Instead, FBTC (D2VFS) consumes,
on average, 3.7% (4.29%) more energy than the static 8𝑀𝐻𝑧 config-
uration, with a maximum of 7.6% (8.22%) more in RSA. However,
FBTC and D2VFS are, on average, 67% faster than 8𝑀𝐻𝑧, with a
minimum of a 61% faster completion time in RSA. We believe that
this significant decrease in completion time completely justifies the
small increase in energy consumption, especially considering that
the energy source supplies more energy than the device can buffer
and thus an increase of energy consumption does not cause any
power failure.

Finally, D2VFS and FBTC additional components have a very low
impact on the overall energy consumption, showing the same ratio
we see in the experiments with Hibernus, that is, 0.64% and 0.1%
of the total energy consumption, respectively, as Fig. 16(c) shows.
Similarly, FBTC has a 0.55% lower energy consumption than D2VFS,
while demonstrating the same completion time.

5.5 Results → Medium-capability Enegy Source
We discuss the results for the experiments with the medium-capability
energy source. Note that 𝑉𝑜𝑛 is set to 3.6𝑉 in each experiment.



Framework-based Dynamic Voltage and Frequency Scaling for Intermittent Computing Conference’17, July 2017, Washington, DC, USA

Dijkstra FFT RSA
Benchmarks

100

101

 - 
Hi

be
rn

us

1MHz
8MHz

12MHz
16MHz

D2VFS
FBTC

Dijkstra FFT RSA
Benchmarks

10 1

100

101

Ti
m

e 
(s

)

(a) Completion time

Dijkstra FFT RSA
Benchmarks

101

6 × 100

2 × 101

3 × 101

Ti
m

e 
(s

)

(b) Recharge time

Dijkstra FFT RSA
Benchmarks

10 1

100

Ti
m

e 
(s

)

(c) Execution time

Dijkstra FFT RSA
Benchmarks

100

En
er

gy
 C

on
su

m
pt

io
n 

(m
J)

(d) Energy consumption

Dijkstra FFT RSA
Benchmarks

0

10

20

30

40

En
er

gy
 C

on
su

m
pt

io
n 

(%
 w

.r.
t. 

to
ta

l)

(e) Energy consumption of
external circuitry

Dijkstra FFT RSA
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f P
ow

er
 Fa

ilu
re

s

(f) Number of power fail-
ures

Dijkstra FFT RSA
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f S
ta

te
 S

av
es

(g) Number of state saves

Dijkstra FFT RSA
Benchmarks

0

1

2

3

4

Nu
m

be
r o

f C
lo

ck
 C

yc
le

s

1e6

(h) Simulated clock cycles

Figure 17: Benchmarks results with a medium-capability
energy source, Hibernus, C = 80`F, and Von = 3.6V.
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Figure 18: Benchmarks results with a medium-capability
energy source, Hibernus, C = 20`F, and Von = 3.6V.

Hibernus with C = 80`F. Fig. 17 shows the experiment results
with Hibernus and a 80`𝐹 capacitor. From the completion times
shown in Fig. 17(a) we can identify two different performance trend
for D2VFS and FBTC: the first in Dijkstra, where they outperform all
baselines, and the second in FFT and RSA, where they demonstrate
an average performance against the baselines.

In Dijkstra, D2VFS and FBTC show a better performance than
the best performing baseline, that is, the static 8𝑀𝐻𝑧 configuration:
they demonstrate a 42% and 41% faster completion time (Fig. 17(a)),
respectively, and consume 8% and 11% less energy (Fig. 17(d)), re-
spectively. Moreover, D2VFS and FBTC are up to two orders of
magnitude faster than the baselines and consume up to 3𝑥 less
energy than the static frequency configurations.

D2VFS and FBTC voltage and frequency scaling technique is
the reason behind their better performance in Dijkstra. Fig. 17(c)
shows that scaling the frequency grants D2VFS and FBTC a faster
execution time than the static 8𝑀𝐻𝑧 configuration, as they are able
to execute a portion of Dijkstra at faster operating frequencies.

Further, the operating frequency changes of D2VFS and FBTC
ensure that their minimum operating voltage is the lowest possi-
ble, extending the amount of MCU instructions executed within a
single power cycle. This, in combination of operating at the mini-
mum possible voltage for the selected operating frequency, grants
D2VFS and FBTC a lower energy consumption than the baselines,
as shown in Fig. 17(d). The lower energy consumption of D2VFS
and FBTC allows them to complete Dijkstra within a single power
cycle and without entering Hibernus’ hibernation mode, as Fig. 17(f)
and Fig. 17(g) show, respectively. We recall that Hibernus enters
hibernation mode when the voltage of the energy buffer drops
below a pre-defined threshold [8], and it saves the state before
entering hibernation mode. Note that the static 1𝑀𝐻𝑧 and 8𝑀ℎ𝑧
configurations demonstrate a similar behaviour. However, thanks
to frequency scaling, D2VFS and FBTC have a faster execution
time, demonstrating to be a better solution than these two static
configurations.

Let us now focus on FFT and RSA, where we can notice a change
in the performance trend. Here D2VFS and FBTC no longer per-
form better than all the static configurations. Compared to the best
performing baseline, that is, 12𝑀𝐻𝑧, D2VFS and FBTC are 2.1𝑥
slower (Fig. 17(a)) and consume, on average, 56% and 15% more en-
ergy (Fig. 17(d)), respectively. The reason behind this performance
change is the reduced voltage range that the lower static frequency
configurations, D2VFS, and FBTC have when entering hibernation
mode. When Hibernus enters hibernation mode, it sets the MCU
to a low-power mode whose minimum operating voltage is 1.8𝑉 .
The voltage threshold that triggers hibernation mode depends on
the minimum operating voltage of the MCU, which is frequency-
dependent. As such, the higher static frequencies configurations,
such as 12𝑀𝐻𝑧 and 16𝑀𝐻𝑧, enter low-power mode at a higher
voltage than D2VFS, FBTC, and the lower static frequency config-
urations, as the former group has a higher minimum operating
voltage than the latter. Note that D2VFS and FBTC eventually scale
the frequency down to 1𝑀𝐻𝑧, extending the power cycle length at
the expenses of a more depleted energy buffer. Consequently, the
static 12𝑀𝐻𝑧 and 16𝑀𝐻𝑧 configurations enter hibernation mode
with a higher energy buffer level than D2VFS, FBTC, and the static
1𝑀𝐻𝑧 and 8𝑀𝐻𝑧 configurations, thus resulting in a longer period
waiting for new incoming energy.

The medium-capability energy source we consider for these
experiments supply short energy bursts that are 5𝑠 apart from each
other, as shown in Fig. 10(b), which lead to long periods where the
MCU is either powered off or in low-power mode, waiting for new
incoming energy. Consequently, D2VFS and FBTC enter hibernation
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mode later than the baselines and the nature of the energy source
does not allow them to wait in hibernation mode, as the energy
bursts are too far from each other, causing a power failure. The
number of state saves and power failures shown in Fig. 17(g) and
Fig. 17(f), respectively, provide evidence of this behaviour. Both in
FFT and RSA, D2VFS and FBTC enter hibernation mode and then
experience one power failure, whereas 12𝑀𝐻𝑧 and 16𝑀𝐻𝑧 have
sufficient energy to wait for new incoming energy bursts. Further,
in RSA, the static 16𝑀𝐻𝑧 configuration enters hibernation mode
twice, without experiencing any power failure.

Due to the nature of the medium-capability energy source, we
can notice from Fig. 17(a), Fig. 17(c), and Fig. 17(b) that the recharge
time represents most of the completion time, whereas the execu-
tion time only represents a small portion of the latter. Note that
we consider the recharge time as the time where the MCU is not
executing any code and it is waiting for new energy to be har-
vested to resume the execution, whereas the execution time as the
time where the MCU is performing active computation. In RSA,
the recharge time of the best static frequency confiuration, that is,
12𝑀𝐻𝑧, is 95% of the total completion time, whereas in D2VFS and
FBTC the recharge time is 97% of the completion time. Note that
the increase of recharge time is another consequence of entering
hibernation mode with little energy to wait in low-power mode.
The more depleted energy buffer of D2VFS and FBTC results in a
2.1𝑥 higher recharge time than the static 12𝑀𝐻𝑧 configuration, as
D2VFS and FBTC need to recharge the capacitor to 𝑉𝑜𝑛 starting
from a lower voltage than the static 12𝑀𝐻𝑧 configuration.

Finally, on average, FBTC shows a 0.01% faster completion time
than D2VFS, while showing a 24% lower energy consumption than
D2VFS across all benchmarks. Futher, Fig. 17(e) shows that D2VFS
components have a higher impact on the energy consumption than
FBTC components. D2VFS components are responsible for up to
44% of the total energy consumption, whereas FBTC components re-
sponsible only for up to 11% of the energy consumption, consuming
on average 6.6𝑥 less energy than the components of D2VFS.
Hibernus with C = 20`F. In Sec. 5.1 we argue that a system with
a 80`𝐹 capacitor requires a voltage doubler to ensure program
forward progress, as the medium-capability energy source is not
able to recharge a 80`𝐹 capacitor to 3.6𝑉 , that is, 𝑉𝑜𝑛 . However,
we also point out that using a voltage doubler may not always
be an option. As such, we execute our experiments using also a
smaller capacitor, that is, 20`𝐹 , which does not require the use
of a voltage doubler. Note that here we do not consider the static
16𝑀𝐻𝑧 configuration, as it is not able to achieve forward progress
with such small capacitor size.

Fig. 18 depicts the experiment results with the 20`𝐹 , showing a
change in the performance trend when lowering the capacitor size:
D2VFS and FBTC now outperform all the baselines. The key reson
behind such performance change stands in the energy buffer size:
entering low-power mode with a depleted capacitor no longer pones
a disadvantage for D2VFS and FBTC when used with Hibernus. In
fact, as Fig. 18(b) shows, the recharge time of D2VFS and FBTC now
is within the one of the best performing baseline. Note that now
the recharge time represents up to 99% of the total completion time.

Fig. 18(a) shows that D2VFS and FBTC complete the benchmarks
5.4𝑥 times faster than the static 1𝑀𝐻𝑧 configuration, that is, the

worse performing baseline. Moreover, D2VFS and FBTC show a
similar performance against the two static 8𝑀𝐻𝑧 and 12𝑀𝐻𝑧 con-
figurations. On average, D2VFS and FBTC are are 0.68% and 0.4%
faster than these two static configurations, respectively. Further,
FBTC now demonstrates the lowest energy consumption: on aver-
age, it consumes 22% less energy than all the baselines and up to
72% less than the worse performing baseline, that is, 1𝑀𝐻𝑧. Instead,
D2VFS higher quiescent current results, on average, in a 22% higher
energy consumption than all the baselines. Note that, thanks to
its lower quiescent current, FBTC consumes, on average, 44% less
energy than D2VFS.

These are all consequences of D2VFS and FBTC voltage and
frequency scaling technique, as D2VFS and FBTC are able to set the
MCU operating frequency to 16𝑀𝐻𝑧, operating in a more efficient
condition than all the baselines. Moreover, operating at 16𝑀ℎ𝑧
overcompensates for the active portion of power cycles where
D2VFS and FBTC operate at 1𝑀𝐻𝑧. Compared to the 80`𝐹 case,
this results to an overall faster execution time, as Fig. 18(c) shows.
Further, the higher is the number clock cycles in the workload,
the faster D2VFS and FBTC complete the benchmarks with respect
to static frequency configurations. This is the case of the RSA,
compared to Dijkstra and FFT.

The change in the energy consumption trend affects the num-
ber of power failures, shown in Fig. 18(f): all the baselines now
experience a power failure, wheras with a 80`𝐹 capacitor the static
12𝑀𝐻𝑧 configuration was exempted from power failures. Moreover,
the baselines,D2VFS, and FBTC no longer complete Dijkstra bench-
mark in one power cycle. This is a consequence of a smaller energy
buffer, as the capacitor now can store less energy that can be used
to progress in the program execution while the energy source is not
supplying sufficient energy to sustain the computation. A similar
trend happens in the number of state saves, shown in Fig. 18(g).

Finally, we notice the same performance difference between
D2VFS and FBTC that happens with the 80`𝐹 capacitor. On aver-
age, FBTC is 0.27% slower than D2VFS, while consuming 44% less
energy. However, there is now an increase of the overall energy con-
sumption of D2VFS and FBTC components due to higher recharge
times than the experiments with a 80`𝐹 capacitor. Fig. 18(e) shows
that D2VFS circuitry is now responsible for up to 57% of the total
energy consumption, whereas FBTC circuitry is responsible only
for up to 15% of it, consuming an average of 4.7𝑥 less energy than
the circuitry of D2VFS.
Mementos with C = 80`F. We discuss now the experiment re-
sults with Mementos. We run the experiments considering the
three Mementos configurations, namely Default, NOADCOFF, and
ADCMINV, which affect only the behaviour of D2VFS, FBTC, and the
static 1𝑀𝐻𝑧 configuration. Our experiments show no change in the
performance trend between the techniques affected by Mementos
configuration and the other baselines. The only significant differ-
ence across the three configurations stands in the number of state
saves for such frequencies. ADCMINV, on average, shows a 31% (25𝑥 )
higher (lower) number of state saves than NOADCOFF (Default).
However, this difference does not have a significant impact on per-
formance: ADCMINV, on average, shows a 4.5% (5.1%) higher (lower)
energy consumption than NOADCOFF (Default) and a 5.2% (3.2%)
lower completion time than NOADCOFF (Default). For these reasons,
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Figure 19: Benchmarks results with a medium-capability
energy source, Mementos in ADCMINV configuration, C = 80`F,
and Von = 3.6V.
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Figure 20: Benchmarks results with a medium-capability
energy source, Mementos in ADCMINV configuration, C = 20`F,
and Von = 3.6V.

we report here only the results of ADCMINV, as (i) the performance
trend is unchanged and the performance difference is not significant,
despite the variance in the number of state saves, and (ii) across the
three configurations, this represents the most reasonable choice for
a real-world deployment.

Fig. 19 shows the experiment results with Mementos in ADCMINV
configuration and a 80`𝐹 capacitor.

Fig. 19(a) depicts the completion time of each benchmark, where
the static 16𝑀ℎ𝑧 configuration demonstrates the fastest completion
time. Similarly to what we argue in the Hibernus experiments, the
reason of such better performance stands in the small operating
range of the static 16𝑀𝐻𝑧 configuration, which allows the MCU to
resume the computation faster, as the capacitor require less energy
to reach 𝑉𝑜𝑛 from a power-off state. Conversely to Hibernus, in
these experiments the MCU does not enter low-power mode and
the MCU directly powers off when the minimum operating voltage
is reached. Further, here the effect of powering off with a higher
capacitor voltage is more beneficial than with Hibernus: in the
baselines, the capacitor does not discharge due to quiescent current
consumption of Hibernus external comparators, as Mementos does
not require any external component. Consequently, for these rea-
sons, the baselines recharge back to 𝑉𝑜𝑛 faster, thus resuming the
computation faster than D2VFS and FBTC, which instead are either
operating in a slower and less efficient frequency or powered off
waiting for the energy buffer to be recharged to 𝑉𝑜𝑛 .

The static 16𝑀𝐻𝑧 configuration terminates both Dijkstra and
FFT benchmarks 72% (78%) faster than FBTC (D2VFS). A similar case
happens also for the static 12𝑀𝐻𝑧 configuration, which terminates
both Dijkstra and FFT benchmarks 64% (70%) faster than FBTC
(D2VFS). However, the behaviour we previously describe represents
an advantage only with short-length workloads, which in this case
are Dijkstra and FFT. RSA requires the MCU to execute 14𝑥 (7𝑥)
more clock cycles than Dijkstra (FFT), as Fig. 20(h) shows. Both
12𝑀𝐻𝑧 and 16𝑀𝐻𝑧 now experience twice the number of power
failures that D2VFS and FBTC experience. As such, the static 16𝑀𝐻𝑧
configuration almost loses all the advantage, as in RSA it is only
4% (8%) faster than FBTC (D2VFS). Instead, 12𝑀ℎ𝑧 loses all the
performance advantage of its reduced operating voltage range: it is
now 1.4% slower than FBTC, while remaining 2% faster than D2VFS.
This change in the trend is thanks to D2VFS and FBTC ability to
operate at a more efficient voltage and frequency range.

Note that, similarly to the Hibernus experiments, the comple-
tion time is mainly affected by the recharge time, as Fig. 20(a) and
Fig. 20(b) show. As we can see from the performance trend across
the three benchmarks, the more clock cycles are executed, the
more the effect of a reduced operating voltage range is attenuated.
Fig. 20(c) provides evidence of this behaviour: the higher the num-
ber of clock cycles executed, the faster is the execution time of
D2VFS and FBTC. In Dijkstra and FFT, D2VFS and FBTC execution
time is within the execution time of 12𝑀𝐻𝑧, whereas in RSA they
match the one of 16𝑀𝐻𝑧. Considering that a deployed system runs
the same workload forver, we believe that in the long run D2VFS
and FBTC have significantly faster completion time compared to the
baselines, as the execution has an infinite number of clock cycles.

Let us now focus on Fig. 19(d), which depicts the energy con-
sumed to complete the benchmarks. The static 8𝑀𝐻𝑧 configuration
has the most efficient energy consumption, which however does
not translate to the fastest completion time, as we described in
Fig. 19(a). Among the three benchmarks, D2VFS always shows one
of the highest energy consumption, consuming on average 66%
more energy than the static 8𝑀𝐻𝑧 configuration. Instead, on aver-
age, FBTC consumes 45% less energy than D2VFS and 12% more
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energy than the static 8𝑀𝐻𝑧 configuration, always resulting among
the most efficient configuration across each benchmark.

Two factors influence D2VFS and FBTC higher energy consump-
tion than the static 8𝑀𝐻𝑧 configuration. First, as we point out in
our experiments with the high-capability energy source, ADC prob-
ing introduces a clock cycle penalty that increases with the MCU
operating frequency. The higher is the frequency, the higher is the
number of executed clock cycles to complete the benchmark. For ex-
ample, as Fig. 19(h) shows, 16𝑀𝐻𝑧 need to execute, on average, 44%
more clock cycles than 1𝑀𝐻𝑧 to complete the benchmarks. Hence,
ADC probing makes D2VFS and FBTC to pay a higher penalty than
the static 8𝑀𝐻𝑧, as D2VFS and FBTC execute a portion of the pro-
gram at 16𝑀𝐻𝑧 and 12𝑀𝐻𝑧, which have a higher penalty than
the static 8𝑀𝐻𝑧 configuration. Second, D2VFS and FBTC have a
quiescent current draw that is not present in the baselines.

Despite the higher energy consumption, in Dijkstra and FFT,
D2VFS and FBTC experience the same number of power failures of
the baselines, as Fig. 19(f) shows. Instead, in RSA, D2VFS and FBTC
experience only one power failure, whereas the baselines experience
at least twice this number. This demonstrates that, despite the
higher energy consumption, D2VFS and FBTC are able to manage
energy more efficiently, as they experience less power failures. This
translates to a similar trend in the number of state saves, as Fig. 19(g)
shows.

Finally, the more efficient voltage and frequency scaling circuitry
of FBTC demonstrates, on average, a 45% lower energy consump-
tion and a 3.6% faster compleition time than D2VFS. Note that the
higher quiescent current draw of D2VFS components is respon-
sible, on average, for the 33% of the overall energy consumption,
whereas FBTC components only for the 9%, as shown in Fig. 19(e).
This causes D2VFS to consume 4.5𝑥 more energy than FBTC when
the MCU is powered off and recharges its energy buffer, causing
the recharge time of D2VFS to be 4% higher than the one of FBTC,
as Fig. 19(b) shows.
Mementos with C = 20`F. In Sec. 5.1 we argue that using a 80`𝐹
capacitor with the medium-capability energy source we consider is
not possible in cases not compatible with using a voltage doubler.
To account for this situation, we also run our experiments with a
20`𝐹 capacitor, which does not require a voltage doubler to ensure
forward progress across power failures. Note that, for similar rea-
sons to the experiments with the 80`𝐹 capacitor, we discuss only
the results for the ADCMINVconfiguration of Mementos.

Fig. 20 depicts the experiment results with a 20`𝐹 capacitor and
Mementos in ADCMINVconfiguration. Similarly to the experiments
with Hibernus and a 20`𝐹 capacitor, we notice a performance trend
change for the completion time with respect to the experiments
with a 80`𝐹 capacitor. Fig. 20(a) shows that there is negligible differ-
ence in the completion time between D2VFS, FBTC and the static
8𝑀𝐻𝑧 and 12𝑀𝐻𝑧 configurations. Compared to these two base-
lines, on average, FBTC (D2VFS) has a 0.13% (0.25%) slower (faster)
completion time. Note that, in RSA, that is, the benchmark with
the highest number of executed clock cycles, FBTC and D2VFS
are 0.11% and 0.37% faster than the static 12𝑀𝐻𝑧 configuration,
respectively, that is, the fastest baseline.

The reason behind such changes is the same for the Hiber-
nus case: the capacitor size no longer pones a disadvantage for

D2VFS and FBTC extended voltage range. Consequently, D2VFS
and FBTC recharge time is now in par with the one of the baselines,
as Fig. 20(b) shows. This demonstrates that the quiescent current
of D2VFS and FBTC have a low impact on performance while the
MCU is powered off. In fact, the recharge time of D2VFS and FBTC
is similar to the one of the baselines, which in contrast do not have
such quiescent current draw.

Further, Fig. 20(c) shows that D2VFS and FBTC demonstrate an
execution time that is, on average, 3.5𝑥 faster than all the baselines
and at least 16% faster than the best performing baseline, that is, the
static 12𝑀𝐻𝑧 configuration. Key behind such greater performance
is D2VFS and FBTC voltage and frequency scaling technique. In fact,
despite the inability of the static 16𝑀𝐻𝑧 configuration to execute
with the 20`𝐹 capacitor, D2VFS and FBTC set the MCU to operate
at 16𝑀𝐻𝑧 for a portion of each power cycle, which is the fastest and
most efficient operating frequency. This makes D2VFS and FBTC
able to extract the most possible performance out of harvested
energy.

Compared to the experiments with a 80`𝐹 capacitor, there is very
little difference in the performance trend for the energy consump-
tion, number of power failures, and executed clock cycles. D2VFS
and FBTC experience the same number of power failures than the
baselines except the static 1𝑀𝐻𝑧 configuration, which experiences
a up to 6𝑥 higher number of power failures, as Fig. 20(f) shows.

Finally, we notice the same performance difference between
D2VFS and FBTC that happens with the 80`𝐹 capacitor, as FBTC is
only 0.28% slower than D2VFS, while demonstrating a 30% lower
energy consumption. Similarly to the experiments with the 80`𝐹
capacitor, the higher quiescent current draw of D2VFS components
is responsible, on average, for the 27% of the overall energy con-
sumption, whereas FBTC components only for the 8%, as shown in
Fig. 20(e).

5.6 Results → Low-capability Energy Source
We discuss here the results for the experiments with the low-
capability energy source. Note that 𝑉𝑜𝑛 is set to 3.6𝑉 .
Hibernus. Fig. 21 shows the experiment results with Hibernus and
a 80`𝐹 capacitor. D2VFS and FBTC demonstrate the best overall
performance against all the baselines.

Due to its nature, the low-capability energy source does not sup-
ply any energy during the computation. Hence, conversely to what
happens with the high-capability and medium-capability energy
sources, the length of the active portion of a power cycles is fixed
and strictly depends on the minimum possible operating voltage of
the selected MCU operating frequency. The voltage and frequency
scaling techniques of D2VFS and FBTC represent the key factor
behind their performance, as they ensure that the MCU operates at
the maximum possible frequency and minimum possible voltage,
thus ensuring the maximum possible operating voltage range with-
out the drawbacks of executing at a low operating frequency. This
extends significantly the number of clock cycles executed within a
single power cycle, providing a significant benefit on the overall
performance.

Fig. 21(f) depicts the completion time of each benchmark. D2VFS
and FBTC are, on average, three orders of magnitude faster than
the baselines. Compared to the best performing baseline of each
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Figure 21: Benchmarks results with the low-capability energy
source, 𝐶 = 80`F, 𝑉𝑜𝑛 = 3.6𝑉 , and Hibernus.
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Figure 22: Benchmarks results with the low-capability energy
source, 𝐶 = 20`F, 𝑉𝑜𝑛 = 3.6𝑉 , and Hibernus.

benchmark, D2VFS and FBTC demonstrate, on average, a 134% and
87% faster completion time, respectively.

We must note that extending the lifespan of a power cycle by
lowering the clock frequency increases the time required to execute
a portion of the instructions executed within a single power cycle,
as Fig. 21(h) depicts. Consequently, D2VFS and FBTC have a slower
active cycle than some baselines, resulting in a slower execution

time. For example, in FFT and RSA, D2VFS and FBTC, on aver-
age, are respectively 91% and 111% slower than the static 12𝑀𝐻𝑧
configuration, that is, the baseline with the fastest execution time.
However, such increase in the active cycle execution time cames
at the significant advantage of a higher number of instructions
executed within a single power cycle, which significantly lowers
the number of power cycles required to compelte a given work-
load, as we previously argue. Moreover, D2VFS and FBTC waste
less time than the baselines in waiting for new incoming energy,
significantly reducing the recharge time, as shown in Fig. 21(g).
Note that here D2VFS and FBTC recharge time is, on average, two
orders of magnitude lower than the baselines. Consequently, as we
previously show, their completion time is significantly lower than
the baselines.

D2VFS and FBTC demonstrate a significantly lower energy con-
sumption than all the baselines. Fig. 21(c) shows that D2VFS and
FBTC consume, on average, 27𝑥 and 29𝑥 less energy than the static
frequency configurations, respectively. This is thanks to D2VFS and
FBTC dynamic voltange and frequency scaling techniques, which
allows them to operate at the most efficient conditions. Further,
Fig. 21(a) shows that D2VFS and FBTC are able to complete the
Dijkstra benchmark within a single power cycle, whereas in FFT
and RSA D2VFS and FBTC experience, on average, 26𝑥 less power
failures than the baselines. Moreover, in FFT and RSA, D2VFS and
FBTC experience half the number of power failures than the static
8𝑀𝐻𝑧 configuration, which is the baseline experiencing the lowest
number of power failures. This behaviour is consequence of D2VFS
and FBTC ability to extend the number of instructions executed
within a single power cycle, which also results in a reduction of the
number of power cycles required to complete a given workload.

Note that the energy consumption and the number of power
failures affect each other: a decrease in the energy consumption
reduces the number of power failures, thus reducing the number of
power cycles required to complete a given workload; a decreaase in
the number of power failures reduces the energy consumed due to
state-saving and state-restoring operations, thus reducing the over-
all energy consumption. Moreover, the reduction of power failures
results in a reduction of state-save and state-restore operations,
further reducing the number of clock cycles executed to complete a
given workload. Fig. 22(e) shows that, on average, FBTC and D2VFS
execute 4.3𝑥 less clock cycles than all the baselines.

Finally, the lower quiescent current of FBTC results, on aver-
age, in a 9% lower energy consumption than D2VFS, as shown in
Fig. 21(c). Further, D2VFS components are responsible for up to 16%
of the total energy consumption, wheras FBTC components do not
exceed 3% of it, as shown in Fig. 21(d). However, a higher energy
consumption means a lower equivalent resistance that enables a
faster recharge of the capacitor. Fig. 21(g) shows that the lower
resistance of D2VFS results, on average, in a 37% faster recharge
time than FBTC. This affects the completion time, as D2VFS has,
on average, a 33% faster completion time than FBTC, as Fig. 21(f)
shows.

When switching to a 20`𝐹 capacitor, the performance trend
does not change, as D2VFS and FBTC still outperform all the base-
lines. We show the experiment results with a 20`𝐹 capacitor in
Fig. 22. D2VFS and FBTC demonstrate the lowest completion time
(Fig. 22(f)) and the lowest energy consumption (Fig. 22(c)), which
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Figure 23: Benchmarks results with the low-capability energy
source, 𝐶 = 80`F, 𝑉𝑜𝑛 = 3.6𝑉 , and Mementos.
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Figure 24: Benchmarks results with the low-capability energy
source, 𝐶 = 20`F, 𝑉𝑜𝑛 = 3.6𝑉 , and Mementos.

lead D2VFS and FBTC to experience the lowest number of power
failures (Fig. 22(a)). On average, FBTC has a 17% lower energy con-
sumption than D2VFS, which allows FBTC to experience up to 17%
less power failures than D2VFS, as shown in Fig. 22(a). However,
similarly to what happens with the 80`𝐹 capacitor, D2VFS has a
27% faster completion time than FBTC.

Mementos. We now discuss our experiment results with the low-
capability energy source and Mementos.

We run each experiment considering all the three Mementos
configurations. Similarly to the experiments with the medium-
capability energy source, the performance trend is unchanged
across the three Mementos configuration, despite the performance
difference in FBTC, D2VFS, and the baselines. From a performance
standpoint, ADCMINVrepresent the average case between NOADCOFFand
Default. ADCMINV, on average, shows a 39% (28.3𝑥 ) higher (lower)
number of state saves than NOADCOFF (Default), which results in a
15% (11%) higher (lower) energy consumption than NOADCOFF (Default)
and a 14% (21%) slower (faster) completion time than NOADCOFF (Default).
Moreover, as we previously argue, ADCMINVrepresents the most rea-
sonable choice among the three configurations of Mementos. Note
that a similar case happens with the 20`𝐹 capacitor. For these rea-
sons, we discuss here only the results with the ADCMINVconfiguration
for Mementos.

Fig. 23 shows the experiment results with the ADCMINVconfiguration
of Mementos and a 80`𝐹 capacitor. The performance difference be-
tween D2VFS, FBTC, and the baselines across each benchmark
shows a trend similar to the one of the experiments with Hibernus.
However, there is a performance difference introduced by the ex-
ecutions of Mementos’ probe function. As we previously discuss,
the probe function of Mementos accesses the ADC, introducing a
latency that increases with the MCU operating frequency.

Considering the performance of Hibernus experiments of Fig. 21
as a reference, here 1𝑀𝐻𝑧 is the frequency that is mostly affected by
ADC accesses penalty, as we the completion time shown in Fig. 23(c)
demonstrates, whereas 8𝑀𝐻𝑧 is the frequency less affected. Despite
a performance change, the performance trend between D2VFS,
FBTC and the baselines does not change.

In general, the static 8𝑀𝐻𝑧 configuration is the best performing
baseline, and both D2VFS and FBTC outperform it. On average,
FBTC and D2VFS show, respectively, a 42% and 84% faster comple-
tion time than the static 8𝑀𝐻𝑧 configuration, as Fig. 23(f) depicts.
Moreover, we can notice from Fig. 23(f) that, on average, FBTC
(D2VFS) shows a 3.5% (0.81%) lower (higher) energy consumption
than the static 8𝑀𝐻𝑧 configuration. Not only FBTC has a lower
energy consumption and execution time than the static 8𝑀𝐻𝑧 con-
figuration, but also D2VFS has an overall better performance than
the static 8𝑀𝐻𝑧 configuration, as it demonstrates a faster comple-
tion time under a similar energy consumption. As we previously
argue, the key behind D2VFS and FBTC performance stands in the
voltage and frequency scaling technique, which allows them to
operate in the most efficient setting and to extend the length of
power cycles active periods.

Similarly to what we argue for the Hibernus experiments with
the low-capability energy source, FBTC demonstrates, on average,
a 19% lower energy consumption but a 29% higher completion
time than D2VFS. The reason behind such performance difference
stands in the lower quiescent current of FBTC, which is responsible
for no more than 4% of the total energy consumption, whereas
D2VFS components are responsible for up to 20% of the total energy
consumption. Despite the lower quiescent current of FBTC unlocks
more energy-efficient operations, it provides a higher equivalent
resistance that negatively affects the recharge of the energy buffer.
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Finally, Fig. 24 depicts the experiment results with Mementos
in ADCMINVconfiguration and a 20`𝐹 capacitor. These results lead
us to the same conclusion of the experiments with a 80`𝐹 capaci-
tor, as there is no significant difference in the performance trend
between the experiments with the two capacitor sizes. D2VFS and
FBTC demonstrate up to 3.1𝑥 and 2.4𝑥 faster completion time than
the baselines and up to 1.7𝑥 and 2.1𝑥 lower energy consumption,
respectively. Compared to the best performing baseline, that is, the
8𝑀𝐻𝑧 configuration, on average, FBTC (D2VFS) has a 5% (31.78%)
higher energy consumption and a 2.5% (29%) lower completion time.
Similarly to the 80`𝐹 capacitor experiments, FBTC demonstrates
an average of a 26% lower energy consumption and a 26% higher
completion time than D2VFS.

5.7 Results → Final Remarks
D2VFS and FBTC show exceptional performance with high-capability
and low-capability energy sources, as their ability to efficiently ex-
tend the number of instructions executed within a single power cy-
cle demonstrates a significantly lower completion time and a lower
energy consumption than all the baselines. This allows D2VFS and
FBTC to terminate the benchmarks in a lower number of power
cycles than the baselines, providing a significant performance gain.
Instead, with a medium-capability energy source, D2VFS and FBTC
performance is comparable to the best performing baseline, es-
pecilly when a large energy buffer is used.

We identified three different supply scenarios, which generalizes
across a vast majority of possible energy supply conditions. From
the results of these experiments, we can see that there is no best
configuration among the static ones that demonstrates to have
the best performance across all the different energy supply and
workloads scenarios. For example, the static 16𝑀ℎ𝑧 configuration
is the best performing baseline with the high-capability energy
source, but it becames the worse performing baseline with the
low-capability energy source.

Energy harvesting sources are unpredictable and environmental
changes may affect the energy supply pattern [9], resulting in a
change in the energy supply scenario. For example, a cloud covering
the sun causes the energy supply scenario to change from high-
capability to low-capability. In such condition, D2VFS and FBTC
demonstrate to provide a good general setting: conversely to the
static frequency configurations, their performance trend is not
drastically affected by changes in the energy supply scenario. This
is thanks to their voltage and frequency scaling technique, which,
as we argue in our experiment results discussion, allows D2VFS
and FBTC to operate at the most efficient setting that provides
the best possible performance. For this reason, we believe that
D2VFS and FBTC represent a valuable technique for the design and
development of battery-less systems, as it relief system designers
from profiling the energy source and running multiple and laborious
experiments to identify a system setting that may not serve good
performance with changes in the energy supply scenario.
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