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Abstract

Using the energy harvested from the environment for powering small-scale
devices reduces maintenance cost, and enables applications and services con-
sidered to be impractical due to battery limitations. Devices powered only
with such energy source compute intermittently, as energy is available. Their
execution is characterized by intervals of active computation, interleaved by
periods in which the device is powered off and recharges its energy buffer.

Despite different techniques enable forward progress of programs, an
intermittent execution inevitably causes the re-execution of some portion
of code. Such re-executions may cause unwanted behaviors, such as the
computation of incorrect results or unexpected environment interactions.

The current literature recognizes such unwanted behaviors as generic in-
termittence bugs, and does not provide an in-depth analysis of them. More-
over, no available technique enables testing the effects of all the possible
combinations of intermittent executions in practical time. This operation
has a complexity which grows exponentially with respect to all the possible
interruption points, and can result in years of processing time for analyzing
even a simple program.

In this thesis we provide an exhaustive analysis of intermittence bugs, in-
cluding an analysis of their causes, guidelines on how to avoid such unwanted
behaviors, and a set of techniques that enable their analysis in practical time.
We also analyze the possibility of exploiting intermittence bugs for making
programs aware of intermittence, and we provide both a technique and a set
of guidelines that permit testing the correctness of this new kind of input.

Our contribution includes ScEpTIC, an offline tool that implements all
the testing techniques that we provide in this thesis. ScEpTIC helps the pro-
grammer analyze and test the effects of intermittent executions in practical
time. Not only it provides a speedup of six orders of magnitude with respect
to brute-force approaches, but it also returns a more complete result that
correctly identifies the exact position of intermittence bugs.

An excerpt of this thesis work is currently submitted for conference publication.
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Sommario

Alimentare i dispositivi di dimensioni ridotte usando solo l’energia fornita
dall’ambiente riduce i costi di manutenzione e permette la creazione di ap-
plicazioni e servizi considerati poco pratici a causa delle limitazioni delle
batterie. I dispositivi alimentati con tale sorgente di energia computano
solo quando l’energia è disponibile, e sono caratterizzati da un’esecuzione
intermittente, che separa intervalli di computazione attiva ad intervalli in
cui il dispositivo è spento.

Nonostante differenti tecniche permottono di riprendere l’esecuzione da
dove è stata interrotta, la ri-esecuzione di alcuni porzioni di codice è in-
evitabile. Queste ri-esecuzioni possono causare comportamenti inaspettati,
come ad esempio il calcolo di risultati non corretti o interazioni non previste
con l’ambiente circostante.

La letteratura riconosce questi comportamenti inaspettati come dei gener-
ici bug da intermittenza, e non fornisce una loro analisi approfondita. Inoltre,
nessuna tecnica al momento disponibile permette di analizzare in tempo ra-
gionevole gli effetti di tutte le possibili combinazioni di esecuzioni intermit-
tenti. Questa operazione ha una complessità che cresce esponenzialmente
rispetto a tutti i possibili punti in cui la mancanza di energia può causare uno
spegnimento del dispositivo, e si potrebbe impiegare anni di computazione
per analizzare anche solo dei piccoli programmi.

In questa tesi forniamo un’analisi esaustiva dei bug da intermittenza,
che include l’analisi delle loro cause, linee guida per evitare tali bug, ed un
insieme di tecniche che permottono la loro analisi in tempi pratici. Anal-
izziamo inoltre l’utilizzo di alcuni bug da intermittenza per rendere il pro-
gramma consapevole dell’intermittenza stessa, e forniamo sia delle tecniche
che permottono di verificare la correttezza di questo nuovo tipo di input,
che delle line guida per il suo utilizzo.

Il nostro contributo comprende anche ScEpTIC, un tool di nostra creazione
che implementa le tecniche di analisi fornite in questa tesi. ScEpTIC aiuta il
programmatore ad analizzare e verificare gli effetti che tutte le possibili es-
ecuzioni intermittenti hanno sul programma. Nei nostri test di laboratorio,
ScEpTIC ha dimostrato una performance di sei ordini di grandezza superiore
rispetto a comuni tecniche di brute-force per analizzare tutti i possibili punti
di interruzione, e produce un risultato più completo ed accurato rispetto a
tali tecniche.
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Chapter 1

Introduction

Transiently Powered Computing (TPC) consists in using the energy har-
vested from the environment for powering small-scale devices. This tech-
nique is becoming more and more popular in the Internet-of-Things (IoT)
area. Having a battery-less system leads to a dramatic reduction of main-
tenance costs and has the potential to enable applications and services con-
sidered to be impractical due to battery limitations [5, 6, 7, 8, 9].

The target devices used in this domain have small form factors, low
power consumption, low computational power, and contained costs. They
consist in a Micro Controller Unit (MCU) with a very limited amount of
memory and storage, which are not sufficient to host an operative system.
For this reason, the MCU executes a single program, which is uploaded by
the user in form of a compiled binary. An example of a target device is the
MSP430 [2], which is a low-power MCU with 512 KB of flash memory and
66 KB of RAM. This class of devices is not provided with a battery, and
they store the energy inside a small capacitor.

The energy harvested from the environment has an unpredictable be-
havior, and devices that use it as main power supply are characterized by
frequent shutdowns. When we use such energy source, we can observe an
intermittent execution, characterized by intervals of active computation sep-
arated by intervals in which the device is completely powered off. The length
and frequency of such intervals depend on the presence of energy that can
be harvested from the environment.

Having frequent shutdowns creates the needs of saving all the information
computed by the device into a non-volatile memory (NVM), so to not restart
the entire computation over again. This allows the device to continue from
the point in which it powered off. There are different techniques to preserve
the information computed by the device between shutdowns, and most of
them [1,3,4,10,11,12] are based on the concept of checkpoints. A checkpoint
consists in saving the volatile state of the micro-controller unit into NVM
and, depending on the device configuration, it can include the register file,

1



2 CHAPTER 1. INTRODUCTION

the stack, and/or the heap. Whenever the device wakes up, it verifies the
presence of a valid checkpoint and, if available, the device restores the saved
state contained in it.

1.1 Problem

Performing a checkpoint introduces an overhead, from both the energy and
computation perspectives. To reduce such overhead, different checkpoint
mechanisms [1, 10, 11, 12] allocate portions of the main memory into NVM,
such as single variables or the entire stack. In this way, the amount of
data saved by a checkpoint is reduced, since only the volatile state must
be saved. Unfortunately, the allocation of a memory element into NVM
does not come for free. In fact, such allocation introduces a new class of
bugs, which is referred by different works as intermittence bug [13] or state
inconsistency [1, 10,14,15,16].

When a checkpoint is executed, it saves the volatile information of the
state, comprehending the program counter, the content of the register file,
and the content of the volatile memory. The NVM is a persistent memory
space that does not lose data across power resets, and thus a checkpoint
does not save its state. If the execution of a subsequent instruction modifies
the NVM, the state that a previous checkpoint saved is no longer consistent.
In fact, if a shutdown happens due to a low energy buffer, the content of
the NVM is preserved, but it differs from when the checkpoint was taken.
This discrepancy between the states at the checkpoint and during the power
off causes the state inconsistency problem. When there is enough energy
to restart the computation, the volatile state is restored from the informa-
tion that a previous checkpoint saved, and the computation resumes from
where the checkpoint was taken. In such a scenario, the content of the NVM
contains results produced by future instructions with respect to where the
execution is resumed. As consequence, the execution of subsequent instruc-
tions will use as input those results, producing incorrect values and leading
to wrong results. From a science-fiction point of view, this bug can be
described as a broken time-machine [14], which travels back in time while
maintaining the effects of changes done in the future.

Data Processing. To better understand this problem, let us focus on Fig-
ure 1.1, which is the example used in DINO [1] to describe the inconsistency
problem. It contains the portion of a program, in which the variables len
and buf are allocated into NVM. The sequential execution of this code sets
the variable len to 0, and the array buf to ’a’ in the cell number 0.

Let us now explore what happens during the intermittent execution of
the same code. We start the execution, and then we reach the checkpoint
routine present at line 1, which saves the volatile information such as the
register file and the stack content. As next instruction, we run the operation
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Figure 1.1: Inconsistency example described by Lucia et al. [1].

at line 2. It loads the value of the NVM variable len, which is -1, into the
variable r1. Then, we execute the operation at line 3, which increment to
0 the value of variable r1. The execution continues with the instruction at
line 4. It stores the value of variable r1 into the NVM variable len, which
now assumes a value of 0. Let us now suppose that the energy source is
not providing enough energy to our device, and that the energy buffer was
completely emptied during the execution of the previous instructions. As
consequence, a shutdown happens due to a low energy level.

While the device is powered off, the energy harvested from the environ-
ment refills the device energy buffer. When there is enough energy to restart
the computation, the previously saved checkpoint is restored. The execu-
tion resumes from line 2, and it loads into the variable r1 the content of
the NVM variable len, which is now 0. This loaded value was produced by
the instruction at line 4 during the previous execution of the code. Since we
restored the checkpoint at line 1, we should not be able to see such result,
because it was produced by a future instruction. For this reason, from now
on, all the computation will produce incorrect results. In fact, if we continue
the execution of the code, len will be set to 1 instead of 0, and the array
buf will be set to ’a’ in the cell number 1 instead of 0.

The described inconsistency problem creates the need of verifying the
correctness of the intermittent executions of the program. To verify the
correctness of a sequential execution of a program, the literature provides
different types of code testing methodologies (e.g. unit testing), but un-
fortunately very little work exists for intermittent execution [13, 17, 18]. It
is not possible to use existing sequential methodologies, since they are not
conceived to account for power outages scenarios.

There are four elements that must be considered to run a test in an
intermittent execution scenario:

• Where to generate a power reset : in an intermittent execution scenario
it is not possible to predict where power resets may happen, due to
the unstable and unpredictable nature of harvested energy sources.
For this reason, a power reset can happen after the execution of any
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instruction. For exhaustively testing the correctness of a program, we
should verify the consequences of each possible power reset.

• How to analyze power resets: for verifying the cause of a power reset,
when we generate it we must start from a consistent state. In fact, each
power reset we generate may change the non-volatile state, potentially
leading to an inconsistency. If we generate a new power reset starting
from an inconsistent state, all the results that subsequent instructions
produce may be incorrect. As consequence, we are not able to tell if
the incorrect results are a consequence of the previous power reset,
or if the new power reset causes new inconsistencies. To avoid this
problem, we must provide a way to generate one independent test for
each possible power reset. In this way, no previous power reset can
interfere with the analysis of a subsequent one, and thus we are able
to correctly identify the causes of an inconsistent state.

• How to recognize inconsistencies: for verifying if the state is consistent,
we must define a technique for recognizing if the effects produced by
each operation on the state are correct or not. This requires us to
know the correct state produced by the execution of each instruction.
In fact, if we do not have such information, we do not have any element
to which compare the state obtained after a power reset, and thus we
are not able to establish if it is consistent or not.

• Which checkpoints to test : depending on our requirements, we might
want to verify the presence of inconsistencies considering a specific
checkpoint placement, or considering all the possible checkpoint place-
ments.

– Specific checkpoint placement : in this case, we already chose
where the checkpoints are placed in the code, by either plac-
ing them by hand or using a tool such as MementOS [3]. In
such a scenario, we must run a group of tests which exhaustively
verifies the presence of inconsistencies, by reproducing all the pos-
sible power resets. The inconsistencies found by this analysis are
only valid with the given checkpoint placement, and in the case
we want to change where checkpoints are, we must run another
group of tests.

– All possible checkpoint placements: in this case, we did not choose
where the checkpoints are placed, and we want to evaluate the
presence of inconsistencies without having to specify any place-
ment. For exhaustively testing the presence of inconsistencies
in such a scenario, we have to generate all the possible check-
point placements, otherwise we can lose some relevant informa-
tion about where inconsistencies may happen. Then, for any of
the possible checkpoint placement, we have to run the same group
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of tests we described in the case above. Moreover, since we do
not know a priori where the next checkpoint will be, we must
account for the effects of all the instruction after the considered
checkpoint. For this reason, we should consider checkpoints to
be independent, and thus we must run one group of test for each
checkpoint, as if no further checkpoints happen after the consid-
ered one. In this way, the inconsistencies found by this analysis
covers all the possible checkpoint placements.

As consequence, running an exhaustive test in an intermittent execution
scenario is not a trivial process, and the required computational effort is
considerable. Let us consider the most simple approach we can think of, for
finding the presence of inconsistencies, that is to analyze the effects that any
possible power reset has over the device state. We describe such approach
in Chapter 4, and we use it as baseline for our evaluation in Chapter 8.
The resulting algorithm generates a power reset after every line of machine
code, since a shutdown can happen at any instant during the execution of
the program. For every checkpoint it encounters, the algorithm saves a
snapshot of the state, and starts testing for intermittence bugs. For every
instruction after the checkpoint, the algorithm executes it, generates a power
reset, and restores the state. Then, it compares the resulting state with the
saved snapshot. If a difference is found, it restores the saved snapshot and
signals the found inconsistency, otherwise it simply continues the execution.
As next step, it executes the instructions until it reaches the one after the
previous power reset, and repeats this process over again.

From another point of view, we can say that the algorithm runs the
program to be tested one time for every possible power reset, and does
so for any checkpoint. The total number of instructions executed to run
the entire test has a complexity of O(nchk · n2instr), with nchk equal to the
number of checkpoints to be executed and ninstr equal to the total number
of instructions executed in the equivalent sequential execution of the same
code. If we set the algorithm to test any possible checkpoint placement,
it will assume checkpoints to happen at any line of code, and thus it will
execute the described workflow for any of them, leading to a complexity of
O(n3instr).

For identifying the presence of inconsistencies, we require comparing the
states that each power resets produce with the one produced by the equiv-
alent sequential execution of the same code. The effort that this operation
requires is significant, since every time we generate a power reset, we must
pause the execution for performing sdim comparisons, with sdim equal to the
number of elements that the state contains. The overall number of compar-
isons has a complexity of O(sdim · nreset), with nreset equal to nchk · ninstr.
If we set the algorithm to test any possible checkpoint placement, nreset is
equal to n2instr. Furthermore, when we find an inconsistency, we also need
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to restore a snapshot to make the state consistant, otherwise we are not
able to continue our analysis. The overhead that such operations introduce
limits the overall speed that we can reach during the analysis. For these
reasons, in our testing environment, our prototype was able to analyze up
to 1.8 ·104 instructions per second despite running on modern hardware and
using optimized language backends.

Let us now consider the most simple benchmark we use in Chapter 8 to
evaluate our work, which is CRC. It is a C program with 70 lines of code, and
has 300 machine-code instructions in the .text section of the compiled binary.
Its sequential execution runs 5 · 104 machine-code instructions. Running a
test which covers all possible power resets will result in running a number
of instructions in the order of 1014, and the test will take years to complete,
considering that our setup is able to analyze up to 1.8 · 104 instructions
per second. Moreover, using the formula we describe in Chapter 8, we
can precisely calculate the number of instructions to be executed, which is
2.34·1013. Considering that, the test would take 41 years to complete, which
is an unreasonable amount of time to get a result.

Predicting and exploring all the possible combinations of intermittent ex-
ecution is a non-trivial task and, according to Hester et al. [19], no available
tool is able to do that.

Depending on how a program accesses the memory, state inconsistencies
may happen due to the allocation of a portion of main memory into the
NVM. The lack of a well-defined testing workflow for intermittent execution
leads the programmer to selecting a checkpoint mechanism without taking
into account which kind of problems are introduced with the associated
memory configuration. As consequence, the program may present poor per-
formance and poor energy optimization, due to checkpoint placements and
consequently introduced overhead. Furthermore, depending on the check-
point mechanism, might not be guaranteed the absence of inconsistencies,
and thus the program will not only be inefficient, but it will also produce
incorrect results.

Environment Interactions. A common application of TPC devices con-
sist in using them as sensors of wireless networks. In such a scenario, devices
will sense data from the environment, process the sensed values, and then
store the results or send them to the main node of the system. The un-
predictable behavior of the harvested energy does not only affect the data
computed by the device, but also affects environment interactions. In fact,
having frequent power resets results in the inevitable re-execution of some
portion of code, as we shown in previous examples. This re-executions af-
fects not only the data stored in our device, but also the way in which it
interacts with the environment:

• Output. Let us consider Figure 1.2, which represents a portion of a
program that moves a servo by 45◦, and let us verify what happens
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Figure 1.2: Example of an intermittent execution which leads to an unex-
pected state of the environment.

during the intermittent execution of the code. Let us suppose that the
servo initial position is 0◦. We execute the instruction at line 2, which
moves the servo by 45◦, and thus its new position is 45◦. Let us now
suppose that there is not enough energy to continue the execution, and
thus a shutdown happens due to a low energy buffer. When there is
enough energy to restart the computation, the latest saved checkpoint
is restored and the execution continues from the instruction at line
2. It is the same operation we run before, and it moves the servo by
an additional 45◦, resulting to a new position of 90◦. This state is
different from the one we would obtain from a sequential execution,
which would set the servo to 45◦. Depending on how we wrote the code,
we can consider the state to be inconsistent or not. If the following
instructions assume that the servo is at 45◦, all the subsequent results
can be incorrect and the device can have an unexpected behavior.

• Input. Let us consider Figure 1.3, which represents a portion of a
program that reads the light intensity of the environment, and let us
verify what happens during the intermittent execution of the code. We
execute the instruction at line 1, which stores the value of the light
intensity into variable a. Then, we execute the checkpoint at line 2, and
thus we save the state. Let us now suppose that there is not enough
energy to continue the execution, and thus a shutdown happens due to
a low energy buffer. Moreover, let us suppose that the device takes 2
hours to harvests enough energy to restart the computation, and that
while the device is not running, the light intensity of the environment
changes. When there is enough energy to restart the computation, the
checkpoint is restored and the execution continues from the instruction
at line 3. From now on, all the performed computation will as value
of the light intensity the one stored in the variable a, which is 2 hours
old, and thus it does not reflect the current environment state. The
following instructions will produce a result which is computed using
such old value, and this could lead to an unexpected program behavior.
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Figure 1.3: Example of an intermittent execution leading to a state which
is not synchronized with respect to the environment.

All the previous works addressing inconsistencies [1,10,13,14,15,16] treat
them only from a data standpoint, and they do not analyze environment in-
teractions. As we showed in the previous examples, frequent power resets
can also result in an unexpected behavior from an environment interaction
standpoint. The lack of an analysis for this kind of inconsistency makes us
unable to identify where in the code they can happen, under which circum-
stances they can occur, and how we can avoid such unwanted behaviors.
Moreover, not recognizing this type of inconsistency leads us to not expect
any unwanted behavior from an environment standpoint. As result, we do
not test our program under the circumstances that produce such unwanted
behavior, potentially leading us to treat an unreliable program as if it is
reliable.

The absence of a general workflow for testing intermittent execution
and the lack of a classification of inconsistencies leads to the impossibility
of recognizing where hazards to consistency may happen inside the code.
The main problem is thus providing both a tool and a general workflow for
verifying, analyzing, and testing the results of an intermittent execution,
independently of the checkpoint mechanism adopted, the micro-controller
unit used, and the nature and patterns of harvested energy.

1.2 State of the Art

Currently four solutions have been proposed to deal with different facets of
the testing problem in an intermittent execution environment: EDB [13],
Ekho [20], Siren [17], and CleanCut [18].

• EDB [13] consists in a debugging environment that addresses the
problem of not introducing any energy interference during the debug-
ging of a device. For doing so, when a debugging operation is executed,
EDB provides to the tested device a constant energy, so to compensate
for the energy consumed by such debugging operation.
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EDB is composed by both a hardware and a software solution. The
first one consists in a debugging device that must be connected to the
MCU of the device we want to test. This component permits us to
physically modify the energy level available in the device, access the
memory content, and read system’s internal information. The second
one consists in a software library which enables us to use the debugging
capabilities of the hardware device. It permits us setting breakpoints
based on the program execution or the energy level, and to verify
conditions on the data.

EDB acknowledges the inconsistency problem we described in the pre-
vious section as intermittence bug. We may use its exposed functional-
ities for verifying if the state produced after a power reset is equivalent
to the one that the sequential execution of the same code produces,
but it lacks of dedicated and automated techniques for finding where
inconsistencies may happen.

• Ekho [20] focuses on the energy perspective and solves the problem of
physically recreating the characteristics of an energy harvesting envi-
ronment, with the aim of being able to perform multiple and repeatable
in-lab testing. It provides both a general workflow and tools for record-
ing and reproducing the energy harvested from a specific source. Ekho
can be used to test the behavior of a program with respect to a specific
energy source, but it does not address the inconsistency problem. In
fact, it does not provide any technique for verifying the presence of
inconsistencies, or for identifying if the state produced after a power
reset is equivalent to the one that the sequential execution of the same
code produces.

• Siren [17] is a software solution that emulates the execution of a pro-
gram over the MSP430 [2] architecture, a commonly used MCU in
TPC domain, and takes into account the energy perspective. For do-
ing so, it extends MSPSim [21], an MSP430 instruction level emulator,
with the concepts of energy buffer and non-volatile memory.

Siren emulates the energy buffer, and takes into account the energy
consumption produced by the execution of any instruction. Then, it
uses EKHO’s energy representation to reproduce the effects of har-
vested energy over the energy buffer.

Siren provides a series of debugging capabilities, such as breakpoints,
register and memory monitoring, and profiling of the executed code,
which are designed to not interfere with the simulated energy levels.

As for EDB, we can use Siren exposed functionalities for verifying if
the state produced after a power reset is equivalent to the one that
the sequential execution of the same code produces, but it lacks of
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dedicated and automated techniques for finding where inconsistencies
may happen.

• CleanCut [18] is a debugging environment which does not focus on in-
consistencies, and instead focuses on the energy perspective and solves
the problem of non-terminating path bugs. A non-terminating path
consist in a sequence of instructions which demands more energy than
the device can store. In such a scenario, the device is not able to
complete such sequence and it will restart over again from the first
instruction of it. As consequence, the device is stuck at the execution
of this non-terminating path.

CleanCut provides to the programmer a way to find if non-terminating
paths exists inside the code, and a tool able to place checkpoints in a
way which avoids them. It is not conceived to account for inconsis-
tencies, and thus it does not provide any technique for verifying the
presence of inconsistencies, or for identifying if the state produced af-
ter a power reset is equivalent to the one that the sequential execution
of the same code produces.

All the available solutions are not conceived to focus on testing all the
possible combinations of intermittent executions. EDB [13] and Siren [17]
are designed to address the debugging problem, and thus they are the tools
that are closer to our problem. Even if we can adapt EDB and Sirens for
verifying the presence of inconsistencies, using Siren will limit the user to
use an MSP430 [2] architecture, and using EDB requires a significant hard-
ware intervention on the micro-controller unit, since it must be physically
connected to the MCU.

Moreover, to extend these tools for recognizing inconsistencies, we still
require a general workflow for analyzing where inconsistency may happen.
Some checkpoint mechanisms such as DINO [1] and Ratchet [10] provide an
analysis to automatically resolve the inconsistency problem. Unfortunately,
such workflows are only applicable with respect to the respective checkpoint
mechanism’s memory configurations, and they do not consider environment
interactions.

Finally, none of these tools recognize or classify different types of incon-
sistencies, and they also do not provide any guideline on how to avoid the
unwanted behaviors introduced by frequent power resets.

1.3 Contribution

As we previously described, the literature lacks both a general workflow to
analyze inconsistencies, and a tool for finding them. This thesis addresses
these problems, and its contributions can be divided into two different parts.
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1.3.1 Classification and Analysis of Inconsistencies

We considered the inconsistency problem from both the point of view of
memory and environment interactions. For each one of these two classes,
we analyzed all the possible scenarios that can cause an unwanted behavior
of a program, and we provided guidelines on how to avoid such unwanted
behaviors. For analyzing inconsistencies, we considered a low level of ab-
straction (i.e., machine code). This enables us to focus on details which
otherwise we would not be able to consider.

Memory. From the memory standpoint, we identified three different types
of unwanted behaviors:

• Data Access Inconsistency : it can happen whenever an access into
NVM is performed, independently of the memory section (i.e., global
variables, stack, and heap). It is the generic inconsistency considered
in the literature [1, 10, 13, 14, 15, 16], and we analyzed it from a lower
level of abstraction (i.e., machine code). As we will see, such incon-
sistency is caused by a power reset which happens after a sequence of
instructions containing a read and write operation for the same mem-
ory location, that are not separated by any checkpoint. In fact, when
the read operation will be re-executed, it will read the value written
by the subsequent write operation before the previous reset.

Addr. Content
0xFFF0 ...

0xFFF1
f1 return
address

0xFFF2 ...S
t
a
c
k

G
r
o
w
t
h

Stack after f1() call

Addr. Content
0xFFF0 ...

0xFFF1
f2 return
address

0xFFF2 ...S
t
a
c
k

G
r
o
w
t
h

Stack after f2() call

6. f1();
1. ...

<CHECKPOINT>
2. ...
3. return x;

7. f2();
1. ...

Shutdown

2. return y;

8. ...

6. f1();
1. ...

<CHECKPOINT>
2. ...
3. return x;

7. f2();
1. ...
2. return y;

8. ...

Addr. Content
0xFFF0 ...

0xFFF1
f2 return
address

0xFFF2

Stack after restore

Jump due to a
wrong return ad-
dress in the stack.

R
eb

o
ot

Figure 1.4: Example of an Activation Record Inconsistency. The stack is
allocated into NVM, and thus every write is persistent across power resets.
Once the function f1 returns, it pops the stack content. When the function
f2 is called, it pushes onto the stack the return address, which goes to the
same position of where the return address of f1 was stored. As consequence,
when the checkpoint is restored due to a power reset, the function f1 will
pop the wrong return address from the stack, since it was overwritten by
f2() call in the previous power cycle. For this reason, the program counter
is set to the address of line 8 and not to the one of line 7, entirely skipping
the call of f2.
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Figure 1.5: Example of an intermittent execution leading to an unexpected
behavior due to the allocation of the heap segment in NVM. The variable
p points to a cell which was dynamically allocated into the heap. Once the
cell is freed, it is removed from the heap. In such a scenario, if a shutdown
happens, the code after the checkpoint is re-executed. The following in-
structions expect the cell pointed by p to be available, but it does not exist
anymore.

• Activation Record Inconsistency : it is a type of inconsistency which
can happen only if the stack is allocated into NVM, and it is caused
by function calls.
Figure 1.4 shows an example of this kind of inconsistency. The call of
f1() at line 6 pushes onto the stack a set of elements which includes
the return address, which is the address of the instruction at line 7.
When we perform the checkpoint, we are inside the context of f1().
When f1() returns, it pops from the stack the return address, and the
execution continues from line 7, which calls f2(). As consequence, it
pushes onto the stack its return address, which is the address of the
instruction at line 8. If we consider the data present in the stack when
the checkpoint was taken, this operation has effectively replaced the
return address of f1() with the one of f2(). When the checkpoint is
restored, the execution continues until it reaches the return instruction
at line 3 of f1(). The return address present in the stack is the one of
f2(), and thus as next instruction it will be executed the one of line 8
instead of line 7, resulting in an unexpected program behavior.
• Memory Map Inconsistency : it is a type of inconsistency which can

happen only if the heap is allocated into NVM.
As we will see, this type of inconsistency can be caused by the exe-
cution or re-execution of a function which can dynamically allocate,
move or delete memory elements inside the heap (i.e., malloc, cal-
loc, realloc, free). We analyzed multiple combinations of instructions
which generates a Memory Map Inconsistency. Figure 1.5 shows an
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example of this kind of inconsistency. The variable p is a pointer which
addresses a cell inside the heap, which is in NVM. Once we execute the
free(p) instruction of line 5, the cell pointed by p is de-allocated. Let
us suppose that, after the execution of such instruction, a shutdown
happens due to a low energy buffer. When there is enough energy
to restart the computation, we restore the checkpoint, and then we
continue the execution from the instruction at line 4. The execution
of such operation accesses the cell pointed by p, which is no longer
available, leading to an unexpected behavior of the program. In fact,
depending on how heap is managed, the program might crash.

For each one of these inconsistency types, we provide a general workflow for
verifying their presence, and guidelines on how to solve them.

Environment. From the environment standpoint, we found and analyzed
the problems of Input Access Inconsistencies and Output Inconsistencies.
The intermittent execution characterizing TPCs does not only introduce an
unwanted behavior from the memory standpoint, but also from environment
interactions.

In the sequential execution of a program, whenever we execute an in-
struction that retrieves data from the environment, such as reading a sensor,
we get a value that reflects the current state of the environment. For this
reason, all the subsequent computation that uses directly or indirectly such
data produces the expected results.

If instead we consider an intermittent execution, this same behavior is
not granted. Let us suppose that we read the temperature of the environ-
ment, we perform a checkpoint and then a shut down happens due to a low
energy buffer. Let us now suppose that the temperature of the environment
changes while the devices is powered off. When there is enough energy to
restart the computation, the previously taken checkpoint is restored, and
the device continues the execution of the program. All the subsequent com-
putation will use a temperature value which does not correspond to the
current state of the environment. In fact, the state of the device obtained
after the restoration of the checkpoint contains also the data retrieved from
the environment during the previous power cycle. Depending on the pro-
gram requirements, the computation can be considered either incorrect or
correct. If we want to perform the computation using this previous version
of the temperature, we can consider the results correct. Instead, if we want
to use a value which corresponds to the current state of the environment,
we must consider the results to be incorrect, and we have an Input Access
Inconsistency.

Due to the presence of an intermittent execution, we can classify uses of
environment-dependent data with two types of input access models:

• Most Recent : all the data computed from an input is not produced
using the value of such input from a previous power cycle. In other
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words, whenever the execution restarts from a checkpoint, the value
of the input has to be taken from the environment, with the effect of
using the most possible recent one.
• Saved : all the data computed from an input can be produced using

the value of the input from a previous power cycle. In other words,
whenever the execution restarts from a checkpoint, the value of the
input may be taken from the restored state, with the effect of using
the last sensed value.

The decision of using a Saved or Most Recent access model depends
on the application requirements. Once the access model of an environment
input is set, it is important that the data computed using the value produced
by such input is consistent with the required access model over it, otherwise
the program will produce incorrect results.

Environment interactions do not only consist in sensing data, but also in
sending data to the environment and changing its state. We refer to these
actions as environment outputs.

In the sequential execution of a program, whenever we execute an in-
struction that modifies the environment state, such as moving a servo, we
obtain the expected environment state. In an intermittent execution sce-
nario, this same behavior is not granted, due to the presence of frequent
power resets. Let us suppose we have a program which incrementally moves
a servo by 15◦, and that its initial position is 0◦. Moreover, let us suppose
we perform a checkpoint, we move a servo by 15◦ and then a shut down
happens due to a low energy buffer. When there is enough energy to restart
the computation, the previously taken checkpoint is restored, and the device
continues the execution of the program. As next operation, we re-execute
the movement of a servo by 15◦, and its current position becomes 30◦. This
environment state is not the same we would achieve in the equivalent se-
quential execution of the code. Depending on the application requirements,
we can consider the obtained environment state to be either correct or in-
correct. In this last case, we have an Ouput Inconsistency which leads to an
unwanted behavior of our program.

In this thesis we provide a general workflow for verifying the presence of
both Input Access Inconsistencies and Ouput Inconsistencies. Moreover, we
also provide guidelines on how to make the program consistent, both from
the standpoints of input accesses and environment outputs.

Intermittence as Program Input. The literature considers inconsisten-
cies only as an unwanted behavior introduced by the intermittence property
characterizing TPCs. The in-depth analysis we performed over the two
different classes of inconsistencies enables us to consider them also from a
different point of view. In fact, in this thesis we also consider the possibility
of using inconsistencies as an input for our programs, and we also provide a
way to verify the correctness of such new class of inputs.
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1. count = −1;

2. checkpoint();

3. count++;

4. ...

Shutdown

5. ...

count: 0

After
Checkpoint

count: 0

After
Shutdown

1. count = 0;

2. checkpoint();

3. count+ +;

4. ...

count: 1

After
Restore

Number of
times the
following
code block is
re-executed.

Figure 1.6: Example of an intermittence-based input, which helps us in
keeping track the number of times we re-execute a certain code region due
to power resets. Moreover, from another point of view, it tells us the number
of happened power resets.

Figure 1.3 shows a way to use intermittence for tracking the number of
times a certain code region is re-executed due to the presence of frequent
power resets. For doing so, it exploits the combination of two elements: the
variable count allocated into NVM and the instruction at line 3, which in-
crements such variable. In this way, the variable count is updated whenever
the checkpoint at line 2 is restored, since the computation will restart from
such operation. As consequence, the variable count will contain the number
of shutdowns that happened due to a low energy buffer. In other words, it
contains the number of times we re-executed the code region after line 3.

If we take a closer look at what happens inside the data, we can see that
we intentionally introduced a data access inconsistency. In fact, when we re-
execute our code region, our variable contains a value which is different from
the equivalent sequential execution of the same code. In this scenario, this
inconsistency permits us to use the number of re-executions across power
resets and use this data as an input of our program, and thus it is not an
unwanted behavior. It is important to note that this can be achieved only
if we permit the presence of such inconsistency.

Until now, the literature treated inconsistencies as an unwanted behavior
of a program which can lead to the computation of incorrect results. In this
thesis, we show that by permitting the presence of Data Access Inconsisten-
cies in specific sections of our code and Output Inconsistencies, we are able
to adapt the behavior of our program in a way which considers the inter-
mittence property of TPCs as an input of our program, such as the number
of resets or a function of it. Considering the possibility of interacting with
the environment, this opens to scenarios in which it is possible to signal
subsequent power failures, or in which is possible to perform compensation
actions after a certain amount of power resets.
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1.3.2 Inconsistency-oriented Debugging Tool

With the knowledge provided by the first part of this thesis, we developed
ScEpTIC, an inconsistency-oriented debugging tool.

At the moment of writing this thesis, the most commonly used MCU
in TPC is the MSP430 [2], especially thanks to the presence of an internal
NVM. Due to the increasing popularity of this novel field, it is likely that
other architectures with this same feature will be developed. In such a
scenario, all the work developed considering the MSP430 must be adapted
to account for the architectural differences. One of our goal is to address the
problem of testing without sticking to a particular architecture, in such a way
that none or very little modifications must be done to our tool for supporting
newer architectures, which are not available at the moment in which we
developed ScEpTIC. For this reason, we designed our tool to be architecture-
independent, which makes us also able to test different configurations and
architectures, without having to modify or recompile our code. To achieve
this feature, ScEpTIC exploits these design choices:

• It runs LLVM IR [22] code, which is an intermediate representation of
the source code, similar to the assembly language. Such language does
not contain references to elements of the Instruction Set Architecture,
nor it refers to specific memory locations, and thus we can run a simu-
lation without the need of knowing a priori which device will be used.
Moreover, it does not refer to architectural registers, and instead uses
a virtual representation of them.

Furthermore, in this way we avoid the register allocation step which is
done by the compiler. This could lead to an inaccurate analysis, since
this step can introduce memory accesses. For this reason, ScEpTIC

permits us to introduce and customize a register allocation process,
which will be performed over the LLVM IR and will introduce memory
operations similar to the one introduced by the compiler.

All these features permits an architectural-independent interpretation
of the user provided code.

• It abstracts the memory in a way which does not require us to specify
addresses nor dimensions. For doing so it only differentiates between
Volatile Memory and Non Volatile Memory (NVM), and permits us to
arbitrarily allocate different sections into them (i.e., global variables,
stack, and heap). All the memory accesses are then automatically
managed by ScEpTIC, transparently with respect to the user and the
memory type.

• It abstracts the checkpoint/restore logic and implements the workflow
of the most common checkpoint mechanisms. Usually, a checkpoint
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saves into NVM the register file and the content of the volatile mem-
ory. The source code of a checkpoint mechanism contains the reference
to such elements, and thus can be considered architecture-dependent.
With this abstraction, we avoid the emulation of architecture-specific
elements, such as interrupt service routines, voltage comparators, and
other elements used to eventually trigger checkpoints during the exe-
cution of a program.

Moreover, this abstraction also enables us to test the logic of a check-
point mechanism with a different architecture with respect to the one
it was developed on. In this way, if we want to use a different archi-
tecture from the supported one, we are able to verify if the checkpoint
mechanism suits our needs, without having to re-implement it over
such architecture.

• It abstracts I/O ports as if they are simple user-defined functions,
so that we can ignore how they are accessed and initialized. In this
way, we can also specify the value returned by an input port, without
having to emulate the actual component which will be connected to it
when the application is deployed.

• It omits all the architecture-dependent functionalities (e.g. specific
APIs), and threats them as if they are simple user-defined functions.
To use such functionalities, we have to specify an implementation for
them, using the abstraction methods exposed by ScEpTIC.

Once we configure ScEpTIC, and we provide the inputs used by our pro-
gram, we can run four different type of analysis:

• Memory Inconsistencies: in this analysis ScEpTIC automatically
verifies the presence of memory inconsistencies (i.e., Data Access In-
consistency, Activation Record Inconsistency, and Memory Map In-
consistency) by testing all the possible intermittent execution scenar-
ios of the code. To reproduce the intermittence characterizing TPCs,
it simulates multiple power resets during the execution of the code,
which consist in a shut down immediately followed by the consequent
restart of the computation. This analysis is optimized thanks to the
knowledge provided by the previous part of this thesis. Power resets
are generated only in relevant positions, leading to a reduction of the
number of instructions executed and the reduction of the amount of
time required to run the analysis. It is important to note that set of
optimizations implemented does not cause the loss of any information
about the inconsistencies, and thus the analysis is kept exhaustive.

Once ScEpTIC completes this analysis, it returns us the list of all
the found inconsistencies, identifying the causes and the code position
where they happen.
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• Input Access Inconsistencies: before running this analysis, we
must provide an input access model for each input element. Then,
ScEpTIC automatically verifies all the input accesses by simulating an
intermittent execution of the code, and it verifies that accesses over
inputs correspond to the access models we required.

In this analysis we are interested in identifying if input accesses happen
before or after a checkpoint. For doing so, ScEpTIC keeps track of when
a checkpoint is executed, and with this information it is able to verify
if the input accesses are consistent with respect to the required access
model.

We optimized this analysis in a way which does not require generating
any power reset, and thus the intermittent analysis is reduced into a
sequential execution of the code. As we will see in Chapter 5, for iden-
tifying input access inconsistencies we do not require an inconsistent
memory state, and we only require information about when check-
points happen. For this reason, we were able to omit the generation
of power resets, leading to a drastic reduction of the amount of time
required to run this analysis, without loosing any information on input
access inconsistencies.

Once ScEpTIC completes this analysis, it returns us the list of all
the found inconsistencies, identifying the causes and the code position
where they happen.

• Profiling: this type of analysis permits us to interact with ScEpTIC

as if it was a semi-interactive debugging environment. Using this anal-
ysis, we can verify the correctness of intermittence-dependent inputs
inside our program and environment interactions, we can verify the
presence of output inconsistencies, or we can simply debug a specific
intermittent execution of our code.

ScEpTIC exposes two groups of debugging primitives: one to log debug
information, and one to specify where a power reset should happen.
Using such methods, we can fine-tune where power resets should hap-
pen and thus we can generate specific intermittent execution scenar-
ios. In this way, we can recreate particular conditions which generate a
certain value of an intermittence-dependent input and, in combination
with the knowledge provided by the previous part of this thesis, we
can recreate all the scenarios which enables us to exhaustively verify
the correctness of our code.

Once we set up the environment, ScEpTIC runs the code reproducing
the intermittent execution scenario we created. When the execution
finishes, ScEpTIC returns us the execution trace of the tested program.
It contains the list of environment interactions executed and the con-
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tent of debug information we decided to log, grouped by the power
cycle in which they happen.

Finally, with the result of this analysis we can verify the correctness of
the intermittent execution we recreated, and eventually we can modify
our code to account for the errors we found.

• Output Profiling: as we will see in Chapter 5, testing output incon-
sistencies is a particular case of verifying intermittence-based inputs.
As consequence, we can analyze output inconsistencies using the Pro-
filing analysis we previously described. In fact, we can set the gen-
eration of power resets after each environment output access, and we
only need to track the execution of output actions.

For reducing the user intervention required to analyze output incon-
sistencies, we provide a lighter version of the profiling analysis. It
automatically generates power resets after the execution of each out-
put routine, and it only keeps track of the execution of output actions.
In this way, we are not required to fine-tune where resets should hap-
pen, and we only get the information about outputs, which is the one
we require for analyzing output inconsistencies.

Once ScEpTIC completes this analysis, it returns us the execution trace
of the output actions executed. With the result of this analysis we
can verify output actions that are re-executed, and thus are able to
establish if their re-execution can lead to output inconsistencies.

This analysis recreates a set of specific intermittent scenarios, that
presents power resets after the execution of output routines. If we
require more control on where power resets should happen, we have to
use the Profiling analysis.

1.4 Thesis Structure

This structure of the thesis can be divided into four different parts:

1. Domain knowledge and problem description

The aim of this part of the thesis is to provide all the knowledge and
basic concepts required to understand the new challenges introduced
by Transiently Powered Computing and to understand the problem of
testing an intermittent scenario.

• In Chapter 2 we describe the TPC domain, and we introduce the
different approaches used for preserving the work done in pres-
ence of frequent shutdowns. We consider both task-based and
checkpoint-based solutions, with an in-depth description of this
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last group [1,3,4,10,11,12]. In this chapter we also provide an in-
troduction to the unwanted behavior caused by checkpoint-based
solutions (i.e., inconsistencies), describing it from both control-
flow and data-flow standpoints.

• In Chapter 3 we provide an in-depth description of the problem
of testing intermittent execution and finding inconsistencies. We
also describe the available debugging environments [13,17,18,20],
and we discuss if and how they can be adapted for exhaustively
analyzing intermittent executions for finding inconsistencies.

2. Classification and analysis of inconsistencies

The aim of this part of the thesis is to provide complete knowledge
over inconsistencies and their causes. For doing so, we analyze the in-
consistency problem, and we classify different types of inconsistencies.
For each one of those types, we provide an algorithm able to find the
inconsistency, and we also describe how to solve such unwanted behav-
iors. Moreover, for doing so, we deepen into the machine level, and we
analyze what the intermittent execution causes inside the register file,
the memory and on the control flow.

• In Chapter 4 we analyze and classify memory inconsistencies,
which are inconsistencies introduced due to the allocation of mem-
ory sections (i.e., global variables, stack, or heap) into Non Volatile
Memory (NVM). In this chapter we describe Data Access Incon-
sistencies, Activation Record Inconsistencies, and Memory Map
Inconsistencies. The first type of inconsistency can happen if
a memory element is allocated into NVM, independently of the
memory section. Instead, the other two types of inconsistencies
can happen only if respectively the stack and the heap are allo-
cated into NVM.

For each one of these three types of inconsistencies, we provide
guidelines for analyzing their effects and verifying their presence.
We also discuss how to avoid and compensate for them.

• In Chapter 5 we analyze environment interactions, and we dis-
cuss the possibility of treating intermittence as an input of our
program.

In the first part of this chapter, we consider both the possibil-
ities of retrieving data from the environment, and changing its
state. We classify Input Access Inconsistencies and Output In-
consistencies. The first type of inconsistency may happen due to
a missed re-execution of an input action, such as reading a sensor.
It can lead the program to use a wrong value during the compu-
tation of input-dependent data. The second type of inconsistency
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may happen due to the re-execution of an output action, such as
the movement of a servo. It can produce a wrong environment
state, resulting in an unwanted behavior of the program. For
each type of environment inconsistency, we analyze its cause, we
discuss how to avoid such unwanted behavior, and we provide a
technique for finding their presence and analyzing their effects.

In the second part of this chapter, we consider the possibility
of exploiting the intermittence as a new input for our programs.
For introducing this possibility, we provide some examples, and
we also provide a technique for verifying the correctness of this
new type of input.

3. Implementation of ScEpTIC

The aim of this part of the thesis is to provide a description of the
implementation details of ScEpTIC and its test mechanism implemen-
tations. ScEpTIC is the inconsistency-oriented debugging environment
we developed using the concepts we described in the previous chap-
ters, and it is designed to abstract its analysis in a way that permits
extending or modifying them without an excessive effort.

• In Chapter 6 we describe the implementation of the debugging
environment, its architectural components, and its work flow.
ScEpTIC’s architecture is composed by different objects and re-
calls the structure of a Micro Controller Unit. The entire state
is included into a VMState class, which contains the reference to
the objects representing register file and memory. The intermit-
tent execution is generated using both the Checkpoint Manager,
which is in charge of generating and restoring checkpoints, and
the Interruption Manager, which is in charge of generating power
resets.

Moreover, ScEpTIC takes as input a user-provided configuration
and the LLVM IR [22] of the source file to be analyzed. Then,
it converts the provided LLVM IR into an abstract syntax tree,
which is then analyzed and used to initialize ScEpTIC’s inter-
nal components. Finally, ScEpTIC performs the analysis under
an intermittent execution scenario by running the Interruption
Manager specified in the configuration.

• In Chapter 7 we describe the implementation of the different anal-
ysis performed by ScEpTIC. Each analysis can be executed using
the respective implementation of the Interruption Manager :

– Data Interruption Manager : it runs the analysis able to find
Memory Inconsistencies.
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– Input Interruption Manager : it runs the analysis able to find
Input Access Inconsistencies.

– Interaction Interruption Manager : it permits us to use ScEp-
TIC as a semi-interactive debugging environment, and thus
it enables us to verify the correctness of intermittence-based
inputs.

For each one of these implementations of the Interruption Man-
ager, we provide an in-depth description of how the analysis is
performed, which inputs are required from the user, and which
optimizations are applied to the analysis.

4. Evaluation

The aim of this final part of the thesis is to evaluate the performance of
ScEpTIC and the analysis guidelines we described in previous chapters.
Since no previous work addresses the problems solved by this thesis,
in Chapter 8 we consider two different approaches for performing such
evaluation:

• A quantitative evaluation, which compares the algorithms imple-
mented by ScEpTIC and presented in this thesis with the most
simple ones which anyone can think of. For doing so, we consid-
ered a broad range of quantitative metrics, such as the number
of instructions executed and the number of power resets gener-
ated. Moreover, we selected different types of benchmarks that
represent a set of heterogeneous use cases which are common in
TPC domain.

For performing such evaluation, we also consider different sce-
narios, including one in which we show how ScEpTIC can help a
developer in the selection of a checkpoint mechanism, with the
related memory configuration, for his program.

• A qualitative evaluation, which compares ScEpTIC with other ex-
isting tools [13,17] that are designed to account for other faces of
the testing problem. To perform this evaluation, we considered
the alterations required for such tools to perform the same analy-
sis of ScEpTIC, and we analyzed the efforts required for achieving
so. Moreover, we compared the obtained analysis capabilities
with the ones of ScEpTIC.



Chapter 2

Transiently Powered
Computing

Transiently Powered Computing (TPC) consists in using the energy har-
vested from the environment, such as sun light, as the only power source for
devices. This chapter aims to provide a background over this novel field, so
to understand some challenges that the usage of free energy introduces.

TPC is becoming more and more popular in the Internet of Things (IoT)
area, especially for powering smart sensors. Batteries increases the physical

Figure 2.1: Example of a device based on the MSP430 architecture [2].

23
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dimension of a sensor, they must be used within certain intervals of temper-
ature, and they have a limited lifespan. For these reasons, using batteryless
systems has the potential to enable the deployment of sensors in environ-
ments considered to be impractical due to battery limitations. Furthermore,
the absence of batteries reduces maintenance costs, since there is no need to
replace and dispose them.

Typical devices used in TPC are the ones based on the MSP430 [2]
Micro Controller Unit (MCU). Usually they also present components for
interacting with the environment, such as an accelerometer and a thermistor.
Figure 2.1 shows an example of these devices.

2.1 Saving Work Done

2.1.1 Overview

Due to its nature, the energy harvested from the environment is an unpre-
dictable power source. Powering a device with it causes an intermittent
execution, that alternates periods of time in which the device is running,
with periods of time in which it is completely powered off. When a shut-
down happens, the content of the main memory used by the device is lost,
and within it all the results of the computation produced so far. For this
reason, having an intermittent execution creates the need of saving the work
done, so to not start the entire computation over again.

There exist different approaches to solve this problem, and they can be
identified within two classes: checkpoint-based solutions and task-based so-
lutions. Furthermore, independently of the class, they exploit a non-volatile
memory (NVM) present on the device, which is persistent and thus main-
tain its content even in presence of shutdowns. For example, MSP430-based
boards uses a Ferroelectric RAM (FeRAM or FRAM) as NVM. It is a mem-
ory similar to a DRAM, and it is composed by a ferroelectric material that
grants the non volatility property.

Depending on the device configuration, we can choose to use the NVM
as support memory, or we can use it also as main memory.

2.1.2 Checkpoint-based Solutions

Checkpoint-based solutions save the work done using the combination of two
routines:

• Checkpoint : this routine saves the current state of the device (i.e.,
registers and main memory) into a non-volatile memory.
• Restore: this routine restores the state of the device from the data

saved by a previous checkpoint.

The general idea behind this class of solutions is to take checkpoints dur-
ing runtime, so to restore them when the device restarts after a power failure.
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In this way, restoring the saved state permits to resume the computation
from where the checkpoint was saved, and not all over again.

There exists different implementations of checkpoint mechanisms, which
we discuss in Section 2.3, and they all differ on how and where the state is
saved, and on data that a checkpoint contains.

Independently of the data to be saved, we can classify checkpoint mech-
anisms considering how they take checkpoints:

• Static Checkpoint Mechanism: checkpoint routines are statically
placed inside the code, and thus checkpoints are taken in fixed posi-
tions.

• Dynamic Checkpoint Mechanism: this category of checkpoint
mechanisms exploit interrupts to take checkpoints. When an inter-
rupt is generated, it pauses the current execution of the program and
start executing the checkpoint routine. For this reason, checkpoint
routines are not placed inside the code, and thus the point in which
they are taken is not predictable.

2.1.3 Task-based Solutions

Other solutions exists for preserving the work done which does not involve
checkpoints, and are based on the definition of tasks.

The program’s code is divided into groups called tasks, which are then
executed in sequence for granting the correct control flow of the program.
This logical division is necessary to preserve the work done. In fact, each
task uses as input the data produced by a previous one, and when it is
executed, its results are stored in NVM. In this way, if a shutdown happens,
when there is enough energy to resume the computation, it can restart from
the task which uses as input the data stored in NVM.

To maintain this behavior, usually only input/output data of tasks is
stored into NVM, and the intermediate results of each task are allocated
into the volatile memory. In this way tasks are atomic, and a task can
modify the values stored in NVM only when it terminates. Let us suppose
a shutdown happens during the execution of a task, due to a low energy
buffer. When there is enough energy, the execution restarts from the first
instruction of the task, and uses as input data the one present in NVM. Since
such data was not modified during the previous execution, the computation
performed during the re-execution of the task produces a correct result.
Alpaca [15] and Chain [16] are examples of this approach, and they differ in
how data is managed and how a task can communicate results to the next
one.

For how data is managed among tasks, the computation will always
use correct values when it restarts, independently of where a power failure
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happens. This is not the case of checkpoint-based solutions, which may
present some problems from a data consistency standpoint.

The work done in this thesis focuses on the behavior of the execution
in presence of inconsistent states, and for this reason we will only consider
checkpoint-based solutions.

2.2 Checkpoints and Inconsistencies

We use checkpoints for saving the work done, so to not restart the compu-
tation all over again. Furthermore, we expect to obtain the same results as
if the program was never interrupted, otherwise an inconsistent behavior is
manifested, and such results are not usable.

To understand what an inconsistency is and how it happens, let us focus
on the execution of Example 2.1. Its sequential execution sets the variable
a to 4, and finally prints out ”Condition ok: a is 4 ”.

Let us now focus on how the same code is executed in an intermittent
environment. Furthermore, let us suppose that variable a is stored in NVM
and that we use a Static Checkpoint Mechanism. We start the execution of
the main function, and the first instruction sets the variable a to 3. As next
operation, we take a checkpoint, which saves the state of the main memory,
but not the NVM content. Then, we execute the instruction at line 3, which
increments variable a to 4. Let us now suppose that a shutdown happens
due to a low energy buffer. When there is enough energy to restart the
computation, we restore the content of the checkpoint, and thus we resume
the execution from the instruction after it, which is the one at line 6. Since
we did not restore the content of the NVM, the variable a is still set to
4, and thus the execution of the instruction at line 6 sets a to 5, which is
an incorrect value. For this reason, the condition of the if statement is not
met, and thus we take the else branch. This has the effect of printing out
”Something is wrong: a is 5 ”.

Not only the data produced by the intermittent execution differs from
the one of the sequential execution, but also the control flow is different. In
fact, during the intermittent execution is executed the else branch of the if
statement. Due to these differences, the result produced by the intermittent
execution is incorrect.

When the checkpoint is taken at line 5, the runtime state comprehend
the value 3 for variable a. Instead, when it is restored, the variable a has
a different value (i.e., 4), and thus the two runtime states are different. As
consequence, the computation uses an inconsistent value, producing a wrong
result.

In fact, whenever we restore a checkpoint, we expect that the runtime
state is the same of when such checkpoint was taken. If this condition is
not met, the restored checkpoint produces a state which is not consistent
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1 int a ; // s t o r ed in NVM
2
3 int main ( ) {
4 a = 3 ;
5 checkpo int ( ) ;
6 a++;
7 i f ( a == 4) {
8 p r i n t f ( ”Condit ion ok : a i s %d” , a ) ;
9 }

10 else {
11 p r i n t f ( ”Something i s wrong : a i s %d” , a ) ;
12 }
13 }

Example 2.1: Example of a C program which may present an inconsistent
runtime state.

with respect to the work done. As consequence, it is possible that the
computation performed over an inconsistent state produces wrong results,
making the entire checkpoint mechanism useless, since we are not able to
use the produced data.

Having an inconsistent runtime state may cause unexpected behaviors
from two different perspectives:

• Data Flow Inconsistency: a portion of data assumes an incorrect
value with respect to the equivalent sequential execution of the pro-
gram. This is the case of the value assumed by variable a in Exam-
ple 2.1.

• Control Flow Inconsistency: a portion of code is executed a differ-
ent number of times with respect to the equivalent sequential execution
of the program. In this case, three cases are possible:

– New execution: a portion of code that was not executed after the
checkpoint is executed after the checkpoint is restored. This is
the case of the else branch in Example 2.1.

– Lack of execution: a portion of code which was executed after the
checkpoint is not executed after the checkpoint is restored. This
is the case of the if branch in Example 2.1.

– Re-execution: a portion of code is re-executed after restoring the
checkpoint. This scenario does not necessary cause a Control
Flow Inconsistency, since it can be considered a property of check-
point mechanisms. In fact, when the execution resumes, and we
restore a checkpoint, the restore routine is re-executed. Depend-
ing on where the execution is restored, we may also re-execute
other portions of code.
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Furthermore, we can note that the presence of a Data Flow Inconsistency
implies a Control Flow Inconsistency, and vice versa:

1. The first two cases of a Control Flow Inconsistency can only be caused
by the re-evaluation of a condition in a control-flow based statement
(e.g. if, for, and while) in the presence of a Data Flow Inconsistency. In
fact, if the runtime state is consistent after a checkpoint is restored, the
condition will always be evaluated with the same outcome, no matter
how many times it is re-evaluated. For this reason, the absence of a
Data Flow Inconsistency implies the absence of these two cases of the
Control Flow Inconsistency.

2. The re-execution of a portion of code can not be always considered as
a Control Flow Inconsistency. In fact, let us suppose that the runtime
state restored after a checkpoint is consistent. The re-execution of
instructions placed after the checkpoint will produce a result which is
equal to the sequential execution of the code, and thus can be consid-
ered consistent. Instead, if the runtime state restored after a check-
point is inconsistent, then the re-execution of instructions placed after
the checkpoint may produce an inconsistent result. This last case is
the one present in Example 2.1, that happens when we re-execute the
instruction of line 6. For these reasons, a re-execution of a portion of
code can be considered as a Control Flow Inconsistency only in the
presence of a Data Flow Inconsistency.

Finding an inconsistent behavior by analyzing the presence of Control
Flow Inconsistencies requires also verifying the presence of Data Flow Incon-
sistencies. In fact, for the re-execution case we must consider the consistency
of produced data.

Thanks to the above property, we can infer that Data Flow Inconsis-
tencies are the cause of Control Flow Inconsistencies. For this reason, we
can verify the presence of an inconsistent behavior by only focusing on the
produced data, thus omitting the analysis of the control flow.

Finally, in Example 2.1 the inconsistency of runtime state is caused by
the fact that checkpoints do not include the data present in NVM. One may
think to solve the inconsistency problem once for all by including the NVM
inside the data saved by the checkpoint. Even if this is a valid option, it is
not always applicable. In fact, performing checkpoints consumes energy, and
the more data it saves, the more energy it consumes. This increased energy
consumption reduces the number of instruction that can be executed in
between checkpoints, especially when the energy buffer is not refilled by the
energy source. If, instead of a single variable, we have a large array, it may
be more efficient to allocate it in the NVM and to solve data inconsistencies.
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2.3 Checkpoint Mechanisms

The aim of this section is to provide a basic knowledge of some checkpoint
mechanism, which introduce relevant concept for the analysis we do in this
thesis. For each one of them we will specify the checkpoint placement,
the checkpoint work flow, the saved data, and the presence of Data Flow
Inconsistencies. Furthermore, for DINO and Ratchet we will also focus on
the key-concepts they introduce on Data Flow Inconsistencies, which we
exploit in this thesis for an in-depth analysis of such problem.

2.3.1 MementOS

MementOS [3] consists in a combination of two elements:

• A library exposed to the user, containing checkpoint and restore rou-
tines.

• A pass for the LLVM compiler framework [23], which can be used to
automatically place checkpoints inside the code.

It is a Static Checkpoint Mechanism, but for the way in which checkpoints
are taken, it exposes a dynamic-like behavior. In fact, when a checkpoint
routine is encountered, it measures the current voltage of the energy buffer,
which is used to estimate the remaining energy. The checkpoint is taken
only if such voltage is below a certain threshold, otherwise it is ignored.

The LLVM pass can place checkpoints in two different positions:

• loop-latch: a checkpoint routine is placed at the end of each loop body,
with the effect of calling such routine at every iteration of the loop.
An example is shown in Example 2.2.
• function-return: a checkpoint routine is placed after each instruction

which calls a function, with the effect of calling such routine every
time a function returns. An example is shown in Example 2.3.

1 [ . . . ]
2 for ( i = 0 ; i < 10 ; i++) {
3 [ . . . ]
4 checkpo int ( ) ;
5 }
6 [ . . . ]

Example 2.2: Example of a loop-
latch placement of MementOS [3].

1 [ . . . ]
2 func t i on1 ( ) ;
3 checkpo int ( ) ;
4 [ . . . ]

Example 2.3: Example
of a function-return placement of
MementOS [3].
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Furthermore, the user can choose to not use the LLVM pass to place
checkpoint routines, and instead to manually place them.

MementOS does not consider the possibility of allocating elements into
NVM, and thus it does not include such memory into the checkpoint content.
For this reason, it may present data flow inconsistencies.

2.3.2 DINO

DINO [1] can be considered as a solution in-between a Static Checkpoint
Mechanism and a Task-based approach for saving the work done. It mainly
focuses on maintaining data consistency and considers the possibility of
allocating global variables into NVM.

DINO does not provide an automatic checkpoint placement mechanism
and it consists in a set of passes for the LLVM compiler framework [23], that
analyzes and modifies the code provided by the user, in combination to a
runtime library.

The general idea behind DINO is requiring the user to split the program
into tasks, by specifying a series of task boundaries, using the function
DINO task(). An example is shown in Example 2.4, in which we have three
different tasks: one at line 5, one comprehending lines 7 and 7, and one at
line 10.

Each task is executed as if it corresponds to an atomic instruction, and
thus the data alteration produced by it is seen by other tasks only if it
completes. To achieve that, DINO saves a snapshot of the runtime state
every time it reaches a task boundary.

This is the reason why we can consider DINO as both a Checkpoint-based
and Task-based solution:

• If we think DINO task() as a marker indicating the end of a task and
the beginning of another one, we have a task-based approach.
• If we think DINO task() as a marker indicating where a checkpoint

takes place, we have a checkpoint-based approach.

Saving only volatile information during checkpoints does not ensure data
consistency. In fact, if a DINO task modifies the content of a variable
addresses in NVM, such alteration is seen even if the task does not complete.
To overcome this problem, DINO performs versioning of NVM variables at
each task boundary.

To better understand the analysis performed by DINO for versioning
variables, let us focus on Example 2.4 and let us suppose only the variable a
is allocated in NVM. The only operation changing the value of variable a is
the a++ instruction at line 8. If such operation is executed and suddenly a
shutdown happens, we will encounter an inconsistent runtime state. In fact,
when the execution restarts, it is restored the checkpoint taken at the task
boundary of line 6, and the first instruction executed is the one at line 7.
It uses the value of variable a, which was modified to 4 by the execution of
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1 int a = 3 ; // A l l o ca t ed in NVM
2 int b ;
3
4 int main ( ) {
5 b = 1 ;
6 DINO task() ;
7 b = b − a ;
8 a++;
9 DINO task() ;

10 return b % a ;
11 }

Example 2.4: Example of a program using DINO.

line 8, before the shutdown. This alteration is seen even if the task has not
completed before, and thus we have an atomicity violation which causes an
inconsistent runtime state. To account for this problem, DINO saves also
the value of variable a within the checkpoint, when it encounters the task
boundary at line 6. In this way, when the checkpoint is restored, within it is
also restored the previous value of variable a, obtaining a consistent runtime
state.

DINO achieves the described solution by performing the following anal-
ysis:

1. It analyzes the control flow graph (CFG) of the program for finding
all the operations writing a variable allocated in NVM.

2. For each write operation found:

2.1. For all the possible paths, it travels backwards the CFG for find-
ing the most recent DINO task() in each path.

2.2. For each task boundary found, it searches the operations in the
interval between it and the considered write operation. If, in
such interval, is present an instruction reading the same variable
addressed by the write operation, DINO is required to save the
value of such variable (i.e., versioning it) when it executes the
checkpoint associated to the task boundary.

Furthermore, when DINO complies the program, it replaces the DINO task()
call with two operations of its runtime library:

• dino version(): it saves into NVM a copy of NVM variables for which
the analysis has found a potential inconsistency.

• dino checkpooint(): it saves the content of the stack and register file
into NVM.
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Finally, whenever the execution restarts after a power failure, DINO
restores the value of the versioned NVM variables, the stack content, and
the register file content. In this way, even if a power failure happens after a
write operation modifies a NVM variable, the combination of dino version()
and restore routine ensures data consistency, because such variable will be
restored to a previous version.

DINO only considers the possibility of allocating variables into NVM,
and for this reason it may present Data Flow Inconsistencies when the stack
and/or heap are allocated into NVM. The entire analysis it performs can
be easily adapted to perform versioning of stack elements, and thus it does
not present inconsistencies when the entire stack is allocated into NVM.
Unfortunately, this is not the case for heap: DINO analyzes the data flow
graph and the control flow graph, but heap can be arbitrarily modified
during runtime, and thus analysis of data accesses becomes very difficult.
Furthermore, once a heap mapping action is performed (i.e., malloc, ralloc,
free), it is not possible reverting the heap state only with versioning. DINO
can be certainly adapted to work with heap, but at the current state can
show inconsistencies when it is allocated into NVM.

2.3.3 Ratchet

Ratchet [10] is a Static Checkpoint Mechanism which uses NVM as main
memory. It consists in a set of passes for the LLVM compiler framework [23],
which analyze the code to automatically place checkpoint in a way which
avoids data flow inconsistencies.

To achieve that, Ratchet exploits the idea of idempotency : it considers
a sequence of instruction idempotent if its re-execution does not produce an
inconsistent runtime state. The implemented LLVM pass analyzes the code
and splits it into idempotent groups. Then, between each group it places a
call to the checkpoint routine.

Considering that Ratchet uses NVM as main memory, an inconsistent
runtime state is obtained whenever write operations are performed after a
read operation to the same memory location (i.e., write after read, WAR).
Let us consider Example 2.5: instruction at line 5 reads the value of variable
a, and the one at line 6 writes it. This is a non-idempotent sequence of code,
since exists a write after read within it. In fact, let us suppose a shutdown
happens after the execution of line 6. When the computation restarts, the
obtained runtime state is inconsistent, since the value of a is 7 and not 3,
and thus a wrong result is produced.

For avoiding the described problem, Ratchet analyzes the code for finding
all the WAR hazards, and thus it places a checkpoint between each write
and read operation. In this way, each sequence of instructions delimited
by checkpoints is idempotent. In Example 2.5, Ratchet puts a checkpoint
between line 5 and 6, solving the inconsistency.
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1 int a = 3 ;
2 int b ;
3
4 int main ( ) {
5 b = a + 1 ;
6 a = 7 ;
7 return a + b ;
8 }

Example 2.5: Example of a program presenting a WAR hazard.

Ratchet works on a lower level of abstraction with respect to the C
language. It runs the analysis using the LLVM intermediate representation,
which is a language similar to assembly. This is required because ratchet
stores also the stack into NVM, and thus all the machine-level instructions
which interact with the stack must be taken into account. Furthermore,
the analysis considers each memory read operation in the program, and for
each of them verifies the presence of an instruction that writes same read
memory location. If so, it places a checkpoint between the read ans write
operations, so to create an idempotent sequence of instructions.

Since Ratchet uses NVM as main memory, performing a checkpoint con-
sists in saving only the register file into NVM (i.e., program counter, stack
pointer, and general purpose registers). Furthermore, since the stack is allo-
cated into NVM, the number of placed checkpoints is considerably high. To
overcome checkpoint overhead, Ratchet optimizes the number of registers
that are saved by a checkpoint, by saving only the ones which are required
for the computation. This is achieved by analyzing each idempotent se-
quence, so to find the registers used by it. Then, it tunes accordingly the
checkpoint routine placed before each idempotent sequence, so to save only
such registers.

Ratchet does not present any data flow inconsistency for stack and global
variables, but it does not consider the heap segment. Its analysis can not be
performed over such dynamic memory, because memory addresses are not
available during compile time, and thus is not possible to verify accurately
the presence of WAR hazards for this segment. A conservative approach
would be to place checkpoints between each pair of instructions which re-
spectively reads and write the heap, but it would introduce even more over-
head, especially if heap is accessed frequently. Furthermore, heap can be
dynamically re-mapped during runtime, and this complicates the conditions
required for granting consistency. For these reasons, Ratchet may present
inconsistencies if heap is used in the program.

We may think to overcome the inconsistency problem by modifying
Ratchet to allocate heap in SRAM. Unfortunately, even if this action solves
the inconsistencies, it would increase a lot the overhead introduced by each
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checkpoint, and it would be more advantageous using another checkpoint
mechanism.

Finally, the idea behind the analysis Ratchet performs for placing check-
points is similar to the one we will describe in Chapter 4 for analyzing and
finding data flow inconsistencies, which is implemented by ScEpTIC. Our
tool is able to analyze also different memory configurations with respect to
the one used by Ratchet, but if we consider having all the main memory allo-
cated into NVM, Ratchet and ScEpTIC seems to perform the same analysis
which leads to the same results. They both focus on pairs of memory reads
and writes for performing the analysis, but the information returned to us is
completely different. In fact, Ratchet places checkpoints inside the program
to avoid inconsistencies, but it does not tell us where they can happen and
what is the cause. Instead, ScEpTIC returns the list of inconsistencies with
their causes, but it does not produce a checkpoint placement.

2.3.4 Hibernus / Hibernus++

Hibernus [11] is a Dynamic Checkpoint Mechanism implemented over a
MSP430 architecture. The entire system relies on a library exposed to the
user, and on the internal on-chip comparator for generating the interrupt
which triggers the checkpoint.

This checkpoint mechanism is based on two actions:

• hibernate: it saves a snapshot of the system state (i.e., registers and
main memory) and puts the MCU into low-power mode.
• restore: it restores the system state from the previously-saved snap-

shot.

The system is initialized by configuring the interrupt handler to perform
the hibernate action, and by setting the voltage threshold for performing
hibernation (VH). When the voltage level of the energy buffer goes below
Vh, the on-chip comparator triggers an interrupt, which calls the hibernate()
function. Once a snapshot of the system is saved, Hibernus sets the volt-
age threshold for performing the restore action (VR), and re-configures the
interrupt handler to perform the restore action. Finally, it sets the system
to sleep. When the voltage level of the energy buffer goes above VR, the
on-chip comparator triggers an interrupt, which calls the restore() function.

To use Hibernus, the user is required to put the initialization routine
into its code, and to specify the voltage thresholds for hibernate and restore
actions, which are very critical for the stability of this checkpoint mechanism.

To overcome the problem of finding valid voltage thresholds, Hiber-
nus++ [4] extends the functionalities provided by Hibernus with automatic
calibration of such thresholds. The general idea of this calibration is to in-
crement VH if an invalid snapshot is found by the restore() routine, since it
means that the energy was not enough for saving the entire system state.
We will not enter into details of this functionality, since it is not relevant
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from the point of view of the analysis we perform in this thesis.

Even if Hibernus does not take into consideration the possibility of al-
locating elements directly into NVM, it does not present any Data Flow
Inconsistency. In fact, when the hibernate routine is called, the MSP430
is put into a low-power mode, which disables the CPU. This means that
no further computation is performed until there is enough energy, and thus
consistency is granted over the elements present in NVM.

2.3.5 QuickRecall

QuickRecall [12] is a Dynamic Checkpoint Mechanism that uses only NVM as
main memory, and thus allocates in it global variables, stack, and heap. To
achieve this result, it exploits a modified linker, which maps all the memory
sections of the object file (i.e., .text, .bss, .data, and .stack) into NVM. Since
these sections are persistent, performing a snapshot of the system state
requires only to save the content of the register file (i.e., general purpose
registers, stack pointer, and program counter).

As for Hibernus, QuickRecall relies on an on-chip comparator which trig-
gers an interrupt whenever the voltage level of the energy buffer goes below a
certain voltage threshold VTr. This threshold must be specified by the user,
and the entire checkpoint mechanism of QuickRecall is implemented in the
Interrupt Service Routine (ISR) associated with the interrupt signaling a
low energy buffer.

When the execution starts, QuickRecall verifies if the checkpoint flag is
set, that is a global variable. If this condition is not met, it means that
no checkpoint is available, and thus the program starts from the beginning.
When the voltage goes below VTr, the comparator triggers the interrupt
that stops the normal execution and changes the context to the one of the
ISR. Firstly, it pushes onto the stack the general purpose registers and the
stack pointer, then it sets the checkpoint flag, and finally it pushes into the
stack the current program counter. Note that the pushed pc refers to the
ISR and not to user’s program, since the program counter of where the
interrupt is generated was saved during the changing of the context. Now,
QuickRecall waits until the voltage level of the energy buffer is higher than
VTr. If this condition is met, the ISR simply returns, since no restore action
is required. Otherwise, at a certain point the MCU will shutdown, since
the energy buffer will be totally emptied. When there is enough energy to
restart the computation, QuickRecall verifies if the checkpoint flag is set,
and thus it restores the saved stack pointer, the general purpose registers,
and the program counter. The restored context is inside the ISR, and the
instruction to be run is the one that waits for the voltage to be higher than
VTr. When this happens, the ISR returns and the program resumes the
execution from where it was stopped.

Finally, QuickRecall does not present any Data Flow Inconsistency. In
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fact, it pauses the computation whenever a checkpoint is taken, and thus
no alteration to the NVM can be made. Furthermore, the way in which
registers are saved keeps them synchronized with the state of the NVM, and
thus the runtime state is always consistent.



Chapter 3

The Problem of Testing

3.1 Overview

As we explained in Section 2.2, the intermittence characterizing TPCs causes
an unexpected behavior of the execution flow, which will differ from the
sequential run of the same code. The presence of frequent shutdowns causes
the re-execution of some portion of code, even if we are using a checkpoint
mechanism, and it might cause the computation of incorrect results [14].
However, the fact that the intermittent execution of a program presents an
execution flow different from the equivalent sequential execution, does not
imply that results are incorrect.

To better understand this statement, let us focus on Example 3.1. It
represents a program which uses a static checkpoint mechanism to preserve
its state between power outages. Furthermore, let us suppose that this ex-
ample uses MementOS [3] as checkpoint mechanism. The checkpoint check()
function call present at line 4 consists in verifying the presence of a previ-
ously saved checkpoint, and if it is present, the checkpoint check() function
restores it. Depending on the checkpoint mechanism, such routine could be
set explicitly as in the example or it can be omitted. In this second case,
the final executable is modified in a way that runs such routine before the
main, and if a checkpoint is not present, it transfers the control to the main
function.

Let us now verify what happens during the execution of the program.
The execution starts from checkpoint check() and, since a checkpoint is not
available, it does not perform any action. Now, the execution continues until
it reaches the checkpoint() call at line 7, and thus a checkpoint is saved. Let
us suppose there is enough energy to execute the instruction at line 8, and
then a shut down happens due to a low energy buffer. When there is enough
energy to restart the computation, it executes the first instruction of the
main function. Now, checkpoint check() is re-executed and it restores the
previously saved checkpoint. Note that we say this instruction is re-executed

37
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1 int a ;
2
3 int main ( ) {
4 checkpo int check ( ) ;
5 a = 3 ;
6 [ . . . ]
7 checkpo int ( ) ;
8 a = a + 1 ;
9 [ . . . ]

10 return a == 4 ;
11 }

Example 3.1: Example of a
code with a static checkpoint
mechanism.

1 int a ;
2
3 int main ( ) {
4 Hibernus ( ) ;
5 a = 3 ;
6 [ . . . ]
7 a = a + 1 ;
8 [ . . . ]
9 return a == 4 ;

10 }

Example 3.2: Example of a
code with a dynamic checkpoint
mechanism.

because in a sequential execution it would be executed only once, and in this
case it is executed for a second time. Since this operation does not alter the
computed data, and just restores it, it does not affect the result. Now, the
execution continues from line 8, which is re-executed for a second time, and
two scenarios are possible:

1. Variable a is in NVM: since we are using MementOS as checkpoint
mechanism, such variable is not included within the checkpoint data.
This means that the first execution of line 8 modified a to 4, and the
second execution of such instruction incremented it to 5. This is an
incorrect result.

2. Variable a is not in NVM: such variable is included within the
checkpoint data, and thus no problem happens since its value is kept
consistent thanks to the checkpoint mechanism.

We can also note that the execution flow of the intermittent execution of
the program is different from the sequential one [14]. If we consider the line
numbers executed, we see the following execution traces:

• Sequential: 1→ 2→ 3→ 4→ 5→ 6→ 7→ 8→ ...
• Intermittent: 1→ 2→ 3→ 4→ 5→ 6→ 7→ 8→ E→ 1→ 8→ ...

There is nothing we can do to avoid this difference between the execution
flows, since power outages are a characteristic of TPCs. As we can see, the
re-execution of an instruction does not necessarily invalidate the computa-
tion done so far, but it depends on the type of instruction, the checkpoint
mechanism used, and the memory configuration.

A similar reasoning can be applied with a dynamic checkpoint mecha-
nism. For doing so, let us focus on Example 3.2, which is the same program
used in the previous example, but without the static checkpoint placement.
It uses Hibernus [11] as checkpoint mechanism, and the Hibernus() func-
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tion performs the same actions described for checkpoint check(), with the
addition that it also enables the interrupt which triggers the checkpoint ac-
tion. Let us suppose that we reach the instruction at line 7 and then the
energy buffer is not sufficient to continue the execution. In this case, it
is triggered the interrupt that saves the checkpoint. Then, the execution
is paused until the energy buffer is either restored or totally emptied. In
the first case, no re-execution happens, since it simply resumes from where
it paused. In the second case, the MCU shuts down and, when there is
enough energy to restart the computation, it resumes from the first instruc-
tion. The Hibernus() function is re-executed and then the program continues
from instruction at line 8, since a checkpoint is present. As for the previous
example, the re-execution of the Hibernus() routine does not interfere with
the result, since it does not change the computed data. Furthermore, since
no instruction after the checkpoint is re-executed, no inconsistency happens.

The described scenarios create the needs of analyzing if and where incon-
sistencies may happen due to the intermittent execution of a program, and
if such inconsistencies can interfere with the computed results. To verify the
correctness of a sequential execution of a program, the literature provides
different types of code testing methodologies (e.g. unit testing), but unfor-
tunately we are not able to apply such methodologies with an intermittent
execution, since they are not conceived to account for power outages. Fur-
thermore, very little work exists for analyzing the presence of inconsistencies
in an intermittent execution environment.

Different checkpoint mechanisms try to solve the inconsistency problem,
mainly with two different approaches:
• Static checkpoint mechanisms such as DINO [1] and Ratchet [10] pro-

vide ways to overcome the inconsistency problem, by analyzing where
Data Flow Inconsistencies might happen, so to place compensation
actions accordingly.

• Dynamic checkpoint mechanisms such as Hibernus [11] and QuickRe-
call [12] are designed to not present inconsistencies. In fact, when they
save a checkpoint, the execution pauses and thus the re-execution of
instruction is limited to the startup function which verifies the pres-
ence of a checkpoint and restores it.

As we can see, the objective of checkpoint mechanisms is also preserving
data consistency, to produce an intermittent execution of the code which
yields a result equivalent to the sequential execution. Unfortunately, the
concepts provided within checkpoint mechanisms applies for their memory
configuration and target architecture. They can be certainly adapted to
work with other architectures, and their inconsistency analysis can be used
as starting point to produce generic guidelines and a tool able to analyze
the presence of inconsistencies.

Moreover, the higher is the number of memory elements allocated into
NVM, the higher is the number of inconsistencies. When the user selects a
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certain checkpoint mechanism for his program, he is also selecting the as-
sociated memory profile, without knowing which kind of inconsistencies it
introduces. Let us suppose we want to select a checkpoint mechanism for
a program, and that we want to allocate into NVM a certain variable. If
we choose Ratchet [10] as checkpoint mechanism, the entire NVM is used
as main memory, and thus each memory operation can potentially cause an
inconsistency. As we explained in Section 2.3.3, to keep the state consistent
Ratchet inserts a checkpoint before each write instruction, and thus it intro-
duces a high overhead, in terms of both energy consumed and instructions
executed for performing checkpoints. If, instead, we choose MementOS [3],
no memory element is allocated into NVM, apart from our variable, and thus
the only inconsistencies which can be present are the one related to the ac-
cesses of such variable. In this configuration, the number of checkpoints we
must insert to keep the state consistent is drastically reduced with respect
to the one of Ratchet, and thus it is also reduced the checkpoint overhead.
Depending on our requirements, the overhead introduced by Ratchet can
be justified or not. This recurrent problem creates the need of being able
to test different memory profiles, so to understand the overhead introduced
by moving a certain memory section (i.e., global variables, stack, heap) into
NVM, and thus justify or not the usage of a checkpoint mechanism which
allocates more memory into NVM with respect to our requirements.

Furthermore, the available work done on inconsistencies by DINO [1]
and Ratchet [10] describes them at a source-language level, but then they

1 int a = 0 ;
2
3 int main ( ) {
4 a = a + 1 ;
5 return a ;
6 }

Example 3.3: Example of a
variable increment in C.

1 . g l ob l a
2 . data
3 . type a , @object
4 . s i z e a , 4
5 a :
6 . long 1
7 . t ex t
8 . g l o b l main
9 . type main , @function

10 main :
11 pushq %rbp
12 movq %rsp , %rbp
13 movl a(%r i p ) , %eax
14 addl 1 , %eax
15 movl %eax , a(%r i p )
16 movl a(%r i p ) , %eax
17 popq %rbp
18 r e t

Example 3.4: Assembler version
of Example 3.3.



3.1. OVERVIEW 41

perform their analysis using a lower level of abstraction. As we will see in
Chapter 4, we need to go deeper toward machine level to actually describe
and recognize inconsistencies. In fact, let us focus on Example 3.3, which
represents a variable increment. The equivalent assembler version is shown
in Example 3.4. As we can see, the variable increment is translated into
different machine operations: line 13 loads the value of a into a register, line
14 increments the register by 1, and finally line 15 saves the content of the
register back into a.

If we reconsider the intermittent scenario described for Example 3.1,
the result is inconsistent due to the re-execution of the instruction at line
8, which increments the variable a by one. Such increment is converted
into the operations described in Example 3.3, and thus is executed as three
different operations:

1. movl, which loads the content of the memory location associated to
variable a into a register.

2. addl, which increments the register value by 1.
3. movl, which stores the value of the register into the memory location

associated to variable a.
The cause of the inconsistent result is the re-execution of the two movl
instructions. If, for example, we can move the checkpoint just after the first
movl, the inconsistency would not happen, since the value of a would be
included in the checkpoint. In this case, the re-execution of the second movl
changes the data saved into the memory, but such data is never re-loaded,
since the operation which performs such action is before the checkpoint, and
thus the inconsistency does not happen.

As we saw in the previous example, if we do not consider the machine
level, we are not able to perform an accurate analysis of the problems in-
troduced by an intermittent execution. Furthermore, we also need to find
a general workflow for verifying, analyzing, and testing the results of an in-
termittent execution, independently of the checkpoint mechanism adopted,
the micro controller unit used, and the nature of the harvested energy.

The lack of a well-defined testing workflow for intermittent executions
makes it not possible to recognize where hazards to the data consistency
may happen in the code. This leads the programmer to the selection of a
checkpoint mechanism without taking into account which kind of problems
the code may present and where, with the potential result of poor perfor-
mance and poor energy optimization, due to checkpoint placements and
consequently introduced overhead.

Apart from the general workflow for finding inconsistencies, we also re-
quire an environment able to perform such analysis. Accordingly to Hester
et al. [19], the problem of testing intermittent execution is open and, due to
the unstable and unpredictable nature of the harvested energy, no available
tool is able to predict and explore all the possible combinations of intermit-
tent executions. Also, no testing environment or tool is provided to verify
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1 checkpo int ( ) ;
2 // c r i t i c a l code
3 [ . . . ]

Example 3.5: Code section on
which we want to track the
number of re-executions.

1 a = 0 ; // in NVM
2 checkpo int ( ) ;
3 a = a + 1 ;
4 // c r i t i c a l code
5 [ . . . ]

Example 3.6: Solution for
tracking the number of re-
executions of Example 3.5.

1 read temperature s enso r
2 checkpo int ( )
3 i f temperature > 30 then
4 a c t i v a t e c oo l i n g

Example 3.7: Example of an
environment interaction.

1 [ . . . ]
2 checkpo int ( )
3 move antenna
4 measure s i g n a l i n t e n s i t y
5 [ . . . ]

Example 3.8: Example of an
environment interaction.

the presence of inconsistencies, and the available tools present in the liter-
ature consist mostly in debugging environments with energy reproduction
capabilities.

Until now, all the previous works present in the literature considers in-
consistencies as an unwanted behavior. As we will se in Section 5.3, we can
look at the intermittence characterizing TPCs as a feature granting new in-
puts for our program. Let us focus on Example 3.5, and let us suppose we
want to track the number of times the code portion between line 2 and line
3 is executed. Furthermore, let us suppose for a moment that we are not
focusing on the presence of data inconsistencies. Example 3.6 shows how to
track the number of times the code region is re-executed: before the execu-
tion of the critical code region we increment variable a, which is in NVM. If
a reset happens due to a low energy buffer, when there is enough energy to
restart the execution, it continues from the checkpoint at line 2. The first
instruction to be executed is the increment of variable a, which is in NVM
and thus retains the value of previous re-executions. Thanks to its presence
in NVM, variable a contains exactly the number of times the code region at
line 4 is entered. If we do not allow the presence of an inconsistent value for
variable a, we are not able to track the number of executions for the code
region of interest, and there is no way of doing so without permitting the
presence of an inconsistency. Since no previous work considers intermittence
as a device input, there is no tool or guidelines for verifying the correctness
of such usage scenario.
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Finally, another problem not faced by previous works concern environ-
ment interactions. The most common application of devices in TPC com-
prehend their usage as wireless sensors, and thus their work flow consists in
sensing the environment, processing the sensed values, and then store the re-
sults or send them to the main node of the system. The presence of frequent
shutdowns can cause not only data inconsistencies, but also unwanted inter-
actions with the environment. Let us focus on the execution flow described in
Example 3.7: our device reads the temperature of the environment and then,
if it is higher than 30 degrees Celsius, it activates the cooling system. Let us
suppose that our device senses 31 degrees Celsius from the environment and
then just after the execution of the checkpoint at line 2, a shutdown happens
due to a low energy buffer. Let us now suppose that a long time elapses
after the execution restarts, and that the environment temperatures drops
down to 20 degrees Celsius. When the execution resumes, the checkpoint
at line 2 is restored and within it, the previously sensed temperature. Since
the saved value was 31 degrees Celsius, the cooling system is activated as
next step. This clearly shows an unwanted behavior of our program, which
we can refer as environment inconsistency.

A different inconsistent behavior of an environment interaction is shown
in Example 3.8, which consists in a program used to measure the intensity
of a signal in different directions, by moving an antenna with a servo. Let us
suppose that our servo is moved by 1 degree each time, and that its initial
position is 0 degrees. When the execution reaches line 3 for the first time,
the servo is moved to 1 degree. Let us suppose that a shutdown happens
just after the movement of the servo, due to a low energy buffer. When the
execution restarts, the checkpoint is restored and as subsequent operation
the servo is moved again by 1 degree, reaching the position of 2 degrees. The
measurement of the signal intensity which happens at the next instruction
records the value with the antenna positioned at 2 degrees. As we can notice,
due to the shutdown, we have skipped the measurement with the antenna
positioned at 1 degree, and thus our measurements are incomplete.

Even if it is possible to debug environment interactions with available
tools [13, 17], we still need a general analysis workflow for environment in-
consistencies, otherwise we are not able to find where problems may happen
and how to solve them.

3.2 Available Tools

This section will provide a general view over the main tools available in the
literature that addresses the problem of debugging from different perspec-
tives. As we will see, they are designed with different goals, and they do not
address the inconsistency problem.
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3.2.1 EKHO

Ekho [20] focuses on the energy perspective and solves the problem of phys-
ically recreating the characteristics of an energy harvesting environment. It
provides both guidelines and tools for recording and reproducing the energy
harvested from a specific source. One of its goals is also granting the pos-
sibility of conducting multiple and repeatable in-lab testing, from the point
of view of energy reproduction.

Ekho records the energy by measuring the current intensity (I) and volt-
age level (V) supplied to the test device by the energy harvester in different
load conditions. Such measurements are used for generating an I-V curve,
which describes how voltage and current consumption are related, and it
characterizes the energy source.

To reproduce the energy source, Ekho exploits a programmable energy
environment which consists in a tool able to reproduce the same energy type
of the energy source. Then, it uses the recorded I-V curve profile to regulate
such programmable energy environment. For example, to reproduce the sun
light it uses a lamp and regulates it accordingly to the I-V curve, by sensing
the amount of energy emitted.

Ekho is very useful to conduct repeatable in-lab experiments, and to test
the behavior of the program with respect to an energy source, but it does
not provide any program analysis methodology or techniques for finding
inconsistencies.

3.2.2 EDB

Energy-interference-free Debugger or EDB [13] focuses on providing a de-
bugging environment able to not interfere with the energy state of the device
to be tested. It consists in both a software and hardware solution, and it is
composed by:

• Debugging Device: it must be connected to the device we want
to test, and permits us to interact with it for debugging purposes. It
maintains the energy level constant during the debugging actions, so to
not introduce energy interference due to debugging operations, and can
set a specified energy level in the tested device buffer. Furthermore,
it is able to sense I/O events, the energy level, and application events
triggered by the exposed software API, and it provides a debugging
console which allows us to interact with the tested device and to gather
the sensed information.

• Software Library: it provides a library called libEDB which must
be included in the program to be tested. Such library permits us to
insert the following debugging operations inside the code:
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– watchpoint : it triggers a program event which is sensed by the
hardware components of EDB, and it is signaled through the
debug console.

– breakpoint : it pauses the program execution and permits us to
inspect the current state while maintaining the energy level con-
stant. EDB permits us to use three different types of breakpoints:

– code breakpoint : it pauses the program execution when it is
reached.

– energy breakpoint : it pauses the program execution when the
energy level goes below a certain value.

– combined breakpoint : it pauses the program execution when
it is reached and the energy level is below a certain value.

– energy guard : it runs a specified portion of code while imposing
a constant energy level.

– assertion: it verifies a condition, and if it is not met, EDB enters
an interactive debug mode, as if it reached a breakpoint.

– printf : it is an energy-interference-free version of the C printf,
which prints in the debugging console the specified information.

When EDB performs a debugging operation, it always provides to the
tested device a constant energy, so to compensate for the energy consumed
by such debugging operation.

Even if EDB acknowledges the inconsistency problem as intermittence
bug, it lacks of dedicated and automated techniques for finding or analyzing
where inconsistencies may happen.

Despite the lack of an analysis methodology, through the usage of ex-
posed software functionality, we are able to verify if computed results are
equivalent to a sequential execution of the same code, and we are also able
to set the energy levels causing a reset in precise points of the code. Fur-
thermore, we could put breakpoints to trigger resets at every line of the
code, and verify the partial result computed by each line, but this operation
is inefficient and might not discover every inconsistency. In fact, as stated
previously, we need to deepen into the machine level to better understand
and analyze inconsistencies.

3.2.3 Siren

Siren [17] is a simulator built on top of MSPSim [21], an instruction level
simulator for the MSP430 [2] micro-controller. It introduces energy and
NVM capabilities in the features available within MSPSim, and runs directly
the firmware to be uploaded on the target device.

To reproduce an energy source, Siren uses the same I-V curves concept
introduced by Ekho [20], and it is both able to use an energy profile registered
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using Ekho, or to generate one accordingly to the user’s requirements. Once
we specify such energy profile, Siren uses it in combination with the physical
model of a capacitor to emulate the energy buffer level: the execution of each
instruction reduces the energy available in the energy buffer, which might
be refilled accordingly to the I-V curve profile of the energy source.

Siren extends the debugging features of MSPSim (i.e., breakpoints, regis-
ters and memory monitoring, and profiling of executed code) with a function
named siren command(), which can be called inside our source code to be
tested. Its execution does not interfere with the energy buffer and it allows
us to perform debugging operations. This function has a similar syntax of
the C printf function: we specify as first argument a string containing a
recognized command, and then we can specify other variables as further
arguments, which will be included within the command using the same for-
mat strings of the printf function (e.g. %d, %s, ...). Siren provides two
commands for debugging purposes:

• PRINTF : prints out the specified string as if in its place there was
a call to printf() with the same arguments.
For example, siren command ( ”PRINTF: %d\n” , x ) prints out the value
of variable x.

• GRAPH-EVENT : signals to Siren a program event. All the events
encountered in this way can be plotted over a graph with respect to
the associated energy traces by using the provided command within
the Siren environment.

Note that to use the debugging functionalities, we must include in our source
code the library header containing the siren command() definition.

Finally, to start a simulation, we must provide the compiled firmware
containing the program to be tested with the additional debugging function
calls, and the energy profile. Then, we are able to analyze the behavior of
the simulated environment and to debug the program execution.

Unfortunately, Siren lacks of dedicated and automated techniques for
analyzing the inconsistency problem. As for EDB, we are still able to verify
if the computed results are equivalent to the ones that a sequential execution
of the same code produces, but we must create the conditions that cause a
power reset and the consequent re-execution of an instruction altering the
consistency.

3.2.4 CleanCut

CleanCut [18] is a debugging environment that focuses on the energy per-
spective and solves the problem of non-terminating path bugs.

A non-terminating path is a sequence of instructions that does not in-
clude any checkpoint, and that for its execution requires more energy than
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the device can store. During the execution of such sequence, it is possible
that the device is not able to gather enough energy from the harvesting
source, and thus a power failure happens. When there is enough energy to
restart the computation, it will restore the latest checkpoint, and the com-
putation will continue from the first instruction of the non-terminating path.
This same process will be repeated over again, since the device is not able
to gather energy fast enough to sustain the execution of such sequence, and
the absence of a checkpoint in the non-terminating path makes the device
unable to save the work done. As consequence, the execution is stuck at
running this sequence of instructions and it is not able to continue.

To find non-terminating paths, CleanCut uses a statistical model of the
energy consumption. To create this model, it measures the energy con-
sumption of the code by exploiting the debugging capabilities of EDB [13].
CleanCut inserts EDB’s watchpoints inside the code, and then it measures
the level of the energy buffer when they are encountered during the exe-
cution. These measurements are then used to generate a statistical model
of the energy consumption of the code, which is then used to estimate the
energy consumption of all the paths (i.e., sequences of basic blocks) present
in the code.

CleanCut is composed by two different components, which can be used
independently:

• Checker: it verifies the absence of non-terminating paths within a
given source file in which checkpoints are already placed by the user.
For doing so, it takes as other inputs the capacity of the energy buffer
and the statistical model of the energy consumption of the code. Then,
for each path it estimates the energy consumption, and calculates the
probability which such path has to exceed the capacity of the energy
buffer. If such probability is higher than zero, CleanCut alerts the
developer of the presence of the non-terminating path.

• Placer: it performs checkpoint placements over a given source file in a
way which grants the absence of non-terminating paths. For doing so,
it considers DINO [1] as checkpoint mechanism and uses an iterative
algorithm to automatically place its checkpoint boundaries.

The iterative algorithm estimate at each step the energy consumption
of each path, accordingly to the given statistical model. Then, it selects
the path with the highest energy consumption and, if it exceeds the
capacity of the energy buffer, CleanCut’s placer splits such path in
half by placing a checkpoint boundary in the middle of it. Then, the
algorithm repeats this process over again until no path exceeds the
capacity of the energy buffer. In this way, it grants the absence of
non-terminating paths.
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Once the iterative algorithm finishes, CleanCut’s placer exploits the
LLVM passes of DINO [1] to convert the checkpoint boundaries into
actual checkpoints and to create the required versioning of variables.

CleanCut is a very useful tool for placing task boundaries and for finding
the presence of non-terminating paths, but it is not designed to account for
the inconsistency problem, and it does not provide any analysis methodology
or technique for finding them.

3.3 Testing Environment Requirements

As previously stated, the existing tools are designed to solve different prob-
lems, and they do not directly consider inconsistencies.

Ekho [20] focuses only on the energy recording and reproduction per-
spective, and CleanCut [18] focuses only on the analysis of non-terminating
paths. EDB [13] and Siren [17] are designed to address the debugging prob-
lem, but currently they are not suitable for automatically testing the pres-
ence of inconsistencies in the intermittent execution of the code. Moreover,
except for CleanCut which verifies the energy consumption, all the available
solutions do not analyze or verify any property of the executed code.

Even if it is possible to adapt EDB and Sirens for verifying the presence
of inconsistencies, using Siren will limit the user to use an MSP430 archi-
tecture, and using EDB requires a significant physical user intervention on
the micro-controller unit. Furthermore, Siren does not permit interactions
with the energy buffer with the same flexibility provided by EDB, and thus
creating the conditions for generating a shutdown in specific code locations
becomes more complicated. On the other hand, EDB runs debugging di-
rectly on the physical element to be tested, and this certainly slows down
testing. Moreover, they are not designed to be inconsistency-based test-
ing environment, and even if we do not consider these limitations, we are
still requiring a way and a general workflow to automatically find where
inconsistencies might happen, and how to analyze them.

The main problem to be addressed by a testing environment is to ver-
ify the correctness of the data produced by the execution of the program,
independently of where and when a shutdown due to a low energy buffer
happens. Since we must conduct an exhaustive test and the intermittence
characterizing TPCs is not predictable, we must consider that a shutdown
may happen at any instant, and thus during the execution of any line of the
machine code. For this reason, emulating an energy source becomes useless
for the scope of this analysis.

The main aspect for verifying the presence of inconsistencies is to grant
a result which is the same of the equivalent sequential execution of the same
program. For this reason, for verifying the absence of inconsistencies, we
are required to verify that the any combination of an intermittent execution
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of a program produces a result which is equivalent to the one produced by
the sequential execution of the same program.

To perform the required operations, we require an environment able to
produce an intermittent execution of the program to be tested, and such
environment must be able to automatically analyze all the produced memory
states, so to find if an inconsistency is present and where.

Another important aspect is that using a software-based solution will
certainly make the analysis easier. In fact, running these type of tests over
a hardware-based solution creates more challenges, especially for generating
resets and analyzing memory content.

As stated before, the tools already present in the literature do not meet
the described requirements, since they are designed for other purposes. An
inconsistency-oriented testing environment must focus on finding where in-
consistencies happen and what causes them. To overcome the lack of both
a general workflow and an environment for finding inconsistencies, we de-
veloped ScEpTIC, an inconsistency-oriented testing environment. Moreover,
in Chapter 4 and Chapter 5 we will explain the methodologies we use for
analyzing inconsistencies.
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Chapter 4

Memory-section Specific
Inconsistencies

4.1 Overview

An intermittent execution introduces the possibility of intermittence bugs [1,
10, 13, 14] or inconsistencies, where programs reach a state unattainable in
a continuous execution. In this chapter we address such problems, and
we analyze them from the machine-code standpoint. For simplicity and
better comprehension, the examples we use in the following sections use a
toy version of the assembly language, for which Table 4.1 and Table 4.2
show respectively the elements and instructions available. Moreover, in our
examples we consider a static checkpoint mechanism that does not restore
the NVM content.

Element Name Description

Ri Represents a general purpose register.

Rrt Represents a register containing the return value of a
subroutine call.

PC Represents the program counter.

BP Represents the stack base pointer, which is the ad-
dress of the first cell at the base of the current stack
frame.

SP Represents the stack pointer, which is the address of
the first free cell on top of the stack.

Table 4.1: Elements of the assembly language used in the examples.

51
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Instruction Description

PUSH Ri Stores the value present in register Ri

on top of the stack. It also increment
SP.

POP Ri Stores the value present at the top of
the stack into the register Ri. It also
decrements SP.

LOAD x, Ri Reads the value stored at the memory
address x and saves it into the register
Ri.

STORE x, Ri Stores the value of register Ri inside
the memory cell at address x.

ADD Rx, Ry, Rz Rx = Ry +Rz

MOV Rx, Ry Saves the value of register Rx into reg-
ister Ry.

CALL routine Calls the routine named routine.

RET Returns from function call.

BRANCH (condition), LABEL This instruction modifies the execu-
tion flow of the program. It evaluates
the condition, and if it corresponds to
a logical True, it forces the program
counter to the address corresponding
to the specified label, effectively mak-
ing the instruction after the label to be
the next one to be executed. Other-
wise, the execution continues from the
next instruction, as normal.

L: Sets a label named L on the current
line.

CHECKPOINT Executes a checkpoint.

Table 4.2: Instructions of the assembly language we use in the examples of
this chapter.

4.2 Data Accesses

4.2.1 NVM and Memory Sections

We can use the NVM not only for allocating checkpoints, but alto for moving
inside it some portions of the main memory of the program, which consists
in global variables, stack, and heap. Even if global variables usually reside
on top of the stack, it is possible to address a portion of them directly inside
the NVM, without having to move in it also the entire stack.

When we take a checkpoint, the state it saves is synchronized with the
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entire program data. If a portion of the program’s main memory is allocated
into the NVM and it is not part of the checkpointed state, each alteration
to it will disrupt such synchronization. This can potentially lead to data
inconsistencies and happens because the memory alteration remains visible
when we restore the checkpoint. An example of this scenario follows in the
next section.

4.2.2 Data Access

Let us consider the execution of the code that Example 4.1 shows, in which
only the variable a resides in NVM. When we perform the checkpoint of line
2, it saves the register file, the stack content, and the heap content, but it
does not save the value of variable a, since it is in NVM. We can consider
the state that the checkpoint saves to be synchronized with the value of
the variable a. Now, we continue the execution, and we run the instruction
of line 5, which alters the value of the variable a that becomes 3. Let us
now suppose that a shutdown happens due to a low energy buffer. When
there is enough energy to restart the execution, the startup routine restores
the state that the checkpoint previously saved, and the execution resumes
from the instruction at line 3. Such instruction loads the value of variable
a from the NVM, and stores it into the register R0. Here is where the data
inconsistency happens: the value that the instruction read for variable a is
3, but at the time at which the checkpoint was taken it was 7. This problem
does not prevent the execution of the following instructions, but the entire
result is compromised. In fact, the subsequent operations use an incorrect
value of variable a, and they will produce an incorrect result.

1 STORE a , 7
2 CHECKPOINT
3 LOAD a , R0

4 ADD R1 , R0 , 7
5 STORE a , 3
6 [ . . . ]

Example 4.1: Data
access in NVM that causes an
inconsistency.

1 STORE a , 7
2 CHECKPOINT
3 LOAD a , R0

4 CHECKPOINT
5 ADD R1 , R0 , 7
6 STORE a , 3
7 [ . . . ]

Example 4.2: Fix to the
data access inconsistency that
Example 4.1 has.



54 CHAPTER 4. MEMORY-SECTION SPECIFIC INCONSISTENCIES

4.2.3 Data Access Inconsistencies

We define that a Data Access Inconsistency may happen whenever there
is an ordered sequence of instructions I1, ..., In such that:

1. I1 is a LOAD operation that loads from an address x

2. In is a STORE operation that writes at the same address x

3. x is an address in the NVM space

4. no CHECKPOINT exists in the interval I1, ..., In

If a checkpoint is not present between the LOAD and STORE instructions,
the LOAD operation is re-executed when the state is restored. This means
that the memory alteration done by the STORE instruction affects the value
that the LOAD operation reads from memory, potentially leading to an
inconsistency.

If the STORE operation does not alter the value present at the address
x, the presence of such sequence can not lead to a data access inconsistency.
In fact, if a power failure causes the LOAD instruction to be re-executed,
it reads a consistent value from the NVM. We consider this case as a false-
positive. Otherwise, if the STORE operation does alter the value present at
address x, such sequence generates a data access inconsistency.

This type of inconsistency can happen independently of the portion of
main memory we allocate into NVM. It can be just a subset of the global
variables as we show in Example 4.1, the entire stack, or the entire heap.

To solve such inconsistency we may think that it is necessary to save also
the NVM whenever a checkpoint happens, so to impose a synchronization
between the elements composing the state and thus granting consistency.
Although this solution works, it is not effective because we will get the same
affects as having the variable allocated in the volatile memory, but with an
increased access costs and checkpoint overhead. This has the effect of losing
the benefits of addressing such variable into NVM, which is the reason why
we might choose in first place to pay such increased access costs.

An effective and sufficient solution that makes us able to maintain a
consistent state is to place a CHECKPOINT after every LOAD operation
which reads a variable from the NVM, for which a subsequent STORE exists
before the next checkpoint. In this way, the alteration of the memory that
a STORE operation introduces will not be seen by the associated LOAD
operation, because it will not be re-executed again if a shutdown happens.
Moreover, the correct value of the variable will be included in the state the
checkpoint saves, inside the target register of such LOAD operation. This
is exactly the idea on which some checkpoint mechanisms such as DINO [1]
and Ratchet [10] are built on, which makes them able to overcome data
access inconsistencies.
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By applying such guideline to Example 4.1 we obtain the code that
Example 4.2 shows. Let us suppose that we reach the STORE operation
at line 6, and then a shutdown happens. When there is enough energy to
restart the execution, the startup routine restores the saved state and the
execution resumes from the instruction at line 5. As we can see, we do
not re-execute the LOAD operation, and the results that the instruction 5
produces is the one we expect.

4.3 Stack

4.3.1 Stack, Activation Record and Function Calls

The stack portion of the program’s main memory contains global variables,
local variables and the activation record of function calls. Allocating it into
NVM may generate two class of inconsistencies: one representing the data
access inconsistency we described in Section 4.2, and one involving function
calls.

Since the whole stack is allocated into NVM, data access inconsistencies
may happen whenever a LOAD operation reads from the stack. This means
that we must be cautious whenever we access a global variable, a local
variable, or the activation record of a function.

To understand the second class of inconsistency, let us initially focus
on how a subroutine call works at a low level of abstraction, and which
data it writes into the stack. There exists multiple calling conventions that
specify how parameters, registers and return value should be managed when
performing a subroutine call. Their differences reside in how and where they
write data into the stack, but the type of data they store in it is more or less
the same. For example, the calling convention that most of the C compilers
use for the x86 architecture states that:

• Parameters are pushes onto the stack in reverse order by the caller,
and then the function can be called.

• The return value of the subroutine is stored into a special register.

• The caller is in charge of removing from the stack the parameters once
the function returns.

Usually this convention is slightly modified so that arguments are passed
using registers to the called routine, due to a better access speed and latency.
In this case, if the number of parameters exceeds the one of available reg-
isters, they must be stored onto the stack. When control is transferred to
another subroutine, it can access and modify each register present in the
architecture. This creates the need of preserving register values that the
caller routine needs when the control is transferred back to it.
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1 # Save two va lue s in r e g i s t e r s and two onto the s tack
2 MOV 4 , R5

3 MOV 3 , R4

4 PUSH 2
5 PUSH 1
6 # Save c a l l e r−save r e g i s t e r R0 on top o f the s tack
7 PUSH R0

8 # Function c a l l
9 c a l l MYFUNC

10 # Function Prologue
11 # Save return address
12 PUSH PC
13 # Save cur rent base o f s tack
14 PUSH BP
15 # Create a new stack frame , which s t a r t s
16 # on top o f the s tack .
17 MOV SP , BP
18
19 # Function Code
20 [ . . . ]
21
22 # Function Epilogue
23 # Restore o ld s tack po in t e r
24 MOV BP, SP
25 # Restore saved base po in t e r
26 POP BP
27 # Restore saved return address
28 POP PC
29 # Return
30 RET
31 # Restore saved value o f R0

32 POP R0

33 # Sum R0 and the re turn value
34 ADD R1, R0, Rrt

Example 4.3: Complete code of the call MY FUNC(1, 2, 3, 4)

Those instructions are generated by the compiler’s back-end. For limit-
ing the overhead of such operation, it splits the register file into two logical
subgroups: callee-save and caller-save. They represent the groups of reg-
isters for which respectively the callee and the caller needs to preserve the
value. Moreover, during the register allocation process, the compiler usually
tries to minimize the number of registers saved onto the stack.

Let us consider Example 4.3, that represents the call of MY FUNC with
arguments 1, 2, 3, 4. Let us suppose that we can only use the registers R4

and R5 to pass the function’s arguments, and that the function MY FUNC
uses the register R0, which the compiler considers a caller-save register. The
first group of operations consists in setting the arguments of the routine we
want to call, and it is usually done in reverse order of parameters. In the
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0xFFEE ← SP
0xFFEF Local variables
0xFFF0 Calle-save registers
0xFFF1 Saved BP ← BP
0xFFF2 Saved PC
0xFFF3 R0

0xFFF4 1
0xFFF5 2
0xFFF6 ...

← old BP

MY FUNC
Activation
Record

Figure 4.1: Stack content after running the function prologue in Example 4.3

example, we pass the last two parameters using registers, and the first two
using the stack. The subsequent group of operations consists in saving the
caller-save registers that we need after the return of the subroutine. In this
case, we only save R0. As next operation, we execute the call instruction,
and then we run the function prologue. It saves into the stack the return
address, that corresponds to the next Program Counter (PC) and the base of
the stack (BP). Then, it creates a new stack frame by setting the stack base
pointer (BP) equal to the current top of the stack, and it finally transfers
the control to the actual function code. Figure 4.1 shows the content of the
stack after running these operations. Also, note that in the function prologue
also happens the savings of callee-save registers, if the function code uses
any of them, and it also makes space into the stack for local variables.

Once the subroutine reaches its end, we execute function epilogue, which
performs in revers order the operations that the function prologue did. In
fact, it restores the saved values of the callee-save registers and the previous
stack frame. Then, it returns the control back to the caller, by getting the
saved return address from the stack and forcing it into the program counter.

4.3.2 Function Calls and NVM

Let us now focus on the execution of Example 4.4. Also, let us suppose that
F1 and F2 use respectively the caller-save registers R0 and R1, and that we
pass arguments using only the stack.

We start executing the program, and when the execution reaches line
14, we take a checkpoint inside the context of F1. The saved state is syn-
chronized with the current information present in the stack, that Figure 4.2
shows, which is not included in the data that the checkpoint saves because
the stack is allocated into NVM. We continue the execution sequentially un-
til we reach the function call F2 of line 34. Let us suppose that the execution
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1 # Save parameters f o r F1

2 PUSH 2
3 PUSH 1
4 # Save r e g i s t e r
5 PUSH R0

6 c a l l F1

7 # Function Prologue
8 PUSH PC
9 PUSH BP

10 MOV SP , BP
11
12 # Function Code
13 [ . . . ]
14 CHECKPOINT
15 [ . . . ]
16
17 # Function Epilogue
18 MOV BP, SP
19 POP BP
20 POP PC
21 RET
22 # Restore saved r e g i s t e r
23 POP R0

24
25

26 # Increment R0 with returned value
27 ADD R0, R0, Rrt

28
29 # Save parameters f o r F2

30 PUSH 4
31 PUSH 3
32 # Save r e g i s t e r
33 PUSH R1

34 c a l l F2

35 # Function Prologue
36 PUSH PC
37 PUSH BP
38 MOV SP , BP
39
40 # Function Code
41 [ . . . ]
42
43 # Function Epilogue
44 MOV BP, SP
45 POP BP
46 POP PC
47 RET
48 # Restore saved r e g i s t e r
49 POP R1

50 [ . . . ]

Example 4.4: Code of two subsequent calls of functions F1 and F2
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Address Content
0xFFF0 ← SP
0xFFF1 BP saved by F1 ← BP
0xFFF2 F1 return address
0xFFF3 R0

0xFFF4 1
0xFFF5 2
0xFFF6 ...

← old BP

F1

Activation
Record

Figure 4.2: Stack content after execution of CHECKPOINT in Example 4.4

reaches instruction at line 37, which is inside function F2, and then a shut-
down happens due to an empty energy buffer. Figure 4.3 shows the current
state of the stack, which is preserved during the power off. When there is
enough energy to restart the computation, the program resumes from the
instruction of line 14, which is inside the code of function F1. Unfortunately,
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0xFFF0 ← SP
0xFFF1 BP saved by F2 ← BP
0xFFF2 F2 return address
0xFFF3 R1

0xFFF4 3
0xFFF5 4
0xFFF6 ...
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F2
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Record

Figure 4.3: Stack content after execution of line 37 in Example 4.4

the stack contains part of the activation record of function F2, since it is
persistent due to its presence in NVM. From now on, all the computation
that happens can be considered incorrect, since it uses invalid argument val-
ues, presenting a series of data access inconsistencies, which we described
in Section 4.2. In fact, F1 should be executed using 1 and 2 as arguments
values, but due to the execution of lines 30 and 31, now it uses the values 3
and 4, which are the ones of F2, and thus an invalid result may be produced.
Moreover, when we reach the epilogue of function F1 at line 17, it restores
a wrong stack base pointer and a wrong return address, which are the ones
stored into stack by function F2 before the shutdown. As consequence, when
we reach the return operation of line 21, the next instruction fetched is the
one at line 47 instead of the one at line 23. The program skips a portion of
code due to the wrong return address, leading to an inconsistent state.

A similar problem can happen if we configure our program with inter-
rupts. Let us consider Example 4.4, that we previously used for describing
the activation record inconsistency problem. Further, let us suppose that
we reach the instruction at line 29, and then an interrupt is triggered. The
MCU pauses the execution of the program, and executes the Interrupt Ser-
vice Routine associated with the triggered interrupt. The ISR pushes into
the stack the address where the program was paused, and it runs the code
that we associated with such interrupt. When the execution of the ISR
ends, it pops from the stack the address where the program was paused,
and forces it into the program counter. In this way, the execution continues
from where it was paused.

Let us suppose that, during the execution of the ISR, a shutdown hap-
pens due to a low energy buffer. Figure 4.2 shows the state of the stack
during the checkpoint. Since the ISR was triggered after the return of the
function f1, the activation records of f1 and ISR overlap. As consequence,
the ISR overwrites the return address of f1 with the address of line 29, just
as f2 did in our previous example. When there is enough energy to restart
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the execution, we restore the checkpoint and the execution continues from
line 15. When we reach the ret instruction at line 21, it pops the return
address from the stack, which points to line 29 instead of 22, leading to the
same unwanted behavior we previously described.

Ratchet [10] identifies this particular case as a potential cause of in-
consistencies, but it does not analyze all the effects that Activation Record
Inconsistencies may produce.

4.3.3 Activation Record Inconsistency

We define an activation record inconsistency as a particular case of a
data access inconsistency that happens whenever there is an ordered
sequence of instructions I1, ..., In such that:

1. I1 is a CALL operation

2. I2, ..., Ix is the ordered sequence of instructions representing the func-
tion prologue of I1

3. Ix+1, ..., Iy is the ordered sequence of instructions representing the
function code of I1

4. Iy+1, ..., Iz is the ordered sequence of instructions representing the
function epilogue of I1

5. Exists at least a CHECKPOINT operation Ii inside the context of the
function that I1 calls, (2 < i < z).

6. Ia is a CALL operation at the same call level of I1, with a > z.
Note that two subsequent function calls C1 and C2 are at the same
call level if C2 is executed after the return of C1 , or vice versa.

7. In is the function epilogue of Ia, (n > a)

8. No other CHECKPOINT exists in the interval Iz, ..., In

In other words, this kind of inconsistency may happen if two non-nested
consecutive function calls exist, such that the second call can overwrite a
portion of the activation record of the first one. If we have a checkpoint
between the change of the context from the first to the second call, the
inconsistency can not happen. In fact, whenever a power failure takes place,
the execution will resume from a consistent context with respect to the
entered function.

Moreover, if we configure our program for using interrupts, an activa-
tion record inconsistency may happen after the return of every function
containing a checkpoint. In fact, the ISR may be executed after the return
of a function, and it overwrites the addresses where the activation record of
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[...] ← No Inconsistencies
Arguments preparation
Caller-save registers saving
CALL

Prologue
Save BP
Save PC

Function Code
Epilogue

Restore PC
Restore BP
RET

Caller-save registers restoring
[...] ← No Inconsistencies
Arguments preparation
Caller-save registers saving
CALL

Data Access
Inconsistency

Data Access
Inconsistency

Unwanted Jump
or Crash

Figure 4.4: Different kind of inconsistencies given the checkpoint placement.

such function was. For this reason, a subsequent function call is no longer
required for creating the conditions of this kind of inconsistency, since in-
terrupts can happen at any instant and the ISR has the same effects of a
function call. As consequence, the presence of interrupts relaxes the con-
straints of our previous definition, and removes the conditions 6 and 7.

After we encounter Activation Record Inconsistency, there is no guaran-
tee on the possibility of continuing the execution. In fact, if the two calls
have a different number of arguments, the second routine may overwrite
the return address of the first one with the value of an argument. As con-
sequence, the program may crash since the return address that the RET
instruction forces into the program counter is not a valid one.

Figure 4.4 shows the different type of inconsistencies that may happen
depending on the checkpoint placement. If we place a checkpoint before
the Arguments preparation, no inconsistency happens, since a power failure
makes the program to resume outside the context of the function.

Instead, if we place a checkpoint inside the interval from Arguments
preparation and Save BP, we may experience an inconsistency, but no unex-
pected jump or crash. In fact, a power failure makes the program to resume
from the point in which it stores into the stack the BP and PC, but the
arguments and saved registers may be inconsistent.

If we place a checkpoint inside the interval from Save BP to Restore BP,
we may experience an unwanted jump or a program crash. In fact, a power
failure makes the program resume inside the context of the function. If a
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future function call changed the return address present in the stack, when
we execute the RET instruction, we access its return address instead of the
one of the function we are in.

Lastly, another inconsistency may happen if we place the checkpoint
inside the interval from RET to Caller-save registers restoring. In such
case, we do not experience an unwanted jump, since the RET instruction
accesses a consistent return address. Instead, if a future function call altered
the stack position where the caller-save registers are stored, we restore them
into an inconsistent state.

To solve an Activation Record Inconsistency is sufficient placing a check-
point between the two calls that may generate an inconsistency. In this way,
we maintain a consistent activation record with respect to the context of the
function where we resume the execution.

For example, in Table 4.4 we can move the CHECKPOINT of line 14 to
line 26. In this way, we can not resume the execution inside the context of
the first function with the stack content representing the activation record
of the second one.

Finally, if we configured interrupts in our program, we must modify
the interrupt handler so that it takes a checkpoint before executing the
actual interrupt. In this way, if a reset happens during the execution of the
ISR, we resume the computation at the instruction where the interrupt was
triggered. As consequence, even if the ISR overwrites the activation record
of a previous function call, it can no longer cause an inconsistency. In fact,
we restore our state outside the context of such function, and the data that
the ISR overwrites is no longer accessed by a return instruction.

4.4 Heap

4.4.1 Heap Structure and Management

The heap is a dynamic memory section inside the program’s main memory
in which we can dynamically allocate or de-allocate data elements during
runtime. Figure 4.5 shows how the main memory is usually partitioned. As
we can see, the heap is generally placed at the opposite side of the stack,
and grows from lower addresses to higher ones.

The runtime heap management depends on the environment and archi-
tecture, and usually programming languages expose abstract interfaces to
interact with it. Table 4.3 shows the list of the functions that the C language
exposes for managing the heap, and we will use them for generalizing the
common access methods.

Whenever we execute a malloc instruction, it allocates a memory block
inside the heap. Such memory block consists in a group of memory cells
such that their overall dimension is equal to the one that we required. We
can access a memory block at any position. Usually, whenever we execute
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Address Content
0x0000 [...]
0x0B00 HEAP
0x0B01 [...]

[...] [...]
0xFFFE [...]
0xFFFF STACK

Heap Growth

Stack Growth

Figure 4.5: Partitioning of the main memory.

Function Name Description

malloc(bytes) Allocates into the heap a given amount of bytes
and returns the address of the first cell of the
memory block.

calloc(bytes) Allocates into the heap a given amount of bytes,
initializing them to zero, and returns the ad-
dress of the first cell of the memory block.

realloc(address, bytes) Modifies the overall dimension of the specified
memory block, eventually moving it to fit such
dimension. It then returns the address of the
first cell of the memory block.

free(address) De-allocates and frees the given memory block.

Table 4.3: List of functions permitting heap management during runtime.

a free request over the address of a memory cell, such request de-allocates
the entire memory block that contains the memory cell.

All the different ways for allocating and de-allocating dynamic memory
sections have the common objective to avoid memory fragmentation. When
we free a memory block, it is likely marked as garbage. If an allocation
request happens and a garbaged memory block able to fit the required size
exists, it will be associated to such request.

For simplicity, in the examples of this chapter we will use the notation
Ri = fun(arg1, ..., argn) for calling heap functions. This instruction means
that we execute the call of fun with arguments arg1, ..., argn and, if the
target register Ri is specified, the return value will be stored into it.

As we will see in the next sections, allocating the heap into NVM may
cause a series of inconsistencies, due to the possibility of altering the heap
structure during runtime.
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4.4.2 Data Accesses

For understanding how the allocation of the heap into NVM may cause
problems to memory accesses, let us consider the execution of Example 4.5.
Table 4.4a shows the status of the heap after we execute the checkpoint of
line 4. Let us suppose that we continue the execution until we run the free
instruction of line 7, and then a power failure happens due to a low energy
buffer. Table 4.4b shows the current state of the heap. When there is enough
energy to restart the computation, we restore the checkpoint and then the
execution resumes from the instruction of line 5. Such instruction loads the
value present at the address that the register R0 contains, that is 0x0B00,
but during the previous execution, the free instruction marked such address
as garbage. We are not able to predict the outcome that the re-execution of
the LOAD instruction of line 5 may produce. In fact, it depends on how the
architecture manages accesses to garbaged memory blocks. Such access may
read the old value, may read an invalid value, or it can cause a crash of the
program due to the access to an invalid memory location. All but the first
hypothesis lead to a Data Access Inconsistency induced by the alteration of
the heap state that the free instruction of line 7 produced.

1 R0 = malloc(1)
2 R1 = malloc(1)
3 [ . . . ]
4 CHECKPOINT
5 LOAD R0 , R2

6 [ . . . ]
7 free(R0)
8 [ . . . ]
9 R3 = malloc(1)

10 [ . . . ]

Example 4.5: Memory Map
Inconsistency due to a load-free
sequence of function calls.

1 R0 = malloc(1)
2 R1 = malloc(1)
3 [ . . . ]
4 CHECKPOINT
5 STORE R0 , R2

6 [ . . . ]
7 free(R0)
8 [ . . . ]

Example 4.6: Memory Map
Inconsistency due to a store-free
sequence of function calls.

Address Status

0x0B00 Allocated (ref. R0)

0x0B01 Allocated (ref. R1)

0x0B02 Free

[...] Free

(a) After the checkpoint ot line 4.

Address Status

0x0B00 Garbage (freed)

0x0B01 Allocated (ref. R1)

0x0B02 Free

[...] Free

(b) After the free ot line 7.

Table 4.4: Status of the heap in Example 4.5
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A similar case happens in Example 4.6, in which instead of the LOAD
operation there is a STORE. In such case, the STORE instruction may
fail since it tries to access a garbaged memory location.

Furthermore, let us instead suppose that the power failure happens after
the execution of the malloc instruction of line 9. As we can see in Table 4.4b,
the memory block that R0 addresses is marked as garbage. During the
execution of such malloc, the memory block 0x0B00 will be assigned to this
request, since the heap is managed for avoiding data fragmentation. When
there is enough energy to restart the computation, we restore the checkpoint
of line 4, and then the execution resumes from the LOAD instruction of
line 5. Such instruction may read an inconsistent value, since it accesses the
memory block that was allocated by the future malloc instruction of line 9.

In the previous examples, we show that a free instruction may cause an
inconsistency when we re-execute a LOAD or STORE operation. Exam-
ple 4.7 shows a similar problem, that instead a realloc instruction causes.
Let us analyze what happens during the execution of such code. Table 4.4a
represents the status of the heap after we execute the checkpoint at line
4. Let us now suppose that we reach the realloc instruction of line 7, and
then a power failure happens due to a low energy buffer. Table 4.5 shows
the current state of the heap, in which we can see that the memory location
0xB00 is marked as garbage, and the realloc instruction moved the memory
block contained in such address to 0xB02. When there is enough energy to
restart the computation, we restore the checkpoint of line 4, and then the
execution resumes from the LOAD instruction of line 5. As for the previous
cases, such instruction is likely to fail, because the addressed memory block
was moved by the realloc operation. In fact, the target address of such
LOAD operation is 0x0B00, which is marked as garbage.

A similar case happens if instead of a LOAD operation there is a STORE,
as we can see in Example 4.8. The re-execution of the STORE instruction
may fail since it tries to access a garbaged memory location.

1 R0 = malloc(1)
2 R1 = malloc(1)
3 [ . . . ]
4 CHECKPOINT
5 LOAD R0 , R2

6 [ . . . ]
7 R0 = realloc(R0, 3)
8 [ . . . ]

Example 4.7: Memory Map
Inconsistency due to a load-
realloc sequence.

1 R0 = malloc(1)
2 R1 = malloc(1)
3 [ . . . ]
4 CHECKPOINT
5 STORE R0 , R2

6 [ . . . ]
7 R0 = realloc(R0, 3)
8 [ . . . ]

Example 4.8: Memory Map
Inconsistency due to a store-
realloc sequence.
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Address Status

0x0B00 Garbage (reallocated)

0x0B01 Allocated (ref. R1)

0x0B02 Allocated (old 0x0B00, ref. R0)

0x0B03 Allocated (old 0x0B00)

0x0B04 Allocated (old 0x0B00)

[...] Free

Table 4.5: State of the heap after the execution of the realloc instruction of
line 7 in Example 4.7

4.4.3 Memory Maps

In the previous section we show how memory map instructions may cause
unexpected behaviors to the memory accesses that LOAD and STORE
instruction perform. In this section we show that inconsistencies do not
happen only due to memory accesses over garbaged or remapped memory
addresses.

Example 4.9 shows an example of another inconsistency that two con-
secutive memory map instructions may cause. Let us focus on the execution
of such code. Table 4.6 shows the status of the heap after we execute the
free instruction of line 5, and Table 4.7 shows the status of the heap after
we execute of the realloc operation at line 7. As we can note, the free
instruction marks as garbage the memory location that R1 addresses. The
realloc operation expands the memory block that R0 addresses, which now
includes also the address that R1 contains. Let us suppose that now, after
we execute the realloc of line 7, a power failure happen due to a low energy
buffer. When there is enough energy to restart the execution, we restore
the checkpoint, and the program resumes from the free instruction of line
5. The re-execution of the free operation tries to de-allocate the memory
block containing the memory cell of address 0xB01. Such memory cell is
now part of the memory block that R0 addresses, since the realloc operation
of line 7 changed the heap state during the previous execution. As conse-
quence, the free operation marks as garbage the entire memory block that
R0 addresses. We not only loose the information we computed and stored
in such memory block, but we also may experience a crash. In fact, when
we execute the realloc instruction of line 7, it will likely fail since the target
memory location is marked as garbage.

A similar problem happens if a power failure causes the re-execution of
a realloc operation. Let us consider the execution of Example 4.10. We
run the code, until we reach the realloc instruction of line 5, that alters
the heap state into the one that Table 4.5 shows. As we can see, it moves
the memory block at the end of the heap, and thus it marks the address
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1 R0 = malloc(1)
2 R1 = malloc(1)
3 [ . . . ]
4 CHECKPOINT
5 free(R1)
6 [ . . . ]
7 R0 = realloc(R0, 3)
8 [ . . . ]

Example 4.9: Memory Map
Inconsistency due to a free-realloc
sequence.

Address Status

0x0B00 Allocated (ref. R0)

0x0B01 Garbage (freed)

0x0B02 Free

[...] Free

Table 4.6: Heap status after the
execution of free at line 5 of Ex-
ample 4.9

Address Status

0x0B00 Allocated (ref. R1)

0x0B01 Allocated (remap of 0x0B00, ref. R0)

0x0B02 Allocated (remap of 0x0B00)

0x0B03 Free

[...] Free

Table 4.7: Heap status after the execution of realloc at line 7 of Example 4.9

0x0B00 as garbage. Let us now suppose that a shutdown happens due to a
low energy buffer. When there is enough energy to restart the computation,
we restore the checkpoint and then the execution resumes from the realloc
instruction of line 5. The re-execution of such realloc fails and leads to an
inconsistency, since it tries to enlarge a garbaged memory location. This
happens because the previous execution of the realloc changed the heap
state. We must note that if a realloc does not alter the heap state, its
re-execution can not cause an inconsistency.

Let us instead suppose that we do not experience a power failure after
the execution of the realloc operation of line 5, and thus we are able to
execute the malloc instruction of line 7. Since the heap is managed for
avoiding fragmentation, the malloc request allocates a new memory block
inside address 0x0B00, that the previous realloc garbaged. Table 4.8 shows
the resulting heap state. Let us now suppose that a shutdown happens
due to a low energy buffer. When there is enough energy to restart the
computation, we restore the checkpoint and then the execution resumes
from the realloc instruction of line 5. Such realloc moves the memory block
present at the address 0x0B00, which is the one the malloc allocated during
the previous execution. As consequence, the realloc targets a wrong memory
block, and thus all the results produced by the previous instruction are lost.
Due to this problem, all the future instructions that need such data will
produce wrong results. Moreover, we also experience a memory leak, that
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1 R0 = malloc(1)
2 R1 = malloc(1)
3 [ . . . ]
4 CHECKPOINT
5 R0 = realloc(R0, 3)
6 [ . . . ]
7 R2 = malloc(1)
8 [ . . . ]

Example 4.10: Memory Map
Inconsistency due to a realloc-
malloc.

1 R0 = malloc(1)
2 R1 = malloc(1)
3 [ . . . ]
4 CHECKPOINT
5 R0 = realloc(R0, 3)
6 [ . . . ]
7 R1 = realloc(R1, 2)
8 [ . . . ]

Example 4.11: Memory Map
Inconsistency due to a realloc-
realloc.

Address Status

0x0B00 Allocated (ref. R2)

0x0B01 Allocated (ref. R1)

0x0B02 Allocated (old 0x0B00, ref. R0)

0x0B03 Allocated (old 0x0B00)

0x0B04 Allocated (old 0x0B00)

[...] Free

Table 4.8: Heap status after the execution of the malloc instruction at line
7 of Example 4.10.

eventually may cause the inability of allocating new memory blocks.
A similar problem happens also if we have two consecutive realloc in-

structions, as we show in Example 4.11. In such example, at line 7 there
is a realloc operation instead of a malloc. A power failure happening after
the execution of the realloc operation of line 7 causes the same problem we
described before. In such case, we not only lose the content of memory block
that R0 addresses, but also the one of R1.

Considering the different behaviors we describe in the above examples,
we can say that the re-execution of a realloc likely causes an inconsistency.
The effects of such unwanted behavior depends on the instructions that we
execute before a power failure.
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4.4.4 Inconsistencies for Heap in NVM

When we allocate the heap into NVM, all the changes to its state are pre-
served across power failures, even if they are not included in the state that a
checkpoint saves. As consequence, all the changes to the heap that happens
after a checkpoint makes the heap state no longer synchronized with the
state that such checkpoint saves. Resuming the execution after a power fail-
ure restores the checkpoint, and if the heap state is not synchronized with
the restored state, we experience an unexpected behavior that we identify
as Memory Map Inconsistency.

We define a Memory Map Inconsistency as an inconsistency which
happens whenever there is an ordered sequence of instructions I1, ..., In such
that:

1. I1 is an operation that changes the position or the status of the memory
block x

2. In is an operation that causes the association of a different memory
block where x was

3. x is a heap memory block inside NVM

4. no CHECKPOINT exists in the interval I1, ..., In

In other words, this inconsistency may happen whenever there are two mem-
ory map operations not separated by a checkpoint.

This type of inconsistency might be removed with the insertion of a
checkpoint after the first memory map operation, but the re-execution of
instructions that make changes to the heap may lead to an inconsistency
even in presence of such checkpoints. For example, the re-execution of a
realloc causes a Memory Map Inconsistency, provided that its first
execution changes the location of the target memory block.

Moreover, all the instructions that manipulate the heap state, such as
free and realloc, are not atomic. Shutdowns that happen in the middle
of the execution of such instructions leave the heap state partially changed,
and the computation will resume with an inconsistent state. From an incon-
sistency standpoint, the effects of such power failures are similar to the ones
that power resets happening after the execution of such instructions cause.
Using a transactional memory controller [24] ensures the atomicity of such
instructions, but it does not offer other guarantee about the consistency of
the heap state.

Another element we must consider is that the re-execution of a memory
allocation certainly leads to a memory leak due to multiple blocks allocated
but not used. This scenario may cause runtime failures for not having enough
memory.
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For these reasons, we should prefer not allocating the heap into NVM. If
we require non-volatility for data structures that are present in the heap, we
should prefer using an approach that allocates such data structures in the
stack or in the global variable sections. This leads us losing the possibility of
dynamically allocating memory elements, but it reduces unwanted behaviors
that dynamically managing the heap introduces.

Moreover, a Memory Map Inconsistency may also cause Data Access
Inconsistencies. In fact, we say that a Data Access Inconsistency can
happen as consequence of a Memory Map Inconsistency whenever there is
an ordered sequence of instructions I1, ..., In such that:

1. I1 is an operation that accesses the memory block x

2. In is an operation that changes the position or the status of the mem-
ory block x

3. x is an heap memory block inside NVM

4. no CHECKPOINT exists in the interval I1, ..., In

The dynamic management of the heap introduces new elements that may
cause a Data Access Inconsistency. The analysis we describe in Section 4.2
remains valid and already covers it. For this reason, we can fix it as we
did for Data Access Inconsistencies, that is with a checkpoint after the data
access operation I1.

4.5 Analyzing Memory Inconsistencies

In this section we describe how we can find the presence of the inconsis-
tencies we described in the previous sections, and how we can analyze the
effects that they may cause to the behavior of the program. Inconsistencies
happen whenever a power reset causes the re-execution of an instruction that
accesses the value produced by a future operation. Being able to identify
their presence and analyzing their effects permits us not only to understand
the effects they may cause, but also to avoid them.

4.5.1 Sequential-equivalence Algorithm

The presence of an inconsistency makes an intermittent execution producing
results that differs from the ones of an equivalent sequential execution of the
same code. In fact, a consistent intermittent computation should produce
the same results that an equivalent sequential execution produces.

We can exploit such notion for verifying if our program presents an
inconsistency, and for analyzing the effects that it causes. Let us consider the
execution of Example 4.1, which we know has a Data Access Inconsistency.
When we execute the checkpoint of line 2, we also save a snapshot of the
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state, that includes the value 7 for the variable a. We continue the execution,
and we reach the STORE instruction of line 5, which alters the value of
variable a to 3. Let us now suppose that we do not have enough energy to
continue, and thus a shutdown happens. When there is enough energy to
restart the computation, we restore the checkpoint. If we now compare the
runtime state with the snapshot we saved, we can see that variable a has
now a value of 3, but in the snapshot it has a value of 7. As consequence, we
found an inconsistency. If we continue the execution, we are able to verify
what effects it causes in the program behavior.

The described example shows the behavior of Algorithm 1. It specifies
how to analyze the presence of inconsistencies with a static checkpoint
mechanism, in which checkpoints are statically placed inside the code.
The algorithm shows us how to analyze the execution of the instructions
that are placed after a checkpoint.

We run the program and when we reach a checkpoint, we execute the
operations that Algorithm 1 specifies. As first operation, we save a snapshot
of the entire runtime state. Such snapshot provide us a consistent memory
state, since we save it alongside with the checkpoint. We can use such
snapshot for identifying the presence of inconsistencies. Then, we execute
the code and for obtaining a complete coverage of all the possible execution
scenarios, we simulate a power failure after the execution of every line of
code, until we reach the next checkpoint. Whenever we restore a checkpoint,
we compare the obtained runtime state with the one saved in the snapshot,
and if there is a discrepancy, we find an inconsistency.

In this way, we are able to analyze if an inconsistency may happen with
respect to the current checkpoint positions. As consequence, we require
verifying n different intermittent executions, with n equal to the number of
instructions between the two checkpoints. In fact, testing a power outage in
a specific point requires us to run all the previous instructions sequentially,
and then to generate a shutdown.

We repeat this process until we cover all the checkpoints. If we do not
find any inconsistency, then our program is consistent with respect to the
checkpoint placement it has.

If we want to analyze a dynamic checkpoint mechanism, we no
longer have the checkpoints placed statically inside the code, since they are
saved during runtime when the energy buffer is low enough. With a dynamic
checkpoint mechanism, whenever we save a checkpoint, the execution can
either pause or continue until there is no energy remaining. As we stated in
Section 2.3, if the execution does not continue after we take a checkpoint, no
inconsistency can happen. In fact, since we do not execute any operation,
the state can not be modified by future operations, and thus it will always be
synchronized with respect to the data that the checkpoint saves. Instead,
if the execution continues after we take a checkpoint, we must verify the
instructions we run, so to analyze the presence of inconsistencies.
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Algorithm 1 Static sequential-equivalence algorithm to be applied after we
take a checkpoint.

1: Save a complete snapshot of the environment memories.
2:

3: // Simulate intermittent execution until next checkpoint is reached
4: while current instruction 6= CHECKPOINT do
5: run current instruction
6: target instruction← next instruction
7: reset machine state
8: restore saved checkpoint
9:

10: if current state 6= snapshot then
11: return inconsistency found
12: else
13: // return to the operation done before state reset
14: while current instruction 6= target instruction do
15: run current instruction

Since checkpoints can happen in arbitrary positions inside the code, we
can not apply the same testing algorithm we used for a static checkpoint
mechanism Whenever we take a checkpoint, the number of operation we
can perform after it is limited by the remaining portion of the energy buffer,
and by the possibility of the energy source to maintain such level. If we
perform a checkpoint, and then the energy source maintains the level of
the energy buffer constant, we will not perform another checkpoint, but the
number of executed instructions increments.

To cover all the possible scenarios, we should consider a checkpoint hap-
pening at every line of code, since they can happen at any moment during
the execution. For each possible checkpoint, we should run a test similar
to the one we perform for a static checkpoint mechanism. As consequence,
we should generate a shutdown at every line after the one we considered for
the checkpoint. Such test case has a significant complexity, that is O(n3),
with n equal to the total number of lines in the code. Moreover, in real-case
scenarios, it is unlikely that we execute a considerable amount of instruc-
tions without triggering a new checkpoint. In fact, a checkpoint is triggered
whenever the level of the energy buffer goes below a certain threshold. If
we execute a substantial number of instructions after the checkpoint, the
energy source must have refilled our energy buffer, and thus a subsequent
checkpoint will happen. Instead, if the energy source does not refill our
buffer, the number of instructions we can execute is limited by the energy
present in our buffer.

For these reasons, we model an Execution Depth parameter, that
specifies the number of operations we can execute after a checkpoint, before
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Algorithm 2 Dynamic sequential-equivalence algorithm to be applied after
we take a checkpoint.

1: Save a complete snapshot of the environment memories.
2: executed instructions← 0
3:

4: // Simulate intermittent execution for execution depth instructions
5: while executed instructions < execution depth do
6: run current instruction
7: target instruction← next instruction
8: executed instructions← executed instructions+ 1
9: reset machine state

10: restore saved checkpoint
11:

12: if current state 6= snapshot then
13: return inconsistency found
14: else
15: // return to the operation done before state reset
16: while current instruction 6= target instruction do
17: run current instruction

experiencing a power failure. It depends on the energy source, the energy
buffer capacity, and on the architecture we use, since those are the factors
which affect energy usage and availability. If the dynamic checkpoint mech-
anism pauses the execution after it takes a checkpoint, the Execution Depth
is equal to 0.

Once we provide such parameter, we can use it for analyzing the presence
of inconsistencies in a dynamic scenario. As for the static case, we must
generate n different shutdowns, but in this case n is equal to the Execution
Depth parameter.

Algorithm 2 shows how we can analyze the presence of inconsistencies
after we take a checkpoint in a dynamic execution scenario. For having a
complete coverage of all the possible execution scenarios, we must consider a
checkpoint to happen at every line of code, and we must consider shutdowns
to happen at every line of code within the specified execution depth.

For using such algorithm, we start running our program. After the first
instruction, we generate a checkpoint, and we apply Algorithm 2. When it
finishes, we restore the snapshot that the algorithm saved, so to obtain a
consistent memory state. Then, we repeat the entire analysis all over again
for the next instruction, until we reach the end of the program. If we do
not find any inconsistency, then our program is consistent with respect to a
dynamic checkpoint mechanism and the considered execution depth.

Static and Dynamic Equivalence. We can note that we can test a static
checkpoint mechanism as a particular case of a dynamic one, in which check-
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1 STORE a , 7
2 CHECKPOINT
3 STORE a , 5
4 LOAD a , R0

5 STORE a , 3
6 [ . . . ]

Example 4.12: Data access in NVM wrongly detected as an inconsistency.

points are placed in fixed positions and the execution depth is fixed inside
the code, and corresponds to the distance between checkpoints. This prop-
erty permits us testing all the possible static checkpoint placements without
having to select a specific checkpoint mechanism. For obtaining so, we can
consider a generic dynamic checkpoint mechanism which continues the ex-
ecution, and we set the execution depth equal to the estimated maximum
distance between two checkpoints. The analysis will analyze a checkpoint at
any position inside the code, and it will also test all the possible reset points
within the execution depth range, that is equal to the distance from the next
checkpoint if a static checkpoint mechanism would be used instead. The re-
sult of such analysis comprehend all the possible inconsistencies present in
the program, since it analyzes each possible checkpoint placement.

The Sequential-Equivalence Algorithm has a very high running time, es-
pecially in dynamic cases. It is not able to identify false-positive inconsis-
tencies, that are inconsistencies for which the content of the memory cell is
not changed. The value that instructions write in a memory cell may de-
pend on the input data, and recognizing false-positive inconsistencies may
permit us knowing where critical parts of the program are, without the need
of running multiple tests with different input data.

Moreover, this algorithm has some problems in recognizing if we must
classify a state inconsistent. Let us consider Example 4.12, with a rep-
resenting the memory location of a variable in NVM. We run the Static
Sequential-Equivalence Algorithm on the checkpoint of line 2. When we
generate a shutdown after the operation of line 3, we detect an inconsistent
state. In fact, the runtime value of a is 5, and it is different from the one
present in the snapshot, that is 7. The only instruction that can access a is
the LOAD operation of line 4, but it always reads the value that the STORE
instruction ot line 3 produces, independently of where a power failure hap-
pens. This means that the LOAD instruction can not read an inconsistent
value, since the instruction of line 3 always overwrites the variable a with
a consistent value, and thus the inconsistency that the algorithm detects is
not a real one.

For these reasons, we must modify this algorithm as we describe in the
following sections, so to account for this problem and for optimizing its
performance.
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4.5.2 Data Access and Activation Record

As we stated in Section 4.2, a Data Access Inconsistency can happen only
between a pair of LOAD and STORE operations that access the same mem-
ory location inside the NVM. This means that:

• During testing, the generation of a shutdown after an instruction that
is not part of such pair is useless, since it will certainly lead to a
consistent state.

• In a dynamic scenario, generating a checkpoint after a LOAD opera-
tion can not lead to an inconsistency, since the eventually inconsistent
value will not be re-loaded from the NVM. Thus, to optimize the num-
ber of tested checkpoints, we should generate them only before LOAD
instructions that reads data from NVM.

For applying such optimizations, and thus generating checkpoints and
shutdowns only on relevant positions, we require two elements:

1. A Logical Clock which we increase after the execution of every in-
struction, and thus makes possible to establish an ordering of events.
Every time we perform a checkpoint, we also save with it the current
value of the logical clock, so to restore it alongside the checkpoint.
This makes us able to verify if a future operation produces a value
that a memory location contains.

2. A Lookup Table, which is a data structure containing pairs of tuples
(address, write clock). It keeps track of the addresses we access in
NVM, and the time at which we alter their content, in terms of the
logical clock.

Address Write Clock Info

a 3 STORE of line 3

Table 4.9: Lookup Table of Example 4.12, after the execution of the instruc-
tion at line 3.

Address Write Clock Info

a 5 STORE of line 5

Table 4.10: Lookup Table of Example 4.12, after the execution of the in-
struction at line 5.
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Algorithm 3 Optimization of the dynamic sequential-equivalence algo-
rithm to be applied after we take a checkpoint.

1: Save a complete snapshot of the environment memories.
2: Save current clock
3: executed instructions← 0
4: lookup table← {}
5:

6: // Simulate intermittent execution for execution depth instructions
7: while executed instructions < execution depth do
8: // Verify for inconsistency
9: if current instruction is a MEMORY LOAD then

10: if address ∈ lookup table then
11: if write clock > current clock then
12: if memory value 6= snapshoted value then
13: return inconsistency found

14: else
15: // Initialize lookup table’s record for loaded address
16: lookup table← (address, 0)

17:

18: run current instruction
19: increment current clock
20:

21: // Verify if a shutdown is needed
22: if executed instruction is a MEMORY STORE then
23: if address ∈ lookup table then
24: // Update lookup table’s record for target address
25: lookup table[address]← current clock
26:

27: // Generate a shutdown if this store has not been tested, yet
28: if executed instruction not tested then
29: reset machine state
30: restore saved checkpoint
31: restore saved clock
32: continue
33:

34: executed instructions← executed instructions+ 1

Let us consider Example 4.12, and let us analyze it using the Sequential-
Equivalence Algorithm with the optimization we described. The initial state
of the lookup table is empty, and the initial value of the logical clock is
0. We execute the first instruction, and we increase the logical clock to
1. Such instruction alters the content of variable a, we insert a pair (a, 1)
into the lookup table. As next operation, we execute the checkpoint, and
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thus we save a snapshot of the runtime state. Then, we increase the logical
clock to 2, and we save it with the state that the checkpoint saved. Now
we execute the STORE instruction of line 3, which alters the content of
variable a. We increment the logical clock to 3, and then we update the
record in lookup table associated to variable a, as Table 4.9 shows. We
continue the execution, and we reach the instruction at line 5, which also
alters the content of variable a. We increment the logical clock to 5, and
then we update the lookup table, as Table 4.10 shows. Then, we generate
a shutdown, since the current operation alters the value that the LOAD
instruction of line 4 reads. We restore the checkpoint, alongside the logical
clock, which now has a value of 2. We resume the execution from the STORE
instruction of line 3, and we execute it. Now, we update the logical clock to
3, and we also update the content of the lookup table, since such instruction
alters the content of variable a. Table 4.9 shows the new state of the lookup
table. Now, we should run the LOAD instruction of line 4. Since it accesses
a memory location that has a record associated into the lookup table, we
verify if a future operation has produced the value that we are going to read.
As we can see in Table 4.9, the write clock of variable a is 3 and the current
clock is 4. This means that no future instruction has modified the value
of a, and thus it no inconsistency can happen. The non-optimized version
of the Sequential-Equivalence Algorithm would consider such access to be
inconsistent.

Algorithm 3 shows the optimized version of the Sequential-Equivalence
Algorithm for the dynamic case. We can easily adapt it to account for a
static scenario, by replacing the cycle condition. In this version of the algo-
rithm, we significantly decreased both the number of shutdowns we require
for an exhaustive analysis and the number of checkpoint we require in the
dynamic scenario. Moreover, we no longer have the problem of consistent
states recognized as inconsistent.

The main aspects of Algorithm 3 are:

• To know which STORE instruction requires a shutdown, each time a
LOAD operation happens in NVM, it tracks the address in the lookup
table. When it executes a STORE instruction for which the target ad-
dress is present in the lookup table, the algorithm updates write clock
of the target address in the lookup table with the current clock. Then,
it generates a shutdown.

• To know if the re-execution of a LOAD operation may generate a
data access inconsistency, each time an instruction accesses a mem-
ory location, the algorithm verifies the record of the lookup table that
corresponds to the memory location. If the write clock is higher than
the current clock, the LOAD instruction may access an inconsistent
value, since a future operation produced it. In such case, the algo-
rithm compares the current value of the memory location with the
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one present in the snapshot. If they differ, it returns a data access
inconsistency, otherwise we encountered a false-positive.

Moreover, as we stated in Section 4.3, we can consider an Activation
Record Inconsistency as a specific case of a data access inconsistency, in
which a future function call overwrites the elements in NVM that compose
the activation record of the current function. For this reason, Algorithm 3
is also able to recognize activation record inconsistencies, and the only thing
we must consider is the different type of instructions which can access the
NVM.

For demonstrating this statement, let us analyze Example 4.13 in a dy-
namic execution scenario. The first instruction which reads from the NVM
is the POP of line 12, and thus we generate a checkpoint and a snapshot

1 c a l l F1

2 # Function Prologue
3 PUSH PC
4 PUSH BP
5 MOV SP , BP
6
7 # Function Code
8 [ . . . ]
9

10 # Function Epilogue
11 MOV BP, SP
12 POP BP
13 POP PC
14 RET
15 [ . . . ]

16 c a l l F1

17 # Function Prologue
18 PUSH PC
19 PUSH BP
20 MOV SP , BP
21
22 # Function Code
23 [ . . . ]
24
25 # Function Epilogue
26 MOV BP, SP
27 POP BP
28 POP PC
29 RET
30 [ . . . ]

Example 4.13: Code of two subsequent function calls.

Address Write Clock Info

0xF010 0 POP BP of line 12

0xF011 0 POP PC of line 13

Table 4.11: Lookup Table of Example 4.13, after the execution of line 13.

Address Write Clock Info

0xF010 0 POP BP of line 12

0xF011 10 PUSH PC of line 18

Table 4.12: Lookup Table of Example 4.13, after the execution of line 18.
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before executing it. Since we do not generate any checkpoint before this
one, the lookup table is still empty. From now on, the execution starts as
Algorithm 3 specifies, and we increase the logical clock at the execution of
each instruction. Once we execute the POP instruction of line 12, we up-
date the logical clock to 6. Since such instruction reads from the NVM, we
insert into the lookup table a record containing the target address of the
read, and we set the associated write clock to 0. We require such operation
for keeping track of which memory addresses we accessed, so that we are
then able to know after which memory write instructions we must generate a
shutdown. We perform a similar action for the instruction of line 13, and the
lookup table assumes the content that Table 4.11 shows. We continue the
execution, until we reach the instruction at line 18. Such operation writes
the NVM, and thus we update in lookup table the write clock of the target
address with the current value logical clock, that is 10. Table 4.12 shows the
state of the lookup table after such operation. Moreover, the lookup table
already contains a record for the target address that the current operation
writes. This means that a previous instruction may read the content of the
memory cell we write, and thus we generate a shutdown. As next operation,
we restore the checkpoint, and we bring back the logical clock to 5. Now we
resume the execution from the POP instruction of line 12, which accesses
the NVM. We access the lookup table, and we do not find any inconsistency.
We perform the same operation for the POP instruction of line 13, which
instead reads an inconsistent value. In fact, if we look the lookup table, we
notice that the memory cell it reads was written at clock 10, but the current
clock is 6. For this reason, we compare the current value of the memory cell
with the one present in the snapshot, and they differ. This discrepancy tells
us that the POP instruction of line 13 reads a wrong return address, that
is the one that the future PUSH instruction of line 18 wrote.

As we demonstrated, Algorithm 3 has already the tools for identifying
activation record inconsistencies. Depending on the Instruction Set Archi-
tecture, it may be possible that other instructions apart from LOAD and
STORE are able to interact with the NVM, as happen for the POP and
PUSH instructions in our previous example. As consequence, for recognizing
activation record inconsistencies, it must apply to all the memory reading
instructions all the actions that it performs for the LOAD instruction. The
same applies to the actions for the STORE instruction, that it must apply
to all the memory writing instructions.
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4.5.3 Memory Map Inconsistencies

As we stated in Section 4.4, a Memory Map Inconsistency can happen only
in two cases:

1. If two subsequent memory map instructions modify the same memory
block.

2. If a memory map instruction modifies a memory block that a previous
instruction accesses.

In such scenario, the instruction potentially causing an inconsistency is al-
ways the one which alters the heap state. For this reason, we can alter
Algorithm 3 so to account also for Memory Map Inconsistencies:

• We must generate a shutdown after each memory map instruction, so
to analyze the effects that it has on the program re-execution.

• We must use another lookup table called Memory Map Table, so
to track the changes in the heap configuration. It associates to each
address the clock in which its mapping has changed, and the old ad-
dress from which the content of the memory is moved. We must verify
the memory map table before executing any memory access.

• In a dynamic checkpoint scenario, we must generate a checkpoint be-
fore any memory access (i.e., LOAD and STORE ), and before each
instruction that changes the heap configuration. In this way, we cover
the checkpoint positions that may present a memory map inconsis-
tency.

Let us now analyze Example 4.14 using Algorithm 3 with the set of
the new optimizations, and let us focus only on the memory map table.
We start the execution, and we run the malloc operation of line 1. We
increase the logical clock to 1, and we insert a record inside the memory
map table, since the instruction changed the heap configuration. We continue
the execution, and we perform the same actions for the malloc instruction
of line 2. Table 4.14 shows the content of the memory map table after such
operations. Now we execute the checkpoint of line 3, and thus we also save

1 R0 = malloc(1)
2 R1 = malloc(1)
3 CHECKPOINT
4 STORE R0 , 7
5 R0 = realloc(R0, 2)
6 [ . . . ]

Example 4.14: Example of a Memory Map Inconsistency.
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Address Status

0x0A00 Allocated (ref. R0)

0x0A01 Allocated (ref. R1)

0x0A02 Free

[...] Free

(a) Before the execution of the realloc
instruction of line 5.

Address Status

0x0A00 Garbage (reallocated)

0x0A01 Allocated (ref. R1)

0x0A02 Allocated (ref. R0)

0x0A03 Allocated (ref. R0)

0x0A04 Free

[...] Free

(b) After the execution of the realloc
instruction of line 5.

Table 4.13: Status of the heap in Example 4.14.

Address Map Clock Old Address Info

0x0A00 1 0x0A00 malloc of line 1

0x0A01 2 0x0A01 malloc of line 2

Table 4.14: Memory Map Table of Example 4.14, before the execution of
the realloc instruction at line 5.

Address Map Clock Old Address Info

0x0A00 5 Null realloc of line 5

0x0A01 2 0x0A01 malloc of line 2

0x0A02 5 0x0A02 realloc of line 5

Table 4.15: Memory Map Table of Example 4.14, after the execution of the
realloc instruction at line 5.

a snapshot of the runtime state. As next operation, we execute the STORE
instruction of line 4, and we increase the logical clock to 4. Table 4.13a shows
the current state of the heap. Now we execute the realloc instruction of line
5, that relocates the memory block that R0 addresses to another location,
since there is not enough space to extend it in place. Table 4.13b shows the
new state of the heap. As next operation, we increase the logical clock to 5,
and since the operation changed the heap state, we also update the memory
map table accordingly. Table 4.15 shows the new content of the memory map
table. We just executed an instruction that changed the configuration of the
heap, and thus we generate a shutdown. Now we restore the checkpoint,
we revert the logical clock back to 3, and we resume the execution from
the STORE instruction of line 4. We increase the logical clock to 4, and
since we are going to execute a memory access, we verify the memory map
table. Our instruction accesses the memory cell referred by R0, that has
address 0x0A00. The corresponding record in the memory map table has a
map clock of 5, but the current clock is 4. For this reason, we verify the
old address of the memory cell. Since it differs from the current one, we
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can state that the content of such cell was moved or marked as garbage by
a future operation, and thus this memory access represents a memory map
inconsistency.

Algorithm 4 shows the version of Algorithm 3 modified with the set of
the optimization that we described.

The main aspects of such changes are:

• Each time it executes a memory map function, it updates the memory
map table accordingly:

– When it executes amalloc or calloc, it inserts a new triple (address,
current clock, current address).

– When it executes a free, it updates the map clock of the involved
memory cells, and removes their old address.

– We can se a realloc as the combination of a free and a malloc.
For this reason, when it executes a realloc, it performs both the
two above actions. It updates the record associated to the source
memory cells with the new clock, and removes the associated
address. Then, it inserts a new triple (address, current clock,
old address) for each new allocated memory cell.

• For verifying if an alteration to the heap state leads to an inconsis-
tency, it verifies the memory map table before executing any LOAD
or STORE operation that targets the heap. If the map clock of the
cell is higher than the current clock, then a future operation changed
the state of the memory cell. For verifying the presence of an inconsis-
tency, it compares the current address of the cell with the old address
contained in the memory map table. If they differ, the cell was moved
by a future operation, and thus it finds a memory map inconsistency.

• Every time it executes an operation that changes the configuration of
the heap, it generates a shutdown, so to verify if the re-execution of
the program may produce a memory map inconsistency.

• In a dynamic checkpoint scenario, it analyzes a checkpoint before
each STORE operation that addresses the heap, so to verify if its
re-execution causes an unwanted behavior due to a future alteration
of the heap configuration.

It also analyzes a checkpoint before each operation that alters the heap
configuration, such as realloc and free. Their re-execution may lead
to an inconsistency, especially if there exists a subsequent operation
that alters the heap configuration.

Note that it does not analyze a checkpoint before malloc or calloc
operations, since their re-execution do not generate any inconsistency.
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Algorithm 4 Final optimization of the dynamic sequential-equivalence
algorithm to be applied after a checkpoint is taken.

1: Save a complete snapshot of the environment memories.
2: Save current clock
3: executed instructions← 0
4: lookup table← {}
5: memory map table← {}
6: do reset← False
7:

8: // Simulate intermittent execution for execution depth instructions
9: while executed instructions < execution depth do

10: // Verify for data access and memory map inconsistencies
11: if current instruction is a MEMORY LOAD then
12: if address ∈ lookup table or address ∈ memory map table then
13: if write clock > current clock or map clock > current clock

then
14: if memory value 6= snapshotted value then
15: return inconsistency found

16: else
17: // Initialize lookup table’s record for loaded address
18: lookup table← (address, 0)

19: // Verify if a memory map inconsistency is present
20: if executed instruction is a MEMORY STORE then
21: if address ∈ memory map table then
22: if map clock > current clock then
23: if current address 6= old address then
24: return inconsistency found

25:

26: run current instruction
27: increment current clock
28:

29: // Verify if a shutdown is required
30: if executed instruction is a MEMORY STORE then
31: if address ∈ lookup table then
32: // Update lookup table’s record for target address
33: lookup table[address]← current clock
34: do reset← True
35:
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36: // Account for memory map inconsistencies
37: if executed instruction is a MEMORY MAPPING then
38: // Update memory map table
39: if executed instruction = free() or executed instruction =

realloc() then
40: memory map table[address]← (current clock,Null)

41:

42: if executed instruction = malloc() or executed instruction =
calloc() or executed instruction = realloc() then

43: memory map table[address]← (current clock, old address)

44:

45: do reset← True
46:

47: // Generate a required reset only if it has not been tested, yet
48: if do reset = True and executed instruction not tested then
49: reset machine state
50: restore saved checkpoint
51: restore saved clock
52: do reset← False
53: set executed instruction as tested
54: continue
55:

56: executed instructions← executed instructions+ 1

4.6 Finding Inconsistencies

The analysis technique of Algorithm 4 permits us to identify where inconsis-
tencies may happen in the code. It also permits us to analyze the effects that
an inconsistent state has on the behavior that the execution of subsequent
instructions produces.

Depending on our requirements, we may be only interested in identifying
where inconsistencies happen, without analyzing the effects that they may
cause. We generate power resets for reproducing an inconsistent memory
state, and for analyzing the consequent behavior of the program that re-
executed instructions cause. Since we are not interested in verifying the
consequence of inconsistencies, we can limit our analysis in verifying only
the instructions executed, and we can omit the generation of power resets
and the re-execution of instructions.

Let us consider Example 4.16, that is the machine-code version of Exam-
ple 4.15. From the knowledge we provide in this chapter, we are able to see
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that it contains two data access inconsistencies. If a power reset happens
after the execution of line 10, the instructions at line 3 and 8 will read an
incorrect value when the device resumes the execution.

For verifying only the presence of inconsistencies, we execute the program
sequentially until we reach its end, and we keep track of all the instructions
executed. We need the target address of each instruction, and the value that
it reads or writes into the memory, and such information is available only
during runtime.

Let us suppose that the variable a has an initial value of 1 and it is
allocated at the memory address 0xFF10. The LOAD instruction of line 2
accesses the NVM, and thus we keep track of its target address and the value
that it reads from the memory, that are respectively 0xFF10 and 1. We
perform the same action when we execute the instruction at line 8. Finally,
we execute the instruction at line 10, that is a STORE targeting the NVM.
For this reason, we track its target address and the value it writes in the
memory, that respectively are 0xFF10 and 2. Table 4.16 shows the resulting
execution trace and the information that we tracked for each instruction.

Now we can analyze the execution trace for finding the pairs of instruc-
tions that leads to inconsistencies. The LOAD instruction at line 2 accesses
the NVM and has tracked data associated to it. Considering such instruc-
tion, we search for a STORE instruction that writes the same memory
address 0xFF10. We find that the STORE instruction at line 10 writes the
value 2 at the same memory address of the LOAD. Now we need to compare
the value that the STORE writes with the one that the LOAD reads. In
this case, the LOAD instruction reads 1 and STORE writes 2. Since those
values differ, we find an inconsistency. In fact, if a power reset happens
after the execution of the STORE, the LOAD instruction would read the

1 // a in NVM
2 checkpo int ( ) ;
3 b = a + 3 ;
4 i f (b > 4) {
5 . . .
6 }
7 a++;

Example 4.15: Example of a
data access inconsistency that
the instruction at line 7 may
cause.

1 CHECKPOINT
2 LOAD a , R0

3 ADD R1 , R0 , 3
4 STORE b , R1

5 BRANCH(R1 <= 4) , ENDIF
6 . . .
7 ENDIF:
8 LOAD a , R0

9 ADD R1 , R0 , 1
10 STORE a , R1

Example 4.16: Equivalent machine
code of Example 4.15.
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# Instruction Executed Tracked Data

1 CHECKPOINT -

2 LOAD (0xFF10, 1)

3 ADD -

4 STORE -

5 BRANCH -

6 ... -

7 ENDIF: -

8 LOAD (0xFF10, 1)

9 ADD -

10 STORE (0xFF10, 2)

Table 4.16: Execution trace of Example 4.15, that permits us to identify if
and where inconsistencies may happen.

value that such STORE produced, leading to an inconsistent memory state.
Now we completed the analysis for the LOAD instruction of line 2, and we
continue searching for an operation that reads the NVM. We find the LOAD
instruction of line 8, which accesses the memory at the address 0xFF10. As
we did for the previous LOAD, we search for a STORE that writes into the
same memory location. We find the STORE instruction of line 10, which
writes 2 into the memory cell. Since this value differs from the one that the
LOAD reads, we find another inconsistency.

We can see the analysis we described as a lighter version of Algorithm 4,
in which we do not require any power reset. The data we tracked for the
previous example is exactly the one that the lookup table of Algorithm 4
tracks. Moreover, the execution trace has an implicit ordering of events,
and thus we do not require a logical clock.

Considering the definitions of inconsistencies that we provide in this
chapter, we can say that an inconsistency may happen in a sequence of
instructions I1, ..., In if In modifies the non-volatile state that I1 accesses,
and no checkpoint exists in such sequence. In fact, a power reset happening
after In makes I1 read an inconsistent value with respect to the restored
state. We define I1 as the consumer of the inconsistent value, and In as
its producer. Table 4.17 summarizes for each inconsistency the instructions
that consumes and produce the inconsistent value. Considering the analysis
technique that we described in the previous sections, we verified a checkpoint
placement before each consumer, and we evaluated the effects of shutdowns
happening after each producer.

Algorithm 5 formalizes the work flow we previously described for finding
the presence of inconsistencies in Example 4.16. It shows the algorithm we
can use for finding the presence of inconsistencies, without analyzing the
effects that they may cause over the behavior of the program.
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Data Access Activation Record Memory Map
Inconsistency Inconsistency Inconsistency

Consumer load pop, ret load, store, realloc, free

Producer store push, call malloc, realloc, free

Table 4.17: Subset of checkpoint and reset locations.

Firstly, we execute the program sequentially, and for each instruction
accessing the NVM we save the associated lookup information:
• load and pop: we save the target address and the value that it reads

from NVM.
• store and push: we save the target address and the value that it

writes on NVM.
• call: we decompose the call instruction into the different push that

it performs. We save the lookup information for each one of them.
• ret: we decompose the ret instruction into the different pop that it

performs. We save the lookup information for each one of them.
• malloc or calloc: we save the addresses of all the memory cells con-

tained in the memory block it allocates.
• free: we save the addresses of all the memory cells contained in the

memory block it garbages/deallocates.
• realloc: we save the addresses of all the memory cells that this in-

struction alters, and their content.
Then, we start analyzing the execution trace we produced. Whenever

we find an instruction that we identify as a consumer, we append it to
the consumer queue. Whenever we find an instruction that we identify as
a producer, we compare its lookup information with the ones of the con-
sumers present in the consumer queue. For each consumer c that is in the
executiondepth range with the producer p, we verify whether p alters the
address that c accesses. In such case, we find an inconsistency that p causes
to the access that c performs. As next operation, we remove from the con-
sumer queue all the consumers that are no longer within the executiondepth
range.

We must note that this analysis works also on instructions that we both
classify as consumer and producer. For example, it is able to verify if the
re-execution of a realloc may cause a Memory Map Inconsistency.

Moreover, Algorithm 5 performs the analysis using a dynamic config-
uration, and we can easily adapt it to work in a static configuration of
checkpoints. We only need to alter how we remove consumers from the con-
sumer queue: instead of verifying if consumers are within the executiondepth
range for removing them from the queue, we have to entirely flush the con-
sumer queue when we reach a checkpoint instruction. Algorithm 6 shows
the resulting algorithm that we can use for finding inconsistencies in a static
configuration.
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Finally, this analysis techniques does not verify the effects that inconsis-
tencies have over the behavior of the program. For this reason, it analyzes a
significant lower amount of instructions with respect to Algorithm 4, reduc-
ing the instructions it executes to O(n). This results in a lower execution
time, but with this algorithm we are not able to identify the effects that
inconsistencies have over the program. Depending on our requirements, we
can select the algorithm that best suits our needs.

Algorithm 5 Searching inconsistencies in a dynamic configuration

Require: ED: execution depth
Require: trace: the execution trace of the program, containing lookup data

of instruction
1: // Queue of consumers to be analyzed
2: consumers queue← [ ]
3: expired← 0
4: i← 0
5: inconsistencies← [ ]
6:

7: while i < len(trace) do
8: // if the instruction is a consumer, add it to consumer queue
9: if trace[i] instruction ∈ CONSUMERS then

10: append i to consumers queue

11:

12: // if the instruction is a producer, compare it with consumer queue
13: if trace[i] instruction ∈ PRODUCERS then
14: for each c ∈ consumers queue do
15: // if distance higher than ED, mark consumer for removing
16: // else analyze consumer and producer lookup data
17: if c− ED > i then
18: expired← expired+ 1
19: else
20: // we compare the lookup data of trace[i] and trace[c]
21: if trace[c] alters trace[i] target cells then
22: append (i, c) to inconsistencies

23:

24: // remove expired consumers
25: while expired > 0 do
26: pop from consumers queue
27: expired← expired− 1

28:

29: i← i+ 1

30:

31: return inconsistencies
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Algorithm 6 Searching inconsistencies in a static configuration

Require: trace: the execution trace of the program, containing lookup data
of instruction

1: // Queue of consumers to be analyzed
2: consumers queue← [ ]
3: i← 0
4: inconsistencies← [ ]
5:

6: while i < len(trace) do
7: // if the instruction is a consumer, add it to consumer queue
8: if trace[i] instruction ∈ CONSUMERS then
9: append i to consumers queue

10:

11: // if the instruction is a producer, compare it with consumer queue
12: if trace[i] instruction ∈ PRODUCERS then
13: for each c ∈ consumers queue do
14: // if distance higher than ED, mark consumer for removing
15: // else analyze consumer and producer lookup data
16: if trace[i] instruction = CHECKPOINT then
17: // reset consumer queue
18: consumers queue← [ ]
19: else
20: // we compare the lookup data of trace[i] and trace[c]
21: if trace[c] alters trace[i] target cells then
22: append (i, c) to inconsistencies

23:

24: i← i+ 1

25:

26: return inconsistencies
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Chapter 5

Environment Interactions
and Inconsistencies

5.1 Overview

Transiently Powered Computing is usually applied to devices used as sensors,
which can interact with the environment by both sending and receiving data
from it. The possibility of interacting with the environment does not cause
any new type of inconsistency, but the way in which the checkpoints happen
inside the code may lead to unexpected results from the environment sensing
standpoint.

Furthermore, the analysis that we describe in Chapter 4 treats inconsis-
tencies only as an unwanted behavior, but we can exploit them for making
the program aware of intermittence. This new kind of input opens to new
possibilities, such as tracking the number of shutdowns.

In this chapter we analyze both these two cases, and we introduce envi-
ronment interactions in the inconsistency model described so far. For doing
so, we use in the examples of this chapter the assembly language that we
described in Section 4.1, with the addition of the instructions that Table 5.1
shows.

We must note that in a dynamic execution scenario it is not possible
to analyze the properties that we describe in this chapter, since they are
strictly dependent on the positioning of checkpoints.

Instruction Description

Rx = input(Ii) Reads the value present on the input port Ii, and then
stores it into the register Rx.

output(Oi, Rx) Sets the value of the output port Oi to the one that the
register Rx contains.

Table 5.1: List of functions permitting environment interactions.

91
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5.2 Environment Inputs

5.2.1 Input Accesses

The intermittence characterizing TPCs not only may introduce memory in-
consistencies, but it may also alter the behavior of the program with respect
to the data sensed from the environment.

Let us consider Example 5.1, in which a power reset makes the computa-
tion resume after the checkpoint at line 1. As consequence, the instruction
at line 2 will always be executed before all the usages of the sensed value
that R0 contains. This example describes a Most Recent input access
model: whenever the execution restarts from a checkpoint, the value of the
input is sensed again from the environment, with the effect of using the most
possible recent one.

Instead, Example 5.2 shows a different behavior: when a power reset
happens, the computation resumes after the checkpoint at line 2. As conse-
quence, the instruction that reads the sensor data is not re-executed, and the
value that R0 contains may not reflect the current environment state. This
second example describes a Saved input access model: whenever the exe-
cution resumes, the value of the input may be contained in the state saved
by the checkpoint. In such a case, it is not re-sensed from the environment
and the device uses the last sensed value, even if it may not represent the
current environment state.

There is no input access model that we can consider correct a priori,
since it depends on the application requirements. For this reason, we need
to establish and specify which is the input access model that we want on

1 CHECKPOINT
2 R0 = input (I1 )
3 ADD R1 , R0 , 3
4 [ . . . ]

Example 5.1: Access to input I1
with a most recent input access
model.

1 R0 = input (I1 )
2 CHECKPOINT
3 ADD R1 , R0 , 3
4 [ . . . ]

Example 5.2: Access to input I1
with a saved input access model.

1 [ . . . ]
2 R0 = input (I1 )
3 ADD R1 , R0 , 3
4 [ . . . ]

Example 5.3: Access to input
I1 with a dynamic checkpoint
mechanism.

1 CHECKPOINT
2 R0 = input (I1 )
3 ADD R1 , R0 , 3
4 [ . . . ]
5 CHECKPOINT
6 SUB R7 , R1 , 3
7 [ . . . ]

Example 5.4: Access to input I1
with a saved input access model.
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each input, so to verify if any interaction behaves unexpectedly. We can say
that if the program accesses an input with a wrong input access model, an
Input Access Inconsistency happens.

The tests for analyzing the input access model associated with the usage
of each input is not applicable with dynamic checkpoint mechanisms. Let
us consider Example 5.3, that shows a simple input usage with a dynamic
checkpoint mechanism. If a checkpoint happens before line 2, the program
accesses the input with a most recent access model. Instead, if a checkpoint
happens before line 3, the program accesses the input with a saved access
model. In such a scenario, a checkpoint can happen at any moment during
the execution, and thus we can not set an input access model for our input.

Testing input access models requires also tracking the propagation of
input dependencies among memory locations and registers, so to verify in-
direct usages of the sensed data. Let us focus on Example 5.1, and let us
suppose the we require a Most Recent access model for input I1. Further-
more, let us analyze the input access model of input I1 without tracking
input dependencies. Register R0 contains the input value, and only the in-
struction at line 3 accesses it. For this reason, we measure a Most Recent
access model for the input I1, and thus we do not find any Input Access
Inconsistency. Instead, if we track and propagate input dependencies, we
can notice that register R1 depends on input I1, and that the instruction
at line 6 accesses such register. The value that R1 contains is produced
before the checkpoint, and thus we are able to establish that such operation
accesses the input I1 with a Saved access model. For this reason, we identify
an Input Access Inconsistency that we would not be able to recognize if we
did not track the propagation of input dependencies.

5.2.2 Testing Input Access Models

For testing input accesses, we must specify the input access model we desire
for each input.

Moreover, as we previously stated, we must track the usage of input-
dependent data, so to find if such usage represents an Input Access Incon-
sistency. To achieve that, we exploit two data structures:
• A checkpoint clock, which indicates the number of checkpoints taken.

We can use such parameter to establish an ordering between different
checkpoint intervals.
• An input-dependency table, which tracks and propagates the usage

of input values. It consists in a table that associates to a memory
element, a list of pairs (input, checkpoint id). Such list contains the
inputs used for producing the value contained in the memory element,
and for each input it also contains am indication of when the input
access happened.
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1 R0 = input(I1)
2 R1 = input(I2)
3 ADD R2, R1, R0

4 CHECKPOINT
5 [ . . . ]
6 ADD R2, R2, 7

Example 5.5: Example of an
input access inconsistency. We
require a Saved access model for
I1, and a Most Recent access
model for I2.

1 R0 = input(I1)
2 CHECKPOINT
3 R1 = input(I2)
4 ADD R2, R1, R0

5 [ . . . ]
6 ADD R2, R2, 7

Example 5.6: A checkpoint
placement which fixes the input
access inconsistency that we
show in Example 5.5.

Let us suppose that we want to analyze Example 5.5, and that we want
a SAVED access model for input I1 and a MOST RECENT access model
for I2. We initialize the checkpoint clock to 0, and we start executing the
program. When we execute the instruction at line 1, we note that it directly
accesses an input element. For this reason, we insert a pair (I1, 0) into the
input-dependency table, in correspondence of the register R0, that is where
the operation stores the input data. We perform a similar operation for the
execution of the instruction at line 2. Now we execute the instruction of line
3, that uses as operands R0 and R1. Such registers contain input-dependent
data, and thus we access their record of the input-dependency table. We
accessed both the corresponding inputs in this checkpoint interval, and thus
no Input Access Inconsistency is present. We combine the record of R0 and
R1, and we store it into the input-dependency table, in correspondence of
the register R2. Table 5.2a shows the current state of the input-dependency
table. Now, we reach the checkpoint of line 4, and thus we increment the
checkpoint clock to 1. As next operation, we execute the instruction of
line 6, which accesses R2 and thus we access its corresponding record in
the input-dependency table. As we can see, it uses the values of I1 and I2
that were produced in the previous checkpoint interval. Since we require
a MOST RECENT access model for the input I2, we find an Input Access
Inconsistency.

Algorithm 7 formalizes the described work flow, that permits us to an-
alyze the access model of each input. As we demonstrated in the previous
example, this test does not require an intermittent execution, since we can
analyze access models by looking at the checkpoint interval under which the
program accesses inputs.

Since we do not need to simulate power resets, whenever we encounter
a checkpoint, we only increment the checkpoint clock. Every time the exe-
cution of an instruction alters the value of an element, we must update the
corresponding record in the input-dependency table, using the lists of the
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Element Dependency List

R0 (I1, 0)

R1 (I2, 0)

R2
(I1, 0)
(I2, 0)

(a) In Example 5.5.

Element Dependency List

R0 (I1, 0)

R1 (I2, 1)

R2
(I1, 0)
(I2, 1)

(b) In Example 5.6.

Table 5.2: Content of the input-dependency table

inputs corresponding to the operands of the instruction. When an instruc-
tion accesses an element, we must analyze the corresponding records in the
input-dependency table, so to verify the access model of inputs. If an ele-
ment of the input-dependency table has a checkpoint id lower with respect
to the current value of the checkpoint clock, then the program accesses the
corresponding input with a Saved access model. Otherwise, it accesses the
corresponding input with a Most Recent access model.

Finally, Example 5.5 has an Input Access Inconsistency on the input I2.
We can fix this problem by moving the checkpoint of line 4 before line 2, as
we show in Example 5.6. In this way, the program no longer accesses the
input I2 with a Saved access model. If we re-execute the analysis that we
previously described, we produce the input-dependency table that Table 5.2b
shows. When we execute the instruction of line 6, we access the record of
the input-dependency table that corresponds to R2. During the execution
of such instruction, the checkpoint clock is 1, since we incremented it when
we executed the checkpoint of line 2. As consequence, we can see that
the value we access of input I2 is produced during the current checkpoint
interval. This means that we we access the input I2 with a Most Recent
access model, and thus we fixed the inconsistency.

As we can see, for fixing an Input Access Inconsistency we have to move
a checkpoint or a set of instructions, so to make the input access consistent
with respect to our requirements.
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Algorithm 7 Sequential execution for testing input access models.

Require: access models, an array specifying the access model of each in-
put.

1: checkpoint clock ← 0
2: input dep tbl = {}
3:

4: while program end not reached do
5: // If checkpoint reached, increment clock and skip execution
6: if current instruction = CHECKPOINT then
7: checkpoint clock = checkpoint clock + 1
8: skip to next instruction
9: continue

10:

11: if current instruction = input(Ii) then
12: // On input reading create input dependency table’s record
13: input dep tbl[target element]← [(Ii, checkpoint clock)]
14: else
15: // Re-initialize target element’s record
16: input dep tbl[target element]← []
17:

18: // Propagate operands records to target element record,
19: // measure access model and verify it.
20: for each operand ∈ current instruction do
21: for each record ∈ input dep tbl[operand] do
22: input id← record[0]
23: clock id← record[1]
24: append record to input dep tbl[target element]
25:

26: if clock id < checkpoint clock then
27: access model = SAVED
28: else
29: access model = MOST RECENT
30:

31: if access model 6= access models[input id] then
32: return input access inconsistency for input id

33:

34: run current instruction
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5.3 Intermittence as Program Input

5.3.1 Inconsistencies and Inputs

In Chapter 4 we described the three kinds of memory inconsistencies and
the effects that they have on the behavior of the program. Until now, we
treated inconsistencies as a bug that denies the correct execution of the pro-
gram. For this reason, we focused on maintaining an execution model that
produces results as similar as possible to an equivalent sequential execution
of the program. Although this lead to predictable and correct results, we
are limiting our possibilities: the intermittence of the execution is a char-
acterizing property of TPCs, and we may consider it as an input for our
programs.

To better understand how we can include intermittence as input for our
program, let us focus on the execution of Example 5.7, in which we allo-
cate the variable a into NVM. Let us suppose that we execute the code
without any power interruption until we reach line 5, and then a shutdown
happens. When there is enough energy to restart the computation, the pro-
gram restores the checkpoint of line 2, and the execution resumes from the
instruction at line 3, which is re-executed Here a Data Access Inconsistency
happens: the LOAD operation reads 1, that is an inconsistent value for
the variable a. In fact, the previous execution of the instruction of line 5
set such value, which differs from the value that variable a had during the
checkpoint.

By permitting the presence of such inconsistency, we enable our program
to track the number of re-executions. If another shutdown happens, the
program resumes with a value of variable a equal to 2, which corresponds
to the number of re-executions.

The presence of Data Access Inconsistencies in specific sections of our
code makes the programmer able to adapt the behavior of a program in
presence of power resets. The number of applications in which we can exploit

1 STORE a , 0
2 CHECKPOINT
3 LOAD a, R0

4 ADD R0, R0, 1
5 STORE a, R0

6 [ . . . ]

Example 5.7: Inconsistency that
enables the program keeping
track of the number of re-
executions.

1 a = 0 ;
2 checkpo int ( ) ;
3 a = a + 1 ;
4 [ . . . ]

Example 5.8: Equivalent C
version of Example 5.7.



98CHAPTER 5. ENVIRONMENT INTERACTIONS AND INCONSISTENCIES

1 STORE a , 0
2 CHECKPOINT
3 LOAD a, R0

4 BRANCH (R0 < 1) , END
5 ADD R0, R0, 1
6 STORE a, R0

7 [ . . . ]
8 END:
9 CHECKPOINT

10 [ . . . ]

Example 5.9: Inconsistency
which grants that the program
executes the code block at line
7 at most once.

1 a = 0 ;
2 checkpo int ( ) ;
3 i f ( a < 1) {
4 a = a + 1 ;
5 // C r i t i c a l code b l o c k
6 [ . . . ]

7 }
8 checkpo int ( ) ;

Example 5.10: Equivalent C
version of Example 5.9.

such new kind of input is almost unlimited. Considering the possibility of
interacting with the environment, this opens to scenarios in which we can
signal subsequent power failures, or in which we can perform compensation
actions after a certain amount of power resets. We can obtain a similar result
by permitting the presence of Output Inconsistencies, as we will describe in
Section 5.4.

For example, let us consider Example 5.9, that shows a program con-
taining an inconsistency at line 3, that a power reset happening after line 6
causes. Such inconsistency grants the possibility of having the code block
of line 7 to be executed at most once. In fact, let us suppose that a power
failure happens after the execution of such code block. When the program
resumes the execution, it jumps to the checkpoint of line 9, because the
branch condition is verified. As consequence, it skips the re-execution of the
code block of line 7. Instead, if a power failure happens after we execute
line 6, the code block of line 7 is never executed. This execution flow is only
possible if we permit the data access inconsistency of the LOAD instruction
at line 3. If we move a checkpoint for fixing the inconsistency, the program
no longer manifests such execution flow.

Example 5.11 shows another example of an intermittence-based input,
that in this case makes the program able to execute the code block of line 8
after 3 or more power failures.

In fact, intermittence-based inputs makes the program able to track the
number of times in which a portion of code is re-executed due to power resets.
For achieving such scenario, it is sufficient placing a variable into NVM, and
then increment it after a checkpoint. Such variable will contain the number
of power resets that caused the re-execution of the checkpoint interval. Then,
we can use the NVM variable inside our program for performing the actions
we need.
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1 STORE a , 0
2 CHECKPOINT
3 LOAD a, R0

4 ADD R0, R0, 1
5 STORE a, R0

6 [ . . . ]
7 BRANCH (R0 ≤ 3) , END
8 [ . . . ]
9 END:

10 CHECKPOINT
11 [ . . . ]

Example 5.11: Inconsistency
that enables the program to run
the code block of line 8 after 3
or more power failures.

1 a = 0 ;
2 checkpo int ( ) ;
3 a = a + 1 ;
4 [ . . . ]
5 i f ( a > 3) {
6 // Code to be execu ted

a f t e r 3 r e s e t s
7 [ . . . ]
8 }
9 checkpo int ( ) ;

10 [ . . . ]

Example 5.12: Equivalent C
version of Example 5.11.

1 int v [ 1 0 0 0 0 ] ;
2
3 [ . . . ]
4 for ( i = 0 ; i < 10000 ; i++)
5 {
6 [ . . . ]
7 v [ i ] = . . .
8 }
9 [ . . . ]

Example 5.13: Example of loop.

1 int v [ 1 0 0 0 0 ] ;
2
3 [ . . . ]
4 a = 0 ;
5 checkpo int ( ) ;
6 for ( i = a ; i < 10000 ; i++)
7 {
8 [ . . . ]
9 v [ i ] = . . .

10 a = i ;
11 }
12 checkpo int ( ) ;
13 [ . . . ]

Example 5.14: Inconsistency
that permit us to omit the
insertion of a checkpoint inside
the loop body of Example 5.13.

Moreover, with intermittence-based inputs we are also able to avoid
checkpoint overhead, or to reduce the number of checkpoints present in our
code. Let us consider Example 5.13, and let us suppose that the code block
at line 6 performs a computational-intensive task whose result is stored in-
side v[i] of line 7. Let us suppose that we choose to use MementOS [3] as
checkpoint mechanism, with a loop-latch strategy. It places a checkpoint
at the end of the loop body, resulting in a high checkpoint overhead and
energy waste. We can allow the presence of inconsistencies for reducing the
checkpoint overhead. Example 5.14 shows the resulting code, in which we
allocate a and v into NVM. The variable a is an intermittence-based input
that keeps track of the loop iteration.
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To better understand this solution, let us focus on the execution flow of
the code. When we reach the instruction of line 5, we save a checkpoint, and
then we enter the loop. We initialize the iteration variable i with the value
of our intermittence-based input a, that we previously initialized to 0. When
we reach the instruction of line 9, we update v[i], and then we increment a.
Let us suppose that after 100 iterations a shutdown happens due to a low
energy buffer. When there is enough energy to restore the computation, we
restore the checkpoint, and the execution resumes from line 6. The iteration
variable i is initialized with the value of a, which is 100. As consequence,
the execution continues from the iteration where the power failure stopped
it. We might consider the first 100 values of the array v to be inconsistent,
since they differ from when the checkpoint was taken. Since the variable a
grants a precise work flow, we can ignore such inconsistency, since it is a
form of intermittence-based input that allows us to continue the execution
without performing a checkpoint. In this case, we can consider variable a
as a checkpoint with a low overhead, since it produces a similar effect of a
checkpoint.

In the described example we did not use the intermittence-based input
for tracking the number of re-executions, but instead we exploited it for
making us able to keep track of where the iteration stopped in the previous
execution of our code.

5.3.2 Testing Intermittence-based Inputs

Testing the correctness of a program that uses intermittence-based inputs
requires tracking environment interactions and variable values, since those
are the elements that a power reset affects. For verifying the correctness of
intermittence-based inputs, we must analyze the behavior that our program
present in the presence of intermittent executions.

Performing this analysis requires us to generate specific cases of inter-
mittent executions that recreate the conditions in which we can verify if our
intermittence-based inputs behave as expected. Moreover, we also require
an Interaction Table, which is data structure containing the information
that we track about the execution of the program. It associates to each
checkpoint a list of the corresponding events that happened after it.

Let us now suppose that we want to analyze the behavior of Exam-
ple 5.15, in which the output operation at line 7 should be executed at most
twice. For verifying such behavior, we can recreate power resets before the
execution of line 9, and we should re-execute the program more than two
times. Moreover, we are interested in tracking the value of variable a, that
is our intermittence-based input, and of the output event O1. We execute
the code, and every time we run the output instruction of line 7, we insert
a record inside the Interaction Table. Moreover, since we are interested in
the value of variable a, every time we generate a power reset, we also insert
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1 STORE a , 0
2 CHECKPOINT
3 LOAD a, R0

4 BRANCH (R0 < 2) , END
5 ADD R0, R0, 1
6 STORE a, R0

7 output (O1 , 5)
8 END:
9 CHECKPOINT

10 [ . . . ]

Example 5.15: Output executed
at most twice.

1 a = 0 ;
2 checkpo int ( ) ;
3 i f ( a < 2) {
4 a = a + 1 ;
5 output (O1 , 5) ;
6 }
7 checkpo int ( ) ;
8 [ . . . ]

Example 5.16: C equivalent
version of Example 5.15.

Checkpoint PC Trace

2

Reset Number Elements

0 (O1, 5)
0 (a, 1)

1 (O1, 5)
1 (a, 2)

2 (a, 2)

Table 5.3: Content of Interaction Table of Example 5.15 once the execution
completed.

a record inside the Interaction Table, containing the value of variable a. Ta-
ble 5.3 shows the resulting Interaction Table. As we can see, the program
executed the output instruction at line 7 two times: at resets number 0 and
1. Moreover, we can also see that the value of variable a is 1 before the first
reset, and becomes 2 before the second one. With this result, we are able to
state that the observed behavior corresponds exactly to the one we expect.

In the previous example, we described the work flow of Algorithm 8,
which performs the analysis of the program behavior in an intermittent
execution scenario. The algorithm executes the program sequentially, and
tracks the I/O operations that it executes inside the execution trace data
structure, that is the interaction table we previously described. When it
reaches a point where it should generate a power reset, it also tracks the
variables of our interest, and then it performs such power reset. The algo-
rithm ends the analysis when it reaches the end of the program, and then it
returns us the execution trace it produced. Using this result we are able to
understand whether our program behaves as expected.

As final note, we must consider that the entire analysis depends on where
we choose to generate power resets. There are cases in which we should run
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the analysis multiple times with different reset positions, otherwise we do
not have a complete coverage of all the possible scenarios. For example, in
Example 5.9 we only analyzed a reset after the instruction of line 8. Such
analysis told us that the program executes the output function twice, but
we are not sure about its behavior if a power reset happens before line 7.
For this reason, we should run two different analysis: one with two resets
before the instruction at line 7, and one with two resets after line 8. In this
way, we are able to verify the at-most-once property that we require for the
code, with a complete coverage of the possible reset scenarios.
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Algorithm 8 Intermittent execution algorithm for testing intermittence-
based inputs.

Require: list of where we want to generate power resets.
Require: variables that we want to track.
1: execution trace = {}
2: current checkpoint←None
3: reset no← 0
4:

5: while program end not reached do
6: if current instruction = CHECKPOINT then
7: // If checkpoint reached, keep track of its program counter
8: // and reset the reset counter.
9: current checkpoint←Program Counter

10: reset no← 0
11:

12: else if current instruction = input(Ii) then
13: // If an input instruction is reached, keep track of the
14: // input port, the read value, the resets counter and the
15: // program counter of the instruction to be executed.
16: profiling info = (Ii, input value, reset no, program counter)
17: append profiling info to execution trace[current checkpoint]
18:

19: else if current instruction = output(Oi, Rx) then
20: // If an output instruction is reached, keep track of the
21: // output port, the written value, the resets counter and the
22: // program counter of the instruction to be executed.
23: profiling info = (Oi, R x, reset no, program counter)
24: append profiling info to execution trace[current checkpoint]
25:

26: run current instruction
27:

28: // If the user specified to generate a power reset here
29: // and at the current reset number, generate it.
30: if reset required after current instruction then
31: for each variable to be tracked do
32: profiling info = (variable name, variable value, reset no)
33: append profiling info to execution trace[current checkpoint]

34:

35: reset
36: restore checkpoint
37: reset no← reset no+ 1

38:

39: return execution trace
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5.4 Environment Outputs

5.4.1 Ouput Inconsistencies

In Section 5.2.2 we analyzed the effects that an intermittent execution causes
from the environment inputs standpoint. Environment interactions do not
consist only in input actions, but they also comprehend output interactions
such as sending data to another device, or moving a servo. Output actions
do not change the memory state of a device, and instead they change the
state of the environment.

The most common application of devices in TPC comprehend their us-
age as sensors for a wireless network. Their workflow consists in sensing the
environment, processing the sensed data, and sending such data to the main
node of the network. Let us consider Example 5.17, that represents an appli-
cation which reads the temperature from two sensors, sums such values, and
sends the result to the main node of a wireless sensor network. We are in-
terested in analyzing which are the effects of the intermittent execution over
the output operation of line 6. Let us focus on the intermittent execution of
the code, without considering a specific checkpoint mechanism or memory
configuration. We start the execution, and we reach the instruction at line
2, which reads the temperature of the environment from the input port I1.
Then, we execute the next instruction, which performs the same operation
using the input port I2. As next instruction we execute line 4, which sums
the temperature values and stores them into the register R2. The execution
continues, and we reach the checkpoint at line 5. We save the state, and

1 [ . . . ]
2 R0 = input(I1)
3 R1 = input(I2)
4 ADD R2, R1, R0

5 CHECKPOINT
6 output(O1, R2)
7 [ . . . ]

Example 5.17: Example of a
common application in TPC,
which senses the environment
temperature
from the two inputs, sums the
sensed values, and finally sends
the result to the main node of
the system.

1 [ . . . ]
2 CHECKPOINT
3 output(O1, 15)
4 [ . . . ]

Example 5.18: Example of
a code that moves a servo
connected to the output port O1

by 15◦ degrees.
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then we execute the instruction at line 6, which sends to the main node the
value of the register R2. Let us now suppose that, after the execution of such
instruction, a shutdown happen due to a low energy buffer. When there is
enough energy to restart the computation, we restore the saved checkpoint
and the execution resumes from the instruction at line 6. We execute this
instruction for a second time, and thus the main node receive for a second
time the same value of the register R2. Depending on how the main node
processes data, this can lead to an error. Let us for example suppose that the
main node of the network stores into the database every data it receives,
and that such data is then used for performing some analysis. In such a
scenario we would have a duplicate value, and the subsequent computation
would be incorrect.

This kind of problem does not happen only if the device sends data to
another one, and it can also happen if the device is able to modify the envi-
ronment state. Let us consider Example 5.18, which consists in a fragment
of code that moves a servo by 15◦, and let us focus on the intermittent ex-
ecution of such code. Let us assume that the initial position of the servo is
30◦. When we reach the checkpoint at line 2, we save the state, and then we
continue the execution by running the instruction at line 3. As consequence,
the servo is moved by 15◦, and its new position is 45◦. Let us now suppose
there is no enough energy to continue the execution, and thus a shutdown
happen due to a low energy buffer. When there is enough energy to restart
the computation, we restore the checkpoint and the execution resumes from
the instruction at line 3. We move the servo by 15◦ degrees, and its new
position is 60◦. From now on, all the actions that the device performs will
lead to unexpected results, since it will assume that the position of the servo
is 45◦ degrees, but instead it is at 60◦.

In both these two cases, the re-execution of an environment output rou-
tine causes the environment state to be different with respect to equivalent
sequential execution of the code. This unexpected behavior does not depend
on the checkpoint mechanism we use or on the memory sections that we al-
locate into NVM. In fact, the re-execution of instructions is a direct cause of
the shutdowns characterizing TPCs. For this reason, any environment out-
put action can potentially cause an inconsistency of the environment state,
since it is inevitable re-executing some instructions. We refer to this kind of
inconsistency as Output Inconsistency.

5.4.2 Analyzing Output Inconsistencies

Before analyzing where output inconsistencies may happen, we must define
the concept of output idempotency. We say that an output routine is
idempotent with respect to its re-execution if we can re-execute it multiple
times without changing the environment state. In other words, an idempo-
tent output routine changes the state only the first time it is executed, and
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if a power reset happens, its re-execution does not modify the environment
state. As consequence, if an idempotent output routine is re-executed, it
can not cause any output inconsistency.

For example, let us assume that we have an output function which moves
the servo to a specified position. In this case, this output routine is idempo-
tent with respect to its re-execution, and thus its re-execution can not cause
any output inconsistency. In fact, the first execution moves the servo to the
target position, but subsequent re-executions that power resets may cause
would leave the servo position unchanged.

For verifying the presence of output inconsistencies inside a program,
we firstly find if a non-idempotent output routine exist. For doing so, we
analytically consider each output routine present in the program without
considering its code, and we verify the effects of multiple subsequent re-
executions. If the environment state obtained after such re-executions is
the same obtained after the first re-execution, then the considered output
routine is idempotent. Let us for example consider Example 5.17, which we
previously described. We have an output routine which sends the processed
data to another device. In this case, multiple re-execution of the output
routine will send the same data to the receiving device. If the device is
not able to recognize re-transmitted messages, the output routine is non-
idempotent, since each re-execution will affect the data processed by the
receiving device.

As next step in our analysis, we verify the effects that the re-execution of
each non-idempotent output routines has over the environment state inside
the program. We require such step since a non-idempotent output routine
does not necessarily cause an output inconsistency if re-executed. In fact,
let us consider Example 5.19, which has a non-idempotent output function.
The code measures the current position of the servo, then it calculates the
angle required to reach 45◦, which is our target position. As next step, the
program moves the servo using the result of such operation, and thus after
the execution of the instruction at line 5 it will be at 45◦, even if it is re-
executed. As consequence, the re-execution of the output function does not
cause an output inconsistency, even if it is non-idempotent.

Testing the effects of the re-executions of non-idempotent output rou-
tines is a particular case of testing intermittence-based inputs, which we
described in Section 5.3. In fact, we only need to generate a power reset
after the execution of an output routine. For this reason, we can use a
simplified version of Algorithm 8, that Algorithm 9 shows. Such simplified
algorithm keeps only track of the output routine executed and generates one
power reset after each one of them. Moreover, the algorithm saves also a
snapshot every time a checkpoint is taken, and restores it after the second
execution of each output routine. In this way, not data inconsistency can
happen, and thus no unexpected behavior can happen.
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Algorithm 9 Intermittent execution algorithm for testing effects of non-
idempotent output routines.

Require: list of the non-idempotent output routines
1: execution trace = {}
2: current checkpoint←None
3: reset no← {}
4: for each non-idempotent output routine do
5: reset no[output routine]← 0

6:

7: while program end not reached do
8: if current instruction = CHECKPOINT then
9: // If we reach a checkpoint, we keep track of its program counter

10: // and reset the reset counter.
11: current checkpoint←Program Counter
12: for each non-idempotent output routine do
13: reset no← 0
14: save snapshot
15: run current instruction
16:

17: // Ignore if we already analyzed it
18: else if current instruction = output(Oi, Rx) and reset no[Oi] < 2

then
19: // If we reach an output instruction, we keep track of the
20: // output port, the written value, the resets counter, and the
21: // program counter of the instruction to be executed.
22: profiling info = (Oi, R x, reset no, program counter)
23: append profiling info to execution trace[current checkpoint]
24: run current instruction
25:

26: // If reset not generated, then generate it
27: if reset no[Oi] == 0 then
28: reset no[Oi]← 1
29: reset
30: restore checkpoint
31: else if reset no[Oi] == 1 then
32: reset no[Oi]← 2
33: // Restore the snapshot so to not cause other inconsistencies
34: restore snapshot

35: else
36: run current instruction
37:

38: Check the content of execution trace to verify if the behavior is the one
we expect
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1 [ . . . ]
2 checkpo int ( ) ;
3 pos = input (O1 ) ;
4 mov = 45−pos ;
5 output (O1 , mov) ;
6 [ . . . ]

Example 5.19: Possible fix to
the output inconsistency that
Example 5.18 has. We use O1

as an intermittence-based input.

1 [ . . . ]
2 checkpo int ( ) ;
3 i f ( input (O1 ) == 30) {
4 output (O1 , 15) ;
5 }
6 [ . . . ]

Example 5.20: Another possible
solution to solve the
output inconsistency present in
Example 5.18, which exploits an
intermittence-based input.

Let us suppose that we want to analyze the presence of output inconsis-
tencies in Example 5.19. Firstly, we analyze the output function present at
line 5. It is non-idempotent since moves a servo incrementally, and thus its
re-execution leads to an inconsistent environment state. We initialize the
reset no data structure, and we start the execution of the program. We
reach the checkpoint at line 2, we update the current checkpoint variable,
we re-initialize the reset no data structure, and we save a snapshot of the
device state. Then, we execute the checkpoint, and we reach the instruction
at line 3. Let us suppose that the initial position of the servo is 15◦, and
thus the variable pos is set to 15. Since this instruction is not a checkpoint
or an output routine, we simply execute it. Then, we execute the instruction
at line 4, and the variable mov is set to 30. As next operation, we reach
the output instruction of line 5. We verify reset no[O1], which is 0, and
thus we save the profiling information associated to this operation. Then,
we increment reset no[O1] to, and we generate a power reset. The same
workflow is repeated until we reach the output operation at line 5, for which
we save the profiling information. Since we reached this operation twice, we
restore the snapshot, and we continue the execution. When the program
ends, we see the following execution trace: (O1, 30, 0, 2) and (O1, 0, 1, 2).
The first execution moves the servo by 30◦, and the second one leaves it at
its current position. For this reason, no output inconsistency happens due
to the re-execution of the non-idempotent output routine at line 5.

Let us now consider how we can solve output inconsistencies. We can
use three different approaches:

• We can make the non-idempotent output routine idempotent. For
example, let us consider the output function of Example 5.18. It uses
a relative measure, since it moves the servo by 15◦ from its current
position. If instead we make it use an absolute measure, the output
function becomes idempotent with respect to its re-execution.
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In fact, the servo will be moved to a specific position, and the re-
execution of the action will not change the servo state.

• We can use an intermittence-based input for evaluating the environ-
ment state during runtime , and then we can adjust the behavior of
the output routine so to avoid output inconsistencies. As we stated in
Section 5.3, by allowing the presence of inconsistencies we are able to
consider a new set of inputs, which is a function of the intermittence.
We can allow not only data inconsistencies, but also output ones.

Let us consider Example 5.19, which we previously described. In fact,
let us suppose the output function is executed for the first time, moving
the servo to 45◦. Moreover, let us suppose that, just after the move-
ment of the servo, a shutdown happens due to a low energy buffer.
When there is enough energy to restart the computation, the check-
point is restored, and the servo has already a position of 45◦. The
obtained environment state is inconsistent, since when the checkpoint
was taken, the servo was at 30◦. The combination of line 3 and 4
accounts for such inconsistency, and they influence the behavior of the
output routine of line 5, with the effect of keeping the environment
state consistent. As result, the effect of the non-idempotent output
routine is idempotent, and thus it does not cause any output inconsis-
tency.

Example 5.20 shows a different approach to the same problem. In
this case, the code focuses on avoiding the re-execution of the output
function, instead of making its effect idempotent. When we reach the
if statement at line 3, it verifies the current position of the servo. If
it is 30◦, the output function is executed, otherwise it is ignored. As
result, the servo will always be at the correct position, independently
of how many power resets happen.

Finally, if we introduce intermittence-based inputs in our program, we
can no longer use Algorithm 9 for verifying the presence of output inconsis-
tencies, since it is not able to analyze them. Testing output inconsistencies
is a particular scenario of testing the entire behavior of the program, and
thus we can analyze them using Algorithm 8, which we described in the
analysis of intermittence-based inputs.
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Chapter 6

ScEpTIC: Testing
Intermittent Computation

6.1 Overview

Figure 6.1: Compiler pipeline.

ScEpTIC stands for Simulator for Executing and Testing Intermittent
Computation, and consists in a simulator written in python that executes
LLVM IR code, which is an intermediate representation of the program
source code.

For understanding this design choice, let us briefly focus on how a com-
piler is structured and works, as shown in Figure 6.1. Usually it is composed
by three main modules: front-end, middle-end and back-end.

The front-end translates the source file into an intermediate represen-
tation, which is described by a language different from the source one. It
uses unlimited temporary registers, abstracted memory locations, and has
a structure which simplifies the work to be done in the middle-end. The
middle-end analyzes the intermediate representation and then applies a pre-
defined set of optimizations. The intermediate code produced is then ana-
lyzed by the back-end, that establishes the data layout of the program and
performs register allocation. The data layout task consists in converting the
abstracted memory addresses into the ones used by the architecture, or in
setting their offsets with respect to the stack or frame pointers, so to ob-
tain valid memory addresses. Instead, the register allocation is in charge of
mapping the virtual registers to the physical ones available in the architec-

111
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ture, which are limited inside the processor. Finally, the back-end converts
the obtained code into the target assembly language and then produces the
binary file. In doing its tasks, the back-end needs to know all the relevant
information about the architecture, such as the number of available registers
and the memory address space.

The choice of not executing a compiled binary permits us to have an
architecture independent simulator, since the instructions are the ones from
the intermediate language and not the ones from the Instruction Set Ar-
chitecture. Furthermore, executing an intermediate language permits us to
maintain almost a complete independence from the source language, and it
is possible to create multiple front-ends which transform different languages
into the intermediate representation we use. As consequence, ScEpTIC is
able to analyze code independently of the target device or the source lan-
guage used.

Maintaining this level of abstraction permits us to test a program with-
out the need of knowing a priori which device will be used, to not specify
the memory dimension and to skip tasks like register allocation and data
layout. Also, the simulator abstracts checkpoint logic and implements the
most common checkpoint mechanisms so to enable testing with any of them
without the need of eventually porting their code to suit the used language
or architecture. For static checkpoint mechanisms that uses specific compiler
passes to place checkpoints, it is possible to provide the produced interme-
diate code without the need of modifying it. The only required action is to
specify the name of the checkpoint and reset routines.

The only modification required is to replace the architecture-dependent
function calls, such as I/O requests, with the one abstracted by the simula-
tor.

Currently, ScEpTIC does not support functions with variable arguments,
function pointers, and interrupts. It supports all the data structures and
operations of the C language. We design ScEpTIC to make easy the process
of extending the supported operations.

6.2 LLVM IR

6.2.1 LLVM and Intermediate Representation

LLVM [23] is a compiler framework which provides a set of modules that
can be combined to produce compilers, and supports a broad range of source
languages and architectures. The intermediate representation LLVM uses
is called LLVM IR [22] and it is available in different fashions. ScEpTIC

uses the assembly version, which is human readable and consists in a typed
RISC-based assembly.

The input file that the simulator takes is a LLVM IR code which we can
produce using clang [25], a C front-end for LLVM, specifying to output the
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LLVM IR with debug information. The complete command is:
c lang −emit−l lvm −S −g s o u r c e f i l e . c

The argument −emit−l lvm tells clang to emit the intermediate represen-
tation of the source code and the argument −S specifies to emit a textual
assembly file, instead of a binary one. To report errors during testing, it is
required to map the lines of the intermediate representation with the corre-
sponding ones of the source file. This is achieved thanks to the argument
−g, that appends debugging information to the LLVM IR.

If the source program is composed by multiple compile units, we must
produce a LLVM IR file for each of them. Then, it is possible to combine the
obtained files using the linker provided within LLVM, using the command:

llvm−l i n k −S f i l e 1 . l l f i l e 2 . l l . . . f i l e n . l l −o f i l e . l l

This command stores the result inside the file f i l e . l l , that contains the
source code that ScEpTIC takes as input.

Since LLVM IR is an intermediate representation of the source code, it
uses virtual registers in each instruction, which are defined as %N}, with N
representing a positive integer identifier of the virtual register. Also, LLVM
IR is in a Static Single Assignment form, which means that each virtual
register is defined only once and each definition of a given virtual register
precedes the instructions which uses it. This simplifies the analysis ScEpTIC
performs.

6.2.2 IR File Structure

From a practical point of view, it is possible to divide the LLVM IR file into
six different sections:

• Headers: this section contains the specifications of the source file
name, the target data layout, and the target architecture. ScEpTIC

does not consider this section, since it does not provide useful infor-
mation from a testing standpoint.

• Custom Type Definitions: this section contains the definitions of
the custom types present in the program, such as C structures and
unions. Each custom type definition is declared as a named list of
LLVM first-class types:

%type name = type{ type 1 , type 2 , . . . }
For example, a structure named car with two integer fields is declared
as:

%st ru c t . car = type{ i32 , i 32 }
Table 6.1 shows the most commonly used first-class types.

• Global Variable Definitions: this section contains the definition of
all the global variables present in the code. Each variable is defined
as:
@variable name = <type> [ i n i t i a l va lue ] [ , s e c t i o n ”name” ]



114CHAPTER 6. SCEPTIC: TESTING INTERMITTENT COMPUTATION

Type Description

iN
represents a N-bit integer.
e.g. i32 is a 32-bit integer

half represents a 16-bit floating-point value.

float represents a 32-bit floating-point value.

double represents a 64-bit floating-point value.

Table 6.1: Most used LLVM IR first-class types.

The LLVM IR does not contain the information produced by the data
layout process: addresses are not explicit and variable names corre-
spond to a textual representation of the associated memory address.

Variable types are defined as elements of the first-class type or as cus-
tom one. The initial value is typed, which means that it is composed
by the type and the actual initial value.

The section parameter is used to define which variables are stored into
NVM, if any. There are other additional parameters in the definition
of a global variable, but ScEpTIC does not considers them, since they
are not relevant for the analysis it performs.

For example, a variable named ’test’ with type i32 and initial value
equal to 0 is defined as:

@test = i32 0

• Function Definitions and Declarations: this section contains both
the definitions and declarations of the routines present in the source
code. A function declaration does not include the body of the function,
and it is written as:

de c l a r e <Return Type> @<Function Name> ( [ a rgs l i s t ] )

Instead, a function definition includes the body of the function, and it
is written as:

de f i n e <Return Type> @<Function Name> ( [ a rgs l i s t ] ) {
<Function Body>
. . .

}

Definitions and declarations have the same attributes, and we repre-
sented only the ones that are relevant for the simulation that ScEpTIC
performs.

The argument list contains the types of each argument expected by the
associated function. The function body contains an ordered sequence
of instructions, organized into basic blocks and divided by labels. If
only one basic block is present, the label is omitted. In the function
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Metadata Type Description

DIFile Represents a file. Its relevant attributes are file name
and file directory.

DILocation Represents a specific location inside the source file.
Its relevant attributes are line, column and scope.
Line and columns identifies the position of the lo-
cation inside the source file, and the scope refers to
another metadata of type DIFile, DILexialBlock or
DISubprogram.

DISubprogram Represents the location of a function or subroutine
inside the source file. Its relevant attributes are sub-
program name and file. This last one refers to a
metadata of type DIFile.

DILexicalBlock Represents a basic block inside a subprogram. Its
relevant attributes are scope and file.

DILocalVariable Represents a local variable. Its relevant attributes
are variable name, scope, line, column.

Table 6.2: Relevant LLVM IR meatadata and their attributes.

body, the arguments of the function are implicitly considered to be
stored in virtual registers, starting from %0 to %(n−1), with n equals
to the number of arguments. Virtual register ids restart from %0 in
each function body.

• Attribute Groups: in this section are defined the attribute groups
associated to each function. They represent a series of back-end di-
rectives or properties that are not useful for our analysis, and for this
reason ScEpTIC does not consider them.

• Metadata: this section contains all the metadata/debug information
of the program. A metadata is usually defined as:

! metadata id = ! MetadataType ( a t t r i b u t e : value , . . . )

There are several metadata types, each one with its specific attributes.
For our analysis we consider only the ones enabling source code map-
ping, that are listed in Table 6.2.

For example, a group of metadata referring to line 5 and column 3 of
file ’/path/test.c’ is defined as:

! DIFi le ( f i l ename : ’ t e s t . c ’ , d i r e c t o r y : ’/ path ’ )
! DILocation ( scope : ! 0 , l i n e : 5 , column : 3)
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We can link a metadata information to any element of the LLVM IR
by appending to its attributes a new one defined as ”!dbg !ID”, with
ID equal to the metadata identifier. DILocation metadata makes us
able to create a mapping between the lines of the LLVM IR and the
source code. For example, if the metadata !1 of the previous example
is associated to a variable, the definition of such variable will be:

@test = i32 0 , ! dbg ! 1

6.2.3 LLVM IR Labels and Basic Blocks

Inside the function body is defined a list of basic blocks, and each of them
contain an ordered lists of instructions. A basic block has a single entry
point, which means that the execution of the code inside it always starts from
the first contained instruction. To each basic block it is associated a label,
which permits to identify it and eventually start its execution, modifying
the program counter.
Labels are used to separate basic blocks and are defined before the first
instruction of it as:

; <l abe l >:ID :

The label of the first basic block is implicitly defined with id equal to the
number of arguments of the function in which it resides. This is done because
labels are treated as temporary, and thus are identified in the same way
virtual registers are: %id .

6.2.4 LLVM IR Instructions

Each basic block contains a list of LLVM IR instructions, that are defined
as:

%v i r t u a l r e g i d = in s t ru c t on . . .

This notation means that the result of the instruction will be stored into
the specified virtual register. If we omit the virtual register assignment, the
result of the instruction will be ignored.

All the instruction operands are typed, and they can refer to virtual
registers, global variables, function names, or labels.

The LLVM documentation [26] classifies instructions into different groups.
The ones ScEpTIC supports are:

• Binary Instructions: a binary instruction perform a binary opera-
tion over two operands of the same type, and stores the result in the
specified target register. Binary instructions are defined as:
%t a r g e t r e g i s t e r = <code> <type> <operand 1>, <operand 2>
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The operation code specifies the binary operation type. For example,
the increment of the virtual register %0 by two is written as:

%1 = add i32 %0, 2

Instead, the decrement of the virtual register %0 by two is written as:
%1 = sub i32 %0, 2

ScEpTIC supports all the available operation codes listed in the LLVM
IR documentation [26].

• Conversion Instructions: those instructions perform a bit-level con-
version from a source type to a target one.

The conversion instructions are defined as:
%t a r g e t r e g i s t e r = <code> <type> <operand> to <ta rge t type>

The operation code specifies the conversion type.

For example, the conversion of the signed integer 15 to the correspond-
ing floating point value is written as:

%1 = s i t o f p i32 15 to f l o a t

ScEpTIC supports all the available operation codes listed in the LLVM
IR documentation [26].

• Memory Instructions: the instructions of this group are the only
ones able to interact with the memory. The most relevant ones are:

– alloca: it allocates a given amount of memory in the stack frame,
and returns the address of such memory area. Alloca operations
are defined as:

%t a r g e t r e g i s t e r = a l l o c a <type>

For example, the following instruction allocates 32bits in the
stack:

%1 = a l l o c a i32

– load: it loads a value from the given memory address and stores
it into the target register. Loads operations are defined as:

%t a r g e t r e g i s t e r = load <type>, <type>∗ <operand>

For example, the following operation loads into the register %2
the value present in the memory location specified by the address
contained in the virtual register %1:

%2 = load i32 , i 32 ∗ %1

– store: it writes a given value into a specified memory address.
Store operations are defined as:

s t o r e <type> <value >, <type>∗ <address>
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For example, the following operation writes the value 7 into the
memory location specified by the address contained in the virtual
register %1:

s t o r e i 32 7 , i 32 ∗ %1

– getelementptr: it returns the address calculated from a given
base address and a list of offsets. This operation only performs
address calculation, and does not generate any memory access.
Getelementptr operations are defined as:
gete l ementptr <type>, <type>∗ <base address> { , <type>

<o f f s e t >}∗

For example, let us suppose we have a global variable @a which
consists in an array of 10 integer elements. The following opera-
tion calculates the address of the 3rd cell:
gete l ementptr [ 10 x i32 ] , [ 10 x i32 ]∗ @a, i 32 0 , i 32 2

The first offset refers to the entire data type, that in this case is
10 x i32, and the subsequent ones refer to actual offsets which we
use in the source programming language.

• Terminator Instructions: this group of instructions comprehends
operations that changes the control flow of the program, such as return,
branch and switch.

From the standpoint of the analysis ScEpTIC performs, the most rele-
vant one is return. As the name suggest, it returns from a subroutine
and sets the return register equal to the specified value.

Return operations are defined as:
r e t <type> <value>

For example, the following operation returns 0:
r e t i 32 0

• Other Instructions: this group of instructions contains other oper-
ations such as comparisons, selection, phi and call.

This last one is the most relevant for our analysis, and it is defined as:
c a l l @<f unc t i on name>([<type> <arg>, . . . ] )

It performs the call of the specified function. The subsequent argu-
ment list specifies the parameters that the call operation passes to the
function. For example, the following operation calls the function foo(),
using as its arguments two virtual registers:

c a l l @foo ( i 32 %0, i 32 %1)

ScEpTIC does not support vectorization, LLVM vector operations, and
functions with variable arguments, since at the moment of writing this thesis
those features are not available or used in transiently-powered devices.
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6.3 Code Representation

6.3.1 ScEpTIC Intermediate Representation

Compilers use intermediate representations for having a more suitable data
structure to recognize and modify the source code. Usually, the compiler
front-end parses the source code of the program and organizes it within an
Abstract Syntax Tree (AST), which is a tree representation of the program
structure. In such data structure, each instruction is represented as a sub
tree in which its leafs represent the operands of the instruction. The AST
of the program is used for verifying the correctness of the syntax of the
program, and then it is used for generating an intermediate representation
of the source code. It usually consists in an ordered list of abstracted in-
structions, that is then used by the middle-end for applying optimizations
to the code. The result of the middle-end is then used by the back-end for
generating the final code.

For example, Figure 6.2 represents the AST that clang produces from
the code shown in Example 6.1. This AST is used for generating the LLVM
IR code shown in Example 6.2.

ScEpTIC has the same approach of a compiler: all the simulation and
analysis it performs is not done directly on the LLVM IR, because it would
be impractical, and instead it uses a more suitable data structure. Figure 6.3
shows the process ScEpTIC perform for producing its own intermediate rep-
resentation. The parser module of ScEpTIC analyzes the LLVM IR file that
clang produces from the source code of the program. When the parser mod-
ule ends its analysis, it outputs the AST that ScEpTIC uses for performing
its analysis.

Figure 6.2: AST produced from Example 6.1.
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1 int a , b ;
2 int main ( ) {
3 a = 1 ;
4 b = a + 3 ;
5 return a ∗ b ;
6 }

Example 6.1: Example of a C
program.

1 @a = common g l oba l i 32 0
2 @b = common g l oba l i 32 0
3
4 de f i n e i 32 @main ( ) {
5 %1 = a l l o c a i32
6 s t o r e i 32 0 , i 32 ∗ %1
7 s t o r e i 32 1 , i 32 ∗ @a
8 %2 = load i 3 2 , i 32 ∗ @a
9 %3 = add nsw i32 %2, 3

10 s t o r e i 32 %3, i 32 ∗ @b
11 %4 = load i 3 2 , i 32 ∗ @a
12 %5 = load i 3 2 , i 32 ∗ @b
13 %6 = mul nsw i32 %4, %5
14 r e t i 32 %6
15 }

Example 6.2: LLVM IR produced
from Example 6.1.

Figure 6.3: Source code parsing pipeline.

Figure 6.4 shows the components of the parser module of ScEpTIC, and
Figure 6.5 shows its work flow. The TokenGenerator converts the source
LLVM IR file into a list of tokens, which consists in strings representing a
recognizable information of LLVM IR. Tokens do not include spacing char-
acters. For example, %1 = a l l o c a double is converted in the list:

[ ’%1 ’ , ’= ’ , ’ a l l o ca ’ , ’ double ’ ]

The produced list of tokens is then processed by the SectionDivider
sub module, that analyzes and splits tokens into different sub lists, one
for each LLVM IR section. Each produced sub list is then processed by
the corresponding SectionParser sub module, which extracts the relevant
information of the section and creates the associated ScEpTIC AST. The
SectionParser that parses functions uses the InstructionParser sub mod-
ules to extract the relevant information of instructions, and to produce the
corresponding intermediate representation of the function’s body.

Once the parsing process completes, the parser module returns the pro-
duced ScEpTIC AST.
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Figure 6.4: ScEpTIC Parser Module.

Figure 6.5: Sequence diagram representing the parsing of the source file.
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Figure 6.6 shows the structure of ScEpTIC AST. The root node is con-
nected to 5 sub trees, each one of them representing a group of information
that is relevant for ScEpTIC. The leaf nodes of each sub trees consist in an
object of the ScEpTIC AST Class, that contains all the relevant information
about the represented element.

The available ScEpTIC AST Classes are:

• GlobalVar: it represents a global variable, and contains its name,
the initial value and its type. If the type is a custom one, the node is
linked to a CustomType object.

• Function: it represents both a function definition and declaration.
This ScEpTIC AST class contains the function name, the return type
and a list of the argument’s types. If the object represents a func-
tion definition, it also contains the list of instructions composing the
function’s code.

• CustomType: it represents the definition of a custom type, and con-
tains its name and its definition, which is represented as a non-empty
list of types.

• Metadata: it represents the definition of a metadata, and containts
the metadata type and its relevant attributes, that we describe in
Table 6.2.

Furthermore, each instruction contained in the function definition is rep-
resented as an AST Instruction Class. There are one implementation of
AST Instruction Class for each LLVM IR instruction. Each type of AST
Instruction Class extends the AST Instruction base class and contains all the
necessary data that makes ScEpTIC able to run the associated instruction.
For example, the BinaryOperation class extends Instruction and contains
the type of the binary operation to be executed, a reference to the target
register, and a reference to its two operands.

Instruction operands can be represented either by an Immediate Value,
a reference to a Virtual Register, or a reference to a Global Variable. ScEp-
TIC treats all those elements in the same way, by representing them using
an object of the Value class, that during runtime is converted into the
required value. In this way, ScEpTIC is able to directly resolve composite
operands which uses LLVM IR sub-expressions containing getelementptr or
any conversion instruction.

6.3.2 Libraries and ScEpTIC Built-ins

One of the latest phases of the compiler back-end consists in the linking of
libraries, that are files containing a set of routines used by the program. The
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Figure 6.6: ScEpTIC Abstract Syntax Tree.

Figure 6.7: ScEpTIC Builtins Module.

linking phase extracts the relevant elements from such files and put them
into the final executable binary, among the compiled code of the program.

Usually, libraries are already compiled for the host architecture (i.e., the
one compiling), and thus they must be re-compiled for the target architec-
ture if it differs from the hosting one. For this reason, the code of libraries
does not appear in the LLVM IR, and instead it contains only the declaration
of each library function.

To overcome the problem of not having the code of library functions in
the LLVM IR, and thus in the ScEpTIC AST, ScEpTIC provides the Builtins
module. It provides the implementation of the most common function li-
braries, and automatically performs their linking to the ScEpTIC AST. Fig-
ure 6.7 shows the components of this module, which are:
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• Builtin: it is a class extending the AST Instruction base class, and
it is used for providing the same functionality of a library function.
We can use this class for implementing our own library functions. For
each library function we want to implement, we must create a new class
extending Builtin, and within it we must specify the implementation
of such functionality. Then, we can call the define builtin method over
the created class, without instantiating a new object.

• BuiltinLinker: it emulates the functionality of a linker, and links
the defined functions into the ScEpTIC AST. To achieve that, for each
defined Builtin, it accesses the ScEpTIC AST and searches for the
corresponding Function Declaration. If no declaration is found, it skips
to the next Builtin definition. Otherwise, it firstly creates the function
prologue, which consists in a group of instruction that only load the
function arguments from the stack. Then, it appends the actual code,
which is represented by the extended Builtin class. Finally, it creates
the function epilogue, which contains a ReturnOperation that returns
the value computed by the function implementation.

With these tasks it created the list of instructions composing the func-
tion code. As final operation, it appends such list to the found decla-
ration, transforming it into a Function Definition.

The BuiltinLinker is automatically invoked when the parser module
finishes producing the ScEpTIC AST.

• Libs: this sub module contains the definition of the functionalities
provided by the most used C libraries, which are:

– math.h: it provides the functionalities of acos, asin, atan, atan2,
ceil, cos, cosh, exp, fabs, floor, fmod, log, log10, pow, sin, sinh,
sqrt, tan, and tanh.

– stdio.h: it provides the functionalities of the printf.

– stdlib.h: it provides the functionalities of calloc, free, malloc,
and realloc.

The Builtins module automatically tries to link the functionalities con-
tained in the Libs sub module.

We can use the Builtins module for providing the implementation of
other library functions. Let us suppose we want to provide the implemen-
tation of the function cos, that is included in the C math library:

double cos (double x )

Example 6.3 shows how we can implement it. Firstly, we must create the
class cos by extending Builtin. Then, we must specify in the get val method
the code which provides the same result of the implemented function.
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1 # import python math l i b r a r y
2 import math
3
4 # Define the c l a s s which prov i de s the implementat ion
5 class cos ( Bu i l t i n ) :
6 def g e t v a l ( s e l f ) :
7 return math . cos ( s e l f . a rgs [ 0 ] )
8
9 # Define the b u i l t i n

10 cos . d e f i n e b u i l t i n ( ’ cos ’ , ’ double ’ , ’ double ’ )

Example 6.3: Implementation of the cos function included in the math
library.

1 ; Function Prologue
2 ; Save parameter in t o the s t a c k
3 %1 = a l l o c a double
4 s t o r e double %0, double ∗ %1
5 ; Load argument from the s t a c k
6 %2 = load double %1
7
8 ; Function Code
9 %3 = cos ( double %2)

10
11 ; Function Epi logue
12 r e t double %3

Example 6.4: LLVM IR version of the produced ScEpTIC AST by the
BuiltinLinker from Example 6.3.

Such method must return the result of the operation, and it is the one that
ScEpTIC executes during the analysis. In the implementation of the function,
we can access the arguments using the variable self.args. It consists in a list
that is automatically populated during runtime with the values of the passed
arguments. As final step, we call define builtin on the created class, passing
as arguments the function name, the return type, and the argument type.

Before ScEpTIC starts the simulation, it invokes the BuiltinLinker, which
generates the ScEpTIC AST for the cos function and attaches it to the
corresponding function declaration.

Example 6.4 shows the LLVM IR version of the generated ScEpTIC AST.
Each line corresponds to an extension of ScEpTIC AST Instruction, and the
element at line 9 is exactly the builtin we created.
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6.3.3 Register Allocation and Tests

The register allocation process maps virtual registers to the physical one
available in the architecture, and it is performed by the back-end. This step
may introduce memory operations that lead to inconsistencies, and ignoring
it may lead to an inaccurate analysis. For this reason, ScEpTIC permits us
to perform the register allocation over the ScEpTIC AST.

Let us suppose that we have a register file with only two registers, R0
and R1, and that we want to perform the register allocation on Example 6.5.
We start from the first instruction, and we map the virtual register %0 into
R0. For the second instruction, we replace the occurrence of %0 with R0,
and then we map the virtual register %1 to R1. Now we do not have any
available register, since they are all allocated. The values contained in both
R0 and R1 are needed by future instructions, so we must preserve such
values. To continue the register allocation on instruction at line 3, we must
save a register into the stack. This operation is called spill. The value of
%1 is not required until the instruction at line 5, so we can save it into the
stack by inserting a store operation. Now we can map %2 into R1, and then
we replace all the occurrence of %1 with R1. Before performing the register
allocation over instruction at line 5, we need to restore the value of register
R1, which was saved in the stack by a previous spill. This operation is called
promotion, and for performing it we insert a load before the instruction at
line 5.

Example 6.6 shows the overall result of the register allocation, in which
the alloca instruction at line 1 was inserted to show that we need some stack
space to save the register.

1 %0 = load i 3 2 , i 32 ∗ @var
2 %1 = add i32 %0, 1
3 %2 = sub i32 %0, 3
4 s t o r e i 32 %2, i 32 ∗ @var
5 %3 = mul i32 %1, 5
6 [ . . . ]

Example 6.5: LLVM IR code
on which we want to perform
register allocation.

1 %spill = a l l o c a i32
2 R0 = load i 3 2 , i 32 ∗ @var
3 R1 = add i32 R0, 1
4 ; S p i l l r e g i s t e r R1
5 s t o r e i 32 R1, i 32 ∗ %spill
6 R1 = sub i32 R0, 3
7 s t o r e i 32 R1, i 32 ∗ @var
8 ; Promote r e g i s t e r R1
9 R1 = load i 3 2 , i 32 ∗ %spill

10 R0 = mul i 32 R1, 5
11 [ . . . ]

Example 6.6: Results of the
application of register allocation
on Example 6.5.
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1 de f i n e i 32 @main ( ) {
2 %1 = a l l o c a i32
3 %2 = a l l o c a i32
4 %3 = a l l o c a i32
5 s t o r e i 32 0 , i 32 ∗ %1
6 s t o r e i 32 5 , i 32 ∗ %2
7 s t o r e i 32 6 , i 32 ∗ %3
8 %4 = load i 3 2 , i 32 ∗ %2
9 %5 = load i 3 2 , i 32 ∗ %3

10 %6 = c a l l i 32 @foo ( i 32
%4, i 32 %5)

11 r e t i 32 %6
12 }
13
14 de f i n e i 32 @foo ( i 3 2 , i 32 ) {
15 %3 = a l l o c a i32
16 %4 = a l l o c a i32
17 %5 = a l l o c a i32
18 s t o r e i 32 %0, i 32 ∗ %3
19 s t o r e i 32 %1, i 32 ∗ %4
20 %6 = load i 3 2 , i 32 ∗ %3
21 %7 = load i 3 2 , i 32 ∗ %4
22 %8 = add i32 %6, %7
23 s t o r e i 32 %8, i 32 ∗ %5
24 %9 = load i 3 2 , i 32 ∗ %5
25 r e t i 32 %9
26 }

Example 6.7: LLVM IR code on
which we want to perform register
allocation.

1 de f i n e i 32 @main ( ) {
2 %1 = a l l o c a i32
3 %2 = a l l o c a i32
4 %3 = a l l o c a i32
5 s t o r e i 32 0 , i 32 ∗ %1
6 s t o r e i 32 5 , i 32 ∗ %2
7 s t o r e i 32 6 , i 32 ∗ %3
8 R0 = load i 3 2 , i 32 ∗ %2
9 R1 = load i 3 2 , i 32 ∗ %3

10 R0 = c a l l i 32 @foo ( i 32
R0, i 32 R1)

11 r e t i 32 R0
12 }
13
14 de f i n e i 32 @foo ( i 3 2 , i 32 ) {
15 %3 = a l l o c a i32
16 %4 = a l l o c a i32
17 %5 = a l l o c a i32
18 s t o r e i 32 %0, i 32 ∗ %3
19 s t o r e i 32 %1, i 32 ∗ %4
20 R0 = load i 3 2 , i 32 ∗ %3
21 R1 = load i 3 2 , i 32 ∗ %4
22 R2 = add i32 R0, R1
23 s t o r e i 32 R2, i 32 ∗ %5
24 R0 = load i 3 2 , i 32 ∗ %5
25 r e t i 32 R0
26 }

Example 6.8: Results of the
application of register allocation on
Example 6.7.

As is possible to see in the described example, after performing the reg-
ister allocation, it is possible that we introduce in the code some memory
load and store instructions. Such insertions may change the results of test-
ing, making it imprecise, and thus we should perform register allocation for
having an accurate result.

Register allocation should also account for function calls. Before each
call, the registers that the called routine uses are saved into the stack, to
preserve their value. This operation is performed only if some registers used
by the caller are modified by the callee. If this step is not considered, the
analysis done in ScEpTIC could be imprecise, due to unreal memory accesses.

Compilers tries to minimize the registers saved before function calls by
partitioning them among functions, in a way which reduces usage overlaps.
Example 6.8 shows the result of a register allocation performed over Ex-
ample 6.7, in which we did not partition any register. Furthermore, let us
suppose we have a register file with 10 registers. Note that alloca opera-
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Figure 6.8: ScEpTIC Linear Scan Register Allocation Module.

tions do not correspond to a real instruction, and its result is a stack offset
which will be explicitly set in the code during the compilation phase. For
this reason, it is ignored during register allocation process that ScEpTIC

performs.
As we can see, registers are not partitioned, and both main and foo uses

the same ones. When the function foo is called, there is an overlapping of
registers that requires saving them for preserving their values. If we consider
the maximum amount of registers that each function require, we can see
that main uses at most 2 registers, and the foo uses 3. The overall usage of
registers is below the number of the ones available in the register file. For
this reason, we can assign other registers to foo, so to remove the overlapping
with the registers that main uses. For example, we can substitute R0, R1
and R2 with respectively R3, R4 and R5. As result, we obtain a partitioning
which avoids registers savings, and thus reduces memory operations.

This kind of analysis is not trivial, and ScEpTIC uses a technique that
makes it able to obtain the same result without performing register par-
titioning. Figure 6.8 shows the structure of the module which performs
the register allocation. ScEpTIC applies the register allocation directly on
the ScEpTIC AST, using the algorithm called Linear Scan Register Alloca-
tion [27], that is used by real-world compilers.

The LinearScanRegisterAllocator performs the register allocation,
and then it estimates the partitioning of registers:

1. It allocates registers to each function individually, without considering
the ones mapped in other functions. The module does this operation
using the RegisterPool class, which helps in keeping track of available
registers.

2. It calculates the overall number of registers that each function uses.
Such number is equal to the actual number of registers that each func-
tion uses, plus the maximum number of registers used by a function
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Algorithm 10 Iterative calculation of the overall number of registers used
by each function.

Require: number of registers present in the register file (n regs).
1: // Init
2: for each function f do
3: calls[f ] ← list of functions called by f
4: reg count[f ] ← maximum number of registers used by f
5: max reg count[f ] ← reg count[f ]

6:

7: // Iterative calculation
8: do
9: for each function f do

10: // find max reg usage of called functions
11: max call regs ← 0
12: for each j in calls[f ] do
13: max call regs ← max(max call regs,max reg count[f ])

14:

15: // The register usage is equal to max call regs+ reg count[f ]
16: // It must be limited to n regs, since if it exceeds this number
17: // all the registers must be saved, which is exactly n regs
18: max reg count[f ]← min(max call regs+ reg count[f ], n regs)
19:

20: until fixed point reached

that is called inside the one we are considering. Recursive calls are
ignored, since they do not introduce any new register usage.

Algorithm 10 shows how we can calculate this parameter. The maxi-
mum number of registers is initialized to the ones used by the function,
and then it is iteratively updated. At each step, for each function we
find the maximum number of registers used by a called routine. Then,
we sum this number to the amount of registers used by the considered
function. The computation stops when we reach a fixed point that is,
when the number of registers used by each function is the same one we
calculated in the previous iteration. We must compute this parameter
iteratively because it is possible to have call cycles (i.e., a calls b; b
calls a;). They induce cyclic dependency among the values we calcu-
late, and we could be stuck in an infinite loop during the computation.
Iterations remove this problem.
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3. As next step, it performs the register partitioning. For each call in-
struction appearing in a function code:

3.1. It computes the number of registers to be saved:
used regs = |n resg + n call regs− reg file dim|

with n regs equal to the number of registers used by the calling
function, n call regs equal to the number of registers used by
the called function, and reg file dim equal to the total number
of available registers.

3.2. It inserts an instance of the SaveRegistersOperation class be-
fore the call instruction, initializing it with used regs. When the
SaveRegistersOperation is executed, it saves the entire register
file into its internal state, and then allocates used regs cells into
the stack, to emulate the register saving operations.

3.3. It inserts an instance of the RestoreRegistersOperation class
after the call instruction, initializing it with the reference to the
corresponding SaveRegistersOperation. When RestoreRegister-
sOperation is executed, it restores the registers, except for the
one containing the returne value.

During the execution, SaveRegistersOperation saves the entire
register file, since the register allocation is performed without
considering the other routines. This, along with the used regs
parameter, permits ScEpTIC to emulate the registers partitioning
obtained by a real-world compiler, without actually performing
it.

For a better comprehension, let us apply this procedure to Example 6.7.
We allocate the registers, obtaining the result that Example 6.8 shows. As
next step we need to apply Algorithm 10. We initialize the data structures
as shown in Table 6.3: main uses 2 registers (R0, and R1), and foo uses
3 registers (R0, R1, and R2). We start the iteration process, and it ends
in just one step: we obtain a usage of 5 registers for main and 3 for foo.
Now we apply the third step of the procedure. We insert SaveRegistersOp-
eration() and RestoreRegistersOperation() respectively before and after the
call present at line 10 of the main function. Example 6.9 shows the final
result of the register allocation process.

Function Name Reg Count Max Reg Count Calls

main 2 2 foo

foo 3 3

Table 6.3: Initialization of Algorithm 10 applied to Example 6.8.
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1 de f i n e i 32 @main ( ) {
2 %1 = a l l o c a i32
3 %2 = a l l o c a i32
4 %3 = a l l o c a i32
5 s t o r e i 32 0 , i 32 ∗ %1
6 s t o r e i 32 5 , i 32 ∗ %2
7 s t o r e i 32 6 , i 32 ∗ %3
8 R0 = load i 3 2 , i 32 ∗ %2
9 R1 = load i 3 2 , i 32 ∗ %3

10 SaveReg i s te r sOperat ion ( )
11 R0 = c a l l i 32 @foo ( i 32 R0, i 32 R1)
12 Res to reReg i s t e r sOperat ion ( )
13 r e t i 32 R0
14 }
15
16 de f i n e i 32 @foo ( i 3 2 , i 32 ) {
17 %3 = a l l o c a i32
18 %4 = a l l o c a i32
19 %5 = a l l o c a i32
20 s t o r e i 32 %0, i 32 ∗ %3
21 s t o r e i 32 %1, i 32 ∗ %4
22 R0 = load i 3 2 , i 32 ∗ %3
23 R1 = load i 3 2 , i 32 ∗ %4
24 R2 = add i32 R0, R1
25 s t o r e i 32 R2, i 32 ∗ %5
26 R0 = load i 3 2 , i 32 ∗ %5
27 r e t i 32 R0
28 }

Example 6.9: Results of the application of the entire procedure over
Example 6.8.

If a compiler for our target architecture uses a different register allocation
algorithm, we may want to perform the analysis using the register allocation
it produces. For this reason, ScEpTIC permits us to customize the register
allocation algorithm we want to use. We can implement an algorithm of our
choice, and then we configure ScEpTIC for using it, as we show in Section 6.6.
The register allocation algorithm must expose a method that accept the
following parameters, in this order:
• functions: the ScEpTIC AST node containing functions and their

codes.
• registers number: the number of available registers in the register

file.
• reg prefix: the prefix of the register name.
• spill prefix: the prefix of the virtual register used for spilling registers.
• spill type: the type of the spill registers.

Such method must apply the register allocation to the ScEpTIC AST that
receives as parameter.
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6.4 Architecture

6.4.1 Overview

This Section describes the components of ScEpTIC and how they can be
configured. All the functionality of this testing tool are exposed through a
VM object, which initializes and configures each element.

The VM object takes from the configuration the LLVM IR source file,
and initializes the parser with it. Once the parser produces the initial ScEp-
TIC AST, the VM object initializes the VMState object, by passing to it the
ScEpTIC AST and the configuration. The sequence diagram of Figure 6.9
shows the overall work flow of ScEpTIC.

The VMState object represents the runtime state of ScEpTIC. It contains
the ScEpTIC AST, the RegisterFile, the Memory, and the logical clock
which permits events ordering.

As first step, it initializes the register file and the memory, with the
required configuration. Then, the control is passed to the VM object, which
initializes the CheckpointManager. This component exposes the methods
for performing checkpoints during the execution of tests. As next step, it
calls the method exposed by the VMState object for initializing the global
variables and the code to be used.

When the code is initialized, the VMState also calls the BuiltinLinker to
create the missing code of library functions and user-defined ones. As next
step, the VMState performs the register allocation, if we enabled it in the
configuration.

Figure 6.9: Sequence diagram representing the initialization of ScEpTIC.
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At the end of this stage, ScEpTIC is completely initialized. The VM
object executes the required analysis by loading an InterruptionManager
for each test to be performed. The InterruptionManager is a component
that implements the test work flow.

6.4.2 Register File

Figure 6.10 shows the components of the register file module, which are:

• Register: this class represents a register and contains its name and
value.

• ProgramCounter: this class represents the program counter, and
consists in a pair (routine name, instruction number) which contains
the instruction to be executed. It also includes an internal stack of
program counters, used to track the function calls during the execution
of testing. For example, if at line 3 in the main function of the program
there is a call to a function foo, the current program counter after
having performed the call is (foo, 0) and the internal call stack is
[(main, 2)].

• RegisterFile: it is the base class containing all the functionalities of
the register file, and provides the methods for interacting with reg-
isters. It includes the list of registers, the program counter, and the
stack base pointer (BP).

• VirtualRegisterFile: it is an implementation of the RegisterFile and
uses an unlimited number of registers, as the LLVM IR does.

All the routines in LLVM IR consider to have a separate register file,
since the identifier used to track registers starts from 0 in each of them.
To have a separate register file for each function call, the VirtualReg-
isterFile implements an internal call stack. Whenever a function call
happens, the current list of registers is put in top of the internal call
stack, and such list is reinitialized to accommodate the new virtual
registers. When a return instruction is executed, the list of registers
on top of the call stack is restored.

• PhysicalRegisterFile: it is an implementation of the RegisterFile
which uses a limited number of registers, as happen in a real archi-
tecture. In a real-world scenario, the number of registers is physically
limited and this could lead to more interactions with memory, as ex-
plained in Section 6.3.3. This register file can be used only if the
register allocation is applied to the ScEpTIC AST, and apart from the
list of registers, it contains also an unlimited list of address registers.

This is required because in LLVM IR alloca operations store their
result into virtual registers, but in real-case scenarios this value is
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Figure 6.10: Register File module of ScEpTIC.

Figure 6.11: Memory module of ScEpTIC.

known at compile time. For this reason, the virtual register used as
target by alloca instructions is not substituted with a physical register
during the register allocation process.

• RegisterFileInitializer: it initializes and returns the correct imple-
mentation of the RegisterFile class, given the user configuration.

6.4.3 Memory

Figure 6.11 shows the components of the memory module, which are:

• Memory: this class is in charge of the initialization and administra-
tion of the entire memory of ScEpTIC. It exposes methods to interact
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with the various sections of the memory, independently on their loca-
tion (i.e., RAM or NVM).

• VirtualRAM: it is the base class that represents a RAM, and it is
implemented by the classes SRAM and FRAM. The first class repre-
sents the Static RAM, which is volatile, and the second one represents
the Ferroelectric RAM, which is non-volatile. A RAM class contains
the memory sections allocated in the represented RAM, and exposes
the functionality for performing the memory reset.

• VirtualMemoryCell: it represents a single addressable memory cell
and contains the cell address, dimension, and content. This class ex-
poses all the methods for interacting with a memory cell, such as read,
write, free, remap, etc. The memory content is not represented in bi-
nary format, but is directly represented in numeric or string form, so
to have a better view of the state during tests. Integers are by default
considered as signed, and if an instruction works with unsigned inte-
gers, it converts the operands into the requested form to perform the
operation. Then, the result is converted back in signed integer form.

• VirtualMemory: it is the base class representing a generic memory
section. This class contains the definition of the address space for the
represented memory section, a list of the memory cells contained in it,
and exposes the methods which permits interacting with the memory
cells it contains.

Since the simulator is architecture-independent and does not require
the dimension of the memory, it is not possible to have the memory
sections within the same address space, otherwise there will be conflicts
due to addresses overlapping.

To overcome this problem, each memory section is considered to be
totally detached from the others, and thus addresses starts from 0.

For distinguishing different memories, the memory address is com-
posed by two elements: a prefix characterizing the memory section
and the relative address of it. For example, if we want to access the
memory cell present in the stack section at the address 0x01, the ab-
solute address we must consider is STACK-0x01.

• VirtualStack: it is the implementation of VirtualMemory which rep-
resents the stack memory section. It exposes methods for the alloca-
tion and de-allocation of space into the stack, for popping and pushing
values from/to the stack, and contains the stack pointer SP. Even if
it should be a register, SP is contained here because that makes easier
to manage the stack.
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• VirtualHeap: it is the implementation of VirtualMemory which rep-
resents the heap memory section and exposes methods for managing
it. It organizes the allocated memory cells within memory groups, and
emulates the behavior of the heap.

For example, if we perform a free request over a memory cell, all the
associated memory group is freed. A free request removes VirtualMem-
oryCell objects only if it is at the end of the list containing the memory
cells. Otherwise, it aggregates all the memory cells of the freed group
into a single one, which is then marked as garbage. If two adjacent
memory cells are marked as garbage, they are merged into a single one
VirtualMemoryCell object. When an allocation request happens, the
VirtualHeap firstly search for a garbaged memory cell able to fit the
required size. If it finds such memory cell, the VirtualHeap allocates
it the request, otherwise it creates a cell at the end of the heap.

• VirtualGlobalSymbolTable: it is the implementation of VirtualMem-
ory which represents the memory section used to store global vari-
ables. It exposes methods for accessing them, and keeps track of the
VirtualMemoryCells containing variables. For doing so, it uses a dic-
tionary that maps the variable name with the relative address of the
associated cell.

Usually, global variables are placed on top of the stack, but since it
is possible to have global variables in NVM without having the stack
allocated in it, this class is required. Also, for the same reasons, during
runtime there will be two instances of this class: one representing the
variables in SRAM and one representing the variables in FRAM. In
this way, it is more practical managing variable accesses.

• GSTUnifier: this class contains the instances of VirtualGlobalSym-
bolTable and provides access to global variables independently of their
memory type. It does not retrain memory information, and it just
provides transparent access over the Global Symbol Tables.
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6.4.4 Input and Output

Transiently powered devices are usually used for interacting with the envi-
ronment, and thus they may have input and output capabilities. Usually, the
function permitting environment interactions are architecture-dependent.
To overcome this architecture dependency, ScEpTIC treats I/O elements as
Builtin functions, that the user can define.

Figure 6.12 shows the components of the I/O module, which is provided
within ScEpTIC to enable the support of I/O interactions.

Input. Input functions consists in an extension of the InputSkeleton
base class, which by itself extends the Builtin class and contains all the
information about an input. The definition of the class defining an input
is similar to the definition of a ScEpTIC Builtin, which we described in
Section 6.3.2.

The InputSkeleton class exposes the define input method, that permits
mapping the input with the relative element in the ScEpTIC AST. For defin-
ing an input, we can call such method directly on the extended class, and it
is defined as:
de f i n e i npu t ( input name , function name , arguments , r e tu rn type )

Its arguments are:

• input name: the name of the input, which is used as identifier during
the analysis.

• function name: the name of the function that corresponds to the cre-
ated input. This parameter identifies the function that we need to put
in our source code for accessing the input data.

• arguments: it is a string containing the types of the arguments of the
input function. We must express such types as first-class LLVM IR
types.

• return type: it is a string defining the type of data that the input
function returns. As for the arguments, we must express such type as
a first-class LLVM IR type.

Figure 6.12: I/O module of ScEpTIC.
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1 class MyPersonalyzedInput ( InputSke leton ) :
2 def g e t v a l ( s e l f ) :
3 s e l f . va lue = f loat ( s e l f . arg [ 0 ] ∗

s e l f . arg [ 1 ] − 7)
4 return super ( ) . g e t v a l ( )
5
6 MyPersonalyzedInput . d e f i n e i npu t ( ’DISTANCE ’ ,

’ my distance ’ , ’ i32 , i 32 ’ , ’ f l o a t ’ )

Example 6.10: Example of the definition of an input.

Example 6.10 shows the definition of an input named DISTANCE, which
we can access using the function named my distance. It has two 32-bit
integers as arguments and returns a floating-point value.

Note that any extension of the InputSkeleton requires to set the object
variable self.value to the selected value of the input, and it must call the
get val() method of the parent class. This is required because the get val()
method that InputSkeleton implements keeps track of the current input val-
ues, which is required by the analysis ScEpTIC performs. The absence of
such call makes the analysis unreliable.

The InputManager class manages all the inputs during runtime, and
exposes a set of methods for analyzing and managing them.

Even if the process of creating an input is trivial, for most use cases
arguments are not required, since an input will simply return a predefined
value. For simplifying the definition of inputs in this scenario, the Input-
Manager exposes a create input method which manages the class extension
automatically. It is defined as:

c r e a t e i npu t ( input name , function name , r e tu rn type )

The arguments of this method are the same of define input, except argu-
ments, which is omitted due to the previous assumption.

Let us suppose that we want to create an input named DHT11, which
return a 32-bit integer, and that we want to use the function input dht11()
in our source code. To achieve that, we can perform the following operation
in the configuration file:

InputManager . c r e a t e i npu t ( ’DHT11 ’ , ’ input dht11 ’ , ’ i 32 ’ )

For specifying the values of the inputs created through the InputManager,
we can use the set input value method it exposes, which takes as arguments
the identifier of the input and the value we want to assign.
Output ScEpTIC manages outputs in the same way it manages inputs. We
can create an output function as an extension of the OutputSkeleton base
class which extends the Builtin class.

The OutputSkeleton class exposes the define output method, which per-
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1 class MyPersonalyzedOutput ( OutputSkeleton ) :
2 def g e t v a l ( s e l f ) :
3 s e l f . va lue = [ s e l f . arg [ 0 ] , s e l f . arg [ 1 ] ∗ 5 ]
4 super ( ) . g e t v a l ( )
5
6 MyPersonalyzedOutput . de f i n e ou tput ( ’MOTOR’ ,

’my motor ’ , ’ i32 , i 32 ’ , ’ void ’ )

Example 6.11: Example of the definition of an output.

mits us mapping the output with the relative element in the ScEpTIC AST.
We must call this method directly on the extended class, and it is defined
as:

de f i n e ou tput ( output name , function name , arguments ,

r e tu rn type )

The arguments of such method are the same ones of the define input method.

Example 6.11 shows the definition of an output named MOTOR, which
we can access in the source code using the function named my motor. It
has as arguments two 32-bit integers, which are sent as output values, and
it does not return any value.

Note that, as for the InputSkeleton, any extension of the OutputSkeleton
must set the object variable self.value with the selected value of the output,
and must call the get val() method of the parent class.

The OutputManager class manages all the outputs during runtime,
and it exposes methods for analyzing and managing them.

For most use cases, an output function has a single argument, which
will contain the data we want to send to the environment. For this reason,
as the InputManager does, the OutputManager exposes a method for cre-
ating an output function without extending the OutputSkeleton, which is
create output. It is defined as:
c r ea t e output ( output name , function name , argument , r e tu rn type )

The arguments of this method are the same of the define output, except for
the parameter argument which must contain only a single type.

Let us suppose that we want to create an output named RELE, which
takes as input a 32-bit integer. Furthermore, suppose that it does not re-
turn any value, and that we want to use the function output rele() in our
source code. To achieve that, we can perform the following operation in the
configuration file:

OutputManager . c r ea t e output ( ’RELE ’ , ’ ou tpu t r e l e ’ , ’ i 32 ’ ,

’ void ’ )
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6.4.5 Checkpoint Manager

The implementation of a checkpoint mechanism is likely to be architecture-
dependent, since it saves registers and memory. Furthermore, a checkpoint
mechanism may use features that are available only on certain devices, such
as an internal voltage comparators or interrupts.

For running its tests, ScEpTIC does not require to emulate the same
behavior of a checkpoint mechanism, and it only requires to save the same
data. For this reason, it provides a CheckpointManager class that exposes
the two fundamental routines of a checkpoint mechanism: do checkpoint and
do restore.

We do not need to extend or modify the CheckpointManager, and we
can configure its behavior in the configuration file, as we will describe in
Section 6.6.

6.4.6 Interruption Manager

Most of the test we describe in Chapter 4 and Chapter 5 requires an in-
termittent execution, in which we must generate power resets in precise
positions.

For running tests, ScEpTIC uses different extensions of the Interrup-
tionManager base class, and each one of them implements the work flow
of a test case. They also include all the comparisons done for verifying the
tested properties.

ScEpTIC executes a test by invoking the run test method exposed by the
VM object. For understanding how ScEpTIC performs a test, let us focus
on Example 6.12. It consists in a part of the implementation of run test
that executes the code and runs a specified analysis over it.

Line 3 dynamically loads an instance of the required interruption man-
ager, and the actual analysis is performed between lines 5 and 10. The
method intermittent execution required at line 6 returns True if an inter-
mittent execution flow is required. If so, ScEpTIC runs the code calling the
run with intermittent execution method, which implements an intermittent
execution flow and the analysis logic. Otherwise, ScEpTIC runs the instruc-
tion normally, with the run step method that the VMState object exposes.

We can create our own analysis by extending the InterruptionManager
base class, and we must implement two methods:

• intermittent execution required : it must return a Boolean value in-
dicating if the execution should continue intermittently. If the test
represented by the class does not require an intermittent execution,
all the test logic should be implemented in this method, since it is run
before the actual execution of each instruction.

• run with intermittent execution: it must implement the test logic and
the actual intermittent execution of the code. If the test represented



6.4. ARCHITECTURE 141

1 def r un t e s t ( s e l f , module name , c lass name ) :
2 [ . . . ]
3 int mngr = s e l f . l o ad in t e r rup t i on manage r (module name ,

c lass name )
4
5 while not s e l f . s t a t e . program end reached :
6 i f int mngr . i n t e rm i t t e n t e x e cu t i o n r e qu i r e d ( ) :
7 int mngr . r un w i th i n t e rm i t t en t ex e cu t i on ( )
8
9 else :

10 s e l f . s t a t e . run s tep ( )
11 [ . . . ]

Example 6.12: Part of the run test method exposed by VM.

by the class does not require an intermittent execution, this method
can be leaved blank.

ScEpTIC provides the interruption managers that implements the tests
we describe in Chapter 4 and Chapter 5. They are:

• DataInterruptionManager : implements all the tests described in Chap-
ter 4.

• InputInterruptionManager : implements the tests described in Sec-
tion 5.2

• InteractionInterruptionManager : implements the tests described in
Section 5.3

We can specify the analysis that ScEpTIC performs inside the configura-
tion file, without intervening on the actual code. Moreover, if we want to
verify the sequential execution of our source code, we can just run a test us-
ing the InterruptionManager base class, that does not execute any analysis
and simply runs the code sequentially.

The structure of ScEpTIC permits us creating new analysis easily. Once
we have implemented the extension of the InterruptionManager that fits our
needs, we can put the source file in the following folder:

ScEpTIC/emulator/intermittent executor/interruption managers/
Then, for running the implemented analysis, we can call the run test method
that the VM object exposes, by specifying the name of our file and the name
of the extended class.

For example, if we implement a new test in the class called NewTestIn-
terruptionManager contained in the file named ’new.py ’, we can call:

r un t e s t ( ’new ’ , ’ NewTestInterruptionManager ’ )
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6.5 ScEpTIC AST Execution

ScEpTIC executes the nodes of the ScEpTIC AST by calling the run step
method that the VMState object exposes. It retrieves the current instruction
and then runs it, as the sequence diagram of Figure 6.13 shows.

When ScEpTIC calls the run step method, the VMState gets the current
program counter from the register file. Then, it retrieves the corresponding
instruction from the ScEpTIC AST, and it calls its run method.

Each node of the ScEpTIC AST that represents an instruction extends
the Instruction base class, and implements an get val method. It retrieves
the value that the execution of the instruction produces, and returns it.

The Instruction base class exposes a run method, which has the effect of
executing the represented instruction. It performs the following operations:

1. It calls the get val method on itself, that returns the result produced
by the execution of the instruction. If the instruction has a target
register, the result is then stored in it.

Figure 6.13: Sequence diagram representing the execution of the current
instruction in the ScEpTIC AST.
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2. It increments the global clock by tick count, which is a parameter de-
fined in the instruction. It indicates the number of machine operation
that corresponds to the instruction. For example, the alloca operation
has a tick count of 0.

3. It increments the program counter.
Finally, the run method that the Instruction base class exposes perform

a pre-defined sequence of operations. There are instructions that requires a
specific implementation of the run method, since they perform other oper-
ations. In such case, their implementation overwrites the run method that
the Instruction base class implements. For example, the run method that
CallOperation implements changes the program counter, instead of incre-
menting it.

6.6 Configuration

6.6.1 Overview

In ScEpTIC it is possible to configure each component and to specify which
analysis we want to perform over the source code. All the configuration
happens in a file, which has a list of variables representing the properties
that requires a configuration. In this file we must also insert the definition
of custom Builtins, Inputs and Outputs.

We can find an example of the configuration file in the root directory
of ScEpTIC. It is called config.sample.py and shows the different parameters
that we can configure.

The configuration file has different parts, that we describe in the follow-
ing sections.

6.6.2 Test Configuration

This section of the configuration file permits us to set up the source file of
our program, the analysis we want to perform, and the output directory
where the results of the analysis will be saved.

The variables permitting such actions are:

• file: it must contain the path of the source LLVM IR file.

• save test results: it is a Boolean value which states if tests results
should be saved into a file or not.

• save llvmir code: it is a Boolean value which states if the ScEpTIC AST
used during tests should be converted into a textual representation and
saved into a file.

• save vm state: it is a Boolean value which states if the register file and
memory should be saved into a file or not.
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• save dir : it is a string representing the directory where the produced
files are saved.

• run sequential program: it is a Boolean value which states if we want
to execute the source file sequentially, without running any test over
it.

• run data consistency test : it is a Boolean value which states if we want
to execute the data consistency test.

• run input consistency test : it is a Boolean value which states if we
want to execute the input consistency test.

• run output profiling test : it is a Boolean value which states if we want
to execute the profiling of output interactions with the environment,
for finding output inconsistencies.

• run interactions profiling : it is a Boolean value which states if we want
to execute the profiling of interactions with the environment (i.e., input
and output executions).

• execution depth: it is an integer value representing the execution depth
to test. If the checkpoint mechanisms is configured as static, it is
ignored.

• stop on first inconsistency : it is a Boolean value which states if tests
should stop when an inconsistency is found.

Depending on our goal and configuration, we might want to stop or
continue the analysis at the first inconsistency found. If we are inter-
ested in finding all the inconsistencies in our program, we do not want
to stop at the first one. On the other hand, if we are interested in re-
solving them, we may want to stop when we find the first one. In fact,
let us suppose that we are testing checkpoints statically placed in our
code. As we explain in Chapter 4, for fixing an inconsistency we may
require moving a checkpoint or introducing a new one. Such alteration
to the checkpoint position makes the analysis no longer valid, and we
require to re-analyze the code.

Note that we can configure multiple tests, and ScEpTIC will execute all of
them.
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6.6.3 Register File Configuration

register file configuration is the variable that specifies the configuration of
the register file. It consists in a python dictionary with the following keys:

• use physical registers: it is a Boolean value which states if the register
file we want to use is a physical or virtual one. If it is set to True,
ScEpTIC will perform the register allocation step.

• physical registers number : it is an integer value representing the num-
ber of available physical registers. If use physical registers is set to
False, this parameter is ignored.

• allocator module location: it is a string representing the module loca-
tion of the register allocator. By default, it is set equal to the module
ScEpTIC.AST.register allocation.

• allocator module name: it is a string representing the module name of
the register allocator. By default, it is set to linear scan.

• allocator function name: it is a string representing the name of the
function exposed by the register allocator module, which performs the
register allocation. By default, it is set to allocate registers.

• physical registers prefix : it is a string representing the prefix of the
name of physical register. By default, it is set to R, meaning that
registers will be called R0, R1, etc.

• spill virtual registers prefix : it is a string representing the prefix of
the virtual registers which will contains the stack address of the stack
spills.

• spill virtual registers type: it is a string representing the type of the
register spills. It must be a LLVM IR first-class type, and by default
it is set to i32.

• param regs count : it is an integer value representing the number of
registers available for passing parameters to functions. For example,
for the MSP430 architecture [2] it is 4.

6.6.4 Memory Configuration

memory configuration is the variable specifying the configuration of the
memory. It consists in a python dictionary that permits configuring which
memories are available and what content they have.

The configuration of a single memory consists in a python dictionary
with the following keys:
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• enabled : it is a Boolean value which states if the memory is enabled
or not.

• stack : it is a Boolean value which states if the stack is allocated inside
the represented memory.

• heap: it is a Boolean value which states if the heap is allocated inside
the represented memory.

• gst : it is a Boolean value which states if the represented memory can
contain global variables.

• gst prefix : it is a string representing the address prefix of the gst
present in this memory. If this memory does not contain any global
variable, it is ignored.

• gst base address: it is an integer value representing the relative ad-
dress at which the GST that is allocated in this memory starts. For
example, if the prefix is GST and base address is 1, the first memory
cell allocated in the global symbol table has the address GST-0x01.

The keys of the memory configuration variable are:

• sram: it must contain the single memory configuration for the static
RAM.

• fram: it must contain the single memory configuration for the NVM,
that is the Ferroelectric RAM (FRAM).

• base addresses: it is a dictionary containing two keys, which are heap
and stack. The associated value to each key is an integer representing
the relative address at which the respective memory section starts.

• prefixes: it is a dictionary containing two keys, which are heap and
stack. The associated value to each key is a string representing the
address prefix of each memory section.

• gst : this key configures the default memory for the GST. It also per-
mits to specify the section parameter present in the code that ScEpTIC
uses to address a global variable into the non-default memory.

It is a dictionary with the following keys:

– default ram: it is a string which can be set either to SRAM or
FRAM. All the global variables will be allocated into the memory
specified by this key.
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– other ram section: it is a string representing the name of the
attribute section that we can use in the source file to allocate
global variables into the non-default memory. By default, it is set
to .TI.persistent, which is the memory section that the MSP430
[2] compiler uses for addressing elements into the FRAM.

Let us suppose we want to allocate a variable called my var in the
FRAM, and we want to use SRAM as default memory. We must set
default ram to SRAM. Then, in our code we declare the variable as:

int my var a t t r i b u t e ( ( s e c t i o n ( ” . TI . p e r s i s t e n t ” ) ) ) ;

• address dimension: it is an integer value representing the dimension
in bits of an address.

6.6.5 Checkpoint Configuration

checkpoint mechanism configuration is the variable that permits us to spec-
ify the configuration of the checkpoint mechanism. It consists in a python
dictionary, and permits us configuring the behavior of the checkpoint mech-
anism for each memory section.

The configuration of the checkpoint of a single memory consists in a
dictionary with the following keys:

• restore stack : it is a Boolean value that states if the stack in the
represented memory should be saved and restored or not. If no stack
is allocated in the represented memory, this key is ignored.

• restore heap: it is a Boolean value which states if the heap in the
represented memory should be saved and restored or not. If no heap
is allocated in the represented memory, this key is ignored.

• restore gst : it is a Boolean value which states if the global symbol
table in the represented memory should be saved and restored or not.
If no gst is allocated in the represented memory, this key is ignored.

The keys of the checkpoint mechanism configuration variable are:

• checkpoint placement : it is a string representing how checkpoint are
placed. We can set it equal to dynamic or static. In this last case,
ScEpTIC expects checkpoint calls to be placed inside the LLVM IR
code.

• on dynamic voltage alert : it is a string representing the action taken
when a low power interrupt is generated. It can be set to:

– continue: after a low power interrupt is generated, a checkpoint
will be taken and the execution will continue until execution dept
instructions are executed.
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– stop: after a low power interrupt is generated, a checkpoint will
be taken and the execution will stop.

If the checkpoint placement is not set to dynamic, this variable is
ignored.

• checkpoint routine name: it is a string representing the name of the
checkpoint routine which is present in the code.

• restore routine name: it is a string representing the name of the restore
routine present in the code.

• sram: it is the configuration of the checkpoint mechanism for the static
RAM.

• fram: it is the configuration of the checkpoint mechanism for the Fer-
roelectric RAM (FRAM).

6.6.6 Pre-defined Environment Configurations

We can configure the overall system structure from scratch, as we explained
in the previous sections, or we can select a pre-defined system configuration.
In this last case, ScEpTIC automatically configures the register file, memory
and checkpoint mechanism.

For doing so, we can set the value of the variable system, that represents
the system configuration to be adopted. If we set it to custom, ScEpTIC

will use the configuration that we set in the previously described variables,
otherwise it will use the pre-defined settings defined of the specified system.

If we use a pre-defined system, we still require to specify the names of
checkpoint-related routines, prefixes and base addresses.

The available system configurations are the following:
• MementOS [3]

– checkpoint type: static
– memory section placements: stack in SRAM, heap in SRAM, gst

in both SRAM and FRAM
– restored memory sections: whole SRAM (stack, heap and gst)

• Hibernus [11]

– checkpoint type: dynamic
– on power interrupt : stop
– memory section placements: stack in SRAM, heap in SRAM, gst

in both SRAM and FRAM
– restored memory sections: whole SRAM (stack, heap and gst)
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• DINO [1]

– checkpoint type: static
– memory section placements: stack in SRAM, heap in SRAM, gst

in both SRAM and FRAM
– restored memory sections: whole SRAM and only gst for FRAM

Note that FRAM is considered to be saved and restored by check-
points, since DINO applies versioning of the variables in NVM to pre-
vent inconsistencies.

• Ratchet [10]

– checkpoint type: static
– memory section placements: stack in FRAM, heap in FRAM, gst

in FRAM
– restored memory sections: None

• QuickRecall [12]

– checkpoint type: dynamic
– on power interrupt : stop
– memory section placements: stack in FRAM, heap in FRAM, gst

in FRAM
– restored memory sections: None

To use one of the listed systems, we must set the system variable equal
to the configuration name written in lowercase. For example, if we want to
use DINO, we must set system = ’ dino ’ .

We can add pre-configured systems to ScEpTIC by creating a new python
file containing the system configuration. Then, we must place such file
into the folder ScEpTIC/emulator/configurator, that already contains the
available systems. For example, if we want to create a system called mytest,
we need to create the file mytest.py and then we have to put it into the
specified directory. Now, we can use the new pre-defined system by setting
the configuration variable system to mytest.
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Chapter 7

Testing Mechanisms
Implementation

7.1 Data Interruption Manager

In this section we present the DataInterruptionManager, that imple-
ments Algorithm 4 which we described in Section 4.5. Such algorithm ana-
lyzes the effects of Memory Inconsistencies and finds their presence.

The DataInterruptionManager extends the base InterruptionManager
class that we described in Section 6.4.6. For identifying Data Access Incon-
sistencies and Memory Map Inconsistencies, it exploits the lookup table and
memory map table that the VirtualMemoryCell class directly implements.
Instead, for identifying the presence of Activation Record Inconsitencies it
exploits the method that the base InterruptionManager implements.

The following sections describe the work-flow of the analysis that the
DataInterruptionManager implements.

7.1.1 Lookup and Memory Map Tables

The VirtualMemoryCell class contains the lookup and memory map table
elements associated with the memory cell it represents. We made this im-
plementation choice because each memory cell is an instance of this class,
independently of the memory section it belongs.

All the support memory that the analysis requires resides inside the
lookup variable, which is a dictionary containing the following keys:

• old content: the associated value represents the old value of the
memory cell, and it is part of the content represented by both the
lookup table and the memory map table.

• write global clock: the associated value represents the logical clock
at which the memory cell was written, and it is part of the content
represented by the lookup table.
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• memory mapped: the associated value represents the logical clock
at which the memory cell was mapped, and it is part of the content
represented by the memory map table.
• old memory address: the associated value represents the previous

address at which the memory cell was mapped, and it is part of the
content represented by the memory map table.
• old dimension: the associated value represents the previous dimen-

sion of the memory cell, and it is part of the content represented by
the memory map table.
• write pc: the associated value represents the program counter in

which the memory cell is written. This data is used for signaling
to the user where an inconsistency may happen.
• memory mapped pc: the associated value represents the program

counter in which the memory cell is mapped. This data is used for
signaling to the user where an inconsistency may happen.

The lookup variable of the object is automatically updated and veri-
fied each time the memory cell is accessed. Updates to the lookup variable
of a VirtualMemoryCell can happen with two methods: set lookup() and
set memory mapped().
• set lookup(): it takes as arguments the old content of the memory

cell, the current program counter, and the current logical clock. This
method updates accordingly the lookup variable. Furthermore, it has
a fourth optional argument called memory mapped, which if is set to
True initializes also the memory map part of the lookup variable. It
is used when a memory cell is allocated the first time.
• set memory mapped(): it takes as arguments the current program

counter, the current logical clock, the old memory address, and the
old dimension. This method updates accordingly the lookup variable.

Whenever a write() method access a VirtualMemory object, it automat-
ically updates accordingly the lookup variable.

The VirtualHeap class automatically updates the part of the lookup vari-
able representing the memory map table, after it performs an action over
the heap:
• allocate(): after the memory cell is allocated into the heap, this

method calls the set lookup() over it with the memory mapped ar-
gument set to True. In this way, the memory map table part of the
lookup variable is initialized.
• reallocate(): after the group of memory cells is reallocated, this

method update the lookup variable of each memory cell of the group
using the update group lookup() method present in the VirtualHeap
object. Such method calls the set memory mapped() method of each
cell that is part of the reallocated memory group.
• deallocate(): after the memory cell is set to garbage, this method

calls the set memory mapped() over it.
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Figure 7.1: Flow chart representing how the lookup table helps in finding
memory access inconsistencies over a memory cell.

Figure 7.2: Flow chart representing how the lookup table helps in finding
memory map inconsistencies over a memory cell.
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Data Access Inconsistencies and Memory Map Inconsistencies are ver-
ified with the help of two methods that are internally implemented in the
DataInterruptionManager. They both take as argument the memory cell on
which we want to verify the presence of an inconsistency, and are:

• check for memory war inconsistency(): it verifies the presence
of a data access inconsistency on the target memory cell. Figure 7.1
shows how this process happens, and its steps are:

1. The method verifies if write global clock is higher than global clock.
If the condition is not met, the method simply returns, since there
is no inconsistency on the target memory cell. Otherwise, the
memory cell was written by a ”future” operation, and we require
further analysis to establish if an inconsistent value is present.

2. The method compares old content with the cell’s content. If they
are equal, there exists a false-positive inconsistency over the con-
sidered memory cell. Otherwise, there exists an actual data access
inconsistency over the memory cell.

Note that we called the function check for memory war inconsistency()
because Data Access Inconsistencies can happen only if there is a
memory Write operation After a memory Read operation over the
same memory cell.

• check for memory map inconsistency(): it verifies the presence
of a memory map inconsistency on the target memory cell. Figure 7.1
shows how this proces happens, and its steps are:

1. The method verifies if memory mapped is higher than global clock.
If the condition is not met, the method simply returns, since
there is no inconsistency on the target memory cell. Otherwise,
the memory cell was mapped by a ”future” operation, and we
require further analysis to establish if an inconsistent value is
present.

2. The method compares old memory address with the current cell’s
address, old dimension with the current dimension of the memory
cell, and old content with the current content of the memory cell.
If any of these values is different, then we find a memory map
inconsistency. Otherwise, it is a false-positive, since the memory
cell was mapped by a future instruction, but it was not changed.

Whenever we access a memory cell, the associated VirtualMemory object
automatically verifies if a memory map inconsistency is present. When a
read() or write() methods is called, they access the corresponding memory
cell using the get cell() method that the VirtualMemory object exposes. It
retrieves the requested memory cell and, before returning it to the requesting
operation, it calls the check for memory map inconsistency() method.
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Figure 7.3: Sequence diagram representing the operations executed for per-
forming a memory write operation.

Figure 7.4: Sequence diagram representing the operations executed for per-
forming a memory read operation.

Instead, the presence of data access inconsistencies is verified automati-
cally whenever the read() method is called. In fact, before returning the cell’s
value, this method automatically calls check for memory war inconsistency()
over the retreived VirtualMemoryCell, so to verify the presence of data ac-
cess inconsistencies.

Figure 7.4 and Figure 7.3 show respectively the execution flow of memory
reads and writes.

Finally, we represent data access inconsistencies using a WARInconsis-
tency object, and memory map inconsistencies using a MemoryMapIncon-
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sistency object. Both these two classes extend the DataInconsistency class,
that keeps track of the cell in which the inconsistency happened, the current
program counter and if it represents a false-positive.

All the described controls and updates on the lookup variable are not
tied up to a specific InterruptionManager, since they are implemented in
the memory sub-module. Furthermore, all those controls can be enabled or
disabled by setting accordingly the value of the do data inconsistency check
variable defined in the implementation of the InterruptionManager.

7.1.2 Activation Record Checks

As we stated in Section 4.3, an Activation Record Inconsistency is a partic-
ular case of a Data Access Inconsistency. The elements that we previously
described are able to find such inconsistency without requiring any modifi-
cations. Unfortunately, they do not provide enough information for identi-
fying which function call may cause the inconsistency, and on which kind of
data (i.e., arguments, return address, saved registers, etc.). For this reason,
ScEpTIC implements a has stack activation record inconsistencies() method
inside the base InterruptionManager, so that it can be accessed by different
analysis. For example, the analysis for verifying intermittence-based inputs
exploits such method for preventing cases in which the execution flow crashes
or performs unwanted jumps due to Activation Record Inconsistencies.

The has stack activation record inconsistencies() method exploits a data
structure called function call lookup, which consists in a python dictionary
that tracks the address of each activation record element for the current
function call. It is updated automatically whenever a CallOperation hap-
pens. The run() method that the CallOperation class implements sets the
address of each argument in the function call lookup. Then, it saves the
address of the memory cells containing the stack base pointer and the re-
turn address. If we configure ScEpTIC to run with physical registers, before
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Address Content Info
0xFCEF ... ← SP, BP
0xFCF0 0xFCF7 Saved stack base pointer
0xFCF1 @main: #3 Saved return address
0xFCF2 3 1st argument
0xFCF3 5 2nd argument
0xFCF4 9 3rd argument
0xFCF5 R0 Value Saved register
0xFCF6 R1 Value Saved register
0xFCF7 ... ← old BP

Figure 7.5: Example of a stack activation record.
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every CallOperation it inevitably runs a SaveRegsiterOperation that was
positioned during the register allocation phase. Such operation saves the
registers onto the stack, and thus saves the addresses of the used cells into
the function call lookup.

Let us suppose that we are executing a simple program and at line 3 of
the main function we have the function call my func(3, 4, 9). Furthermore,
let us suppose that we are required to save the value of register R0 and R1.
Figure 7.5 represents the stack activation record of such function call. ScEp-
TIC populates the function call lookup with the content shown in Figure 7.6.

Moreover, whenever a checkpoint happens, ScEpTIC saves also the func-
tion call lookup, which is then restored alongside with the checkpoint, so to
keep consistent the mappings of the function call lookup with the restored
execution state.

Whenever a checkpoint is restored, the DataInterruptionManager calls
the has stack activation record inconsistencies() method, so to verify if the
computation that is going to happen uses a consistent state. This method
accesses the function call lookup, and it calls the stack check at address()
method over each item present in it. Figure 7.7 shows the work flow of the
stack check at address() method, which perform the following operations:

1. It gets the VirtualMemoryCell object present in the dump at the con-
sidered address.

Element Type Element Address Info

Register 0xFCF6 Address in which the value of
R1 is saved.

0xFCF5 Address in which the value of
R0 is saved.

Argument 0xFCF4 Address in which the 3rd argu-
ment is saved.

0xFCF3 Address in which the 2nd argu-
ment is saved.

0xFCF2 Address in which the 1st argu-
ment is saved.

PC 0xFCF1 Address in which is saved the
return address.

EBC 0xFCF0 Address in which is saved the
old stack base pointer.

Figure 7.6: Content of the function call lookup in Figure 7.5.
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Figure 7.7: Flow chart representing the work flow for recognizing an activa-
tion record inconsistency of the stack check at address() method.

2. It gets the VirtualMemoryCell object present in the current memory
state at the considered address. If no cell is allocated at the requested
address, it sets an activation record inconsistency.

3. If the content or the dimension of the two considered cells is different,
it sets an activation record inconsistency, since the value was changed
by a ”future” operation.

4. It accesses the lookup variable of the current memory cell, that contains
the associated lookup table. If write global clock or memory mapped
elements are higher than the global clock, it sets a false-positive acti-
vation record inconsistency. In fact, if such discrepancy is present, it
means that a ”future” operation rewritten the same value, and thus a
false-positive inconsistency must be reported.

The class StackARInconsistency represents activation record inconsis-
tencies, and contains where the checkpoint happened and the list of in-
consistent elements. The SingleStackARInconsistency class represents each
single inconsistent element, and it keeps track of the expected value, the real
value, the element type, and if it represents a false-positive inconsistency.
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7.1.3 Checkpoints Coverage

As we discussed in Section 6.4.6, each test must implement two methods:
intermittent execution required() and run with intermittent execution().

The intermittent execution required() tells us if we require invoking the
run with intermittent execution() method to test the current program state.
It uses three elements for establishing such information:

• ignore pc: it is a list defined in the DataInterruptionManager which
keeps track of the program counter associated to the checkpoints that
may generate inconsistencies. It is populated during the intermittent
execution, and it helps in avoiding the re-execution of the same tests
over a checkpoint position that already returned inconsistencies.

• do checkpoint on power interrupt : it is a variable defined in the DataIn-
terruptionManager. If it is set to True, a checkpoint is generated when-
ever an interrupt indicating a low power state happens (i.e., dynamic
checkpoint mechanism). Instead, if it is set to False, we are analyzing
a static checkpoint mechanism, or a dynamic checkpoint mechanism
configured to stop the execution whenever an interrupt is generated.
This last behavior is the one of QuickRecall [12], and it can not present
any inconsistency, since no further computation is done after a check-
point.

• consider address space(): it is a private method implemented in the
DataInterruptionManager, which takes as arguments an address and
a variable stating if we are going to perform a memory read or write.
This method returns if the address resides in a portion of non-volatile
memory:

– Memory read : it returns True if the address resides in FRAM,
independently on the memory section (i.e., stack, heap, and gst).
In fact, any read from FRAM could lead to an inconsistent state.

– Memory write: it returns True if the heap is allocated in FRAM
and the address resides in it. In fact, no memory write into
FRAM can lead to an inconsistent state, unless it is into the
heap.

As first instruction, the intermittent execution required() verifies if the
current program counter is inside the ignore pc list. If so, it returns False.
Otherwise it continues verifying if we must run the current instruction in
an intermittent execution scenario. Depending on the checkpoint mecha-
nism we are analyzing, it verifies different conditions over the variable cur-
rent instruction, which corresponds to the instruction to be run:

• Static Checkpoint Mechanism: a static checkpoint mechanism is a
particular case of a dynamic one. For this reason, this method simply
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verifies if current instruction corresponds to a checkpoint. If so, it
returns True, otherwise False.

• Dynamic Checkpoint Mechanism: the method verifies the follow-
ing conditions:

1. The variable current instruction corresponds to a LoadOperation,
and the method consider address space() returns True over the
address targeted by the memory read operation. This condition
is required for verifying Data Access and Memory Map Inconsis-
tencies.

2. The variable current instruction corresponds to a StoreOperation,
and the method consider address space() returns True over the
addresss targeted by the memory write operation. This condition
is required for verifying Memory Map Inconsistencies.

3. The stack memory section is allocated in FRAM and the current
program counter is set to the first instruction of a function dif-
ferent from the main one. This condition is required for verifying
Activation Record Inconsistencies.

4. The heap memory section is allocated in FRAM and the variable
current instruction corresponds to a CallOperation of a function
which performs heap mappings (i.e., free and realloc). This con-
dition is required for verifying Memory Map Inconsistencies.

If any of the above conditions is verified, the method returns True,
otherwise False.

Note that these conditions are the ones we identified in Chapter 4 as
the optimal points for analyzing the presence of inconsistencies.

7.1.4 Test Execution Flow

The method run with intermittent execution() that the DataInterruption-
Manager implements runs the code in an intermittent execution scenario,
and analyzes the state that such execution produces.

This method runs a test for each checkpoint we require testing, and as
first operation it saves the correspondent checkpoint. Then, it runs sequen-
tially the code until we reach a point that requires a reset. When such point
is reached, the method restores the checkpoint to simulate a power reset
and a subsequent restore events. Then, it sequentially tests the presence
of inconsistencies by running the code until it reaches the previously con-
sidered reset point. If it does not find any inconsistency, it continues the
execution until it reaches a new reset point, and it repeats the described
test. Otherwise, if it finds an inconsistency, it restores the dump associated
with the checkpoint, and it sequentially runs the code until the next reset
point is reached. In this way, the state is consistent, and we can continue
testing the presence of inconsistencies.
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During its work flow, the method run with intermittent execution() ex-
ploits the following elements:

• loaded addresses: it is a list containing the addresses of each accessed
FRAM memory cell.

• reset clocks: it is a list containing all the global clock where ScEp-

TIC generated a reset. In this way, it is able to know if a reset has
already been generated over the current state, and thus it can skip its
re-generation. Note that we do not use the program counter for this
operation, since it would lead to unexpected results in case of cycles
or nested function calls.

• intermittent condition(): it is a method that the DataInterruption-
Manager implements, and it returns whether the intermittent execu-
tion analysis should continue. It takes as argument a target global
clock, which is considered only if the checkpoint mechanism is dy-
namic. As first operation, it verifies if the program end is reached,
and if so it returns False. Otherwise, depending on the checkpoint
mechanism, it verifies the following conditions:

– Dynamic Checkpoint Mechanism: it verifies if the current global
clock is lower than the target one, which is passed as argument. If
so, it returns True and the intermittent execution test will con-
tinue. Otherwise, it returns False, meaning that the execution
depth interval has been covered for the considered checkpoint.
ScEpTIC sets the target global clock when the intermittent exe-
cution starts, and calculates it as the sum of the global clock and
the execution depth.

– Static Checkpoint Mechanism: it verifies if the instruction to be
executed corresponds to a checkpoint. If so, it returns False since
a new checkpoint is reached. Otherwise, it returns True and the
intermittent execution test will continue.

• test run(): this method has two arguments, that are the target global
clock and the loaded addresses list. It sequentially runs a sequence of
instructions, until it reaches the specified target global clock. If during
such execution the method finds an inconsistency, it restores the saved
dump and clears the load addresses list.

Furthermore, test run() is called just after a reset is generated, and
the target global clock that the method takes as argument corresponds
to the global clock value when such reset was generated.

This method has the effect of running sequentially the code from the
tested checkpoint to the considered reset point, so to find the presence
of inconsistencies in such interval.
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The work flow of the run with intermittent execution() method consists
in the following operations:

1. It firstly saves a checkpoint using the do checkpoint() method that the
CheckpointManager exposes. It performs such action since we call the
run with intermittent execution() method only when we must generate
and test a checkpoint.

In fact, with a dynamic checkpoint mechanism, the method intermit-
tent execution required() returns True only if a checkpoint must be
tested at the current state. Instead, with a static checkpoint mecha-
nism, it returns True only if a checkpoint is reached. For this reason,
a checkpoint is saved.

2. It initializes the required data structures:

• it sets target global clock to the sum of global clock and execution
depth. If the checkpoint mechanism is static, the execution depth
is set to 0, and this variable will be ignored.
• It initializes loaded addresses and reset clocks to empty lists.
• It sets restore at the end to False. The method exploits such

variable to establish whether it must restore a dump at the end
of the current intermittent test.
• It sets the interrupt global clock to the current global clock, and

interrupt pc to the current program counter. They correspond
respectively to the global clock and the program counter associ-
ated to the first instruction after the checkpoint that the method
is going to test.

3. The method performs the following operations, as long as the method
intermittent condition(target global clock) returns True:

3.1. It sets the current instruction variable equal to the instruction
to be run.

3.2. It sets the do reset variable to False. The method exploits this
variable to establish if it should generate a reset after the execu-
tion of current instruction.

3.3. If current instruction corresponds to a LoadOperation:

• If consider address space() returns True over the target ad-
dress of the LoadOperation, then the method appends such
address to the loaded addresses variable, so to keep track of
the FRAM access.

• If the intermittent execution required() method returns True
and current instruction does not correspond to interrupt pc,
then the method sets the restore at the end variable to True.
This is required for not skipping the analysis of multiple loads
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inside the considered interval. Note that if this step is omit-
ted, we might not find some inconsistencies.

3.4. It runs the current instruction using the run step() method that
the VMState object exposes.

3.5. If the variable current instruction corresponds to a StoreOpera-
tion and its target address is inside loaded addresses. Then, the
method sets the do reset variable to True, so to reset after the
execution of the current instruction. This is required to analyze
the presence of a Data Access Inconsistency.

3.6. If the heap is allocated into FRAM, and the current instruction
variable corresponds to a CallOperation of any heap-related func-
tion such as malloc or realloc, then the method performs the
following operations:

• It sets the do reset variable to True, so to reset after the exe-
cution of the current instruction. This is required to analyze
the presence of a Memory Map Inconsistency.
• It sets the restore at the end variable to True, since after the

reset the heap state might be modified, and thus the method
will restore a dump at the end of the test.

• It executes the call operation sequentially.

3.7. If the stack is allocated into FRAM, and the current instruction
variable corresponds to a CallOperation, then it sets the do reset
variable is set to True. This will generate a reset that permits
the method to analyze the presence of Activation Record Incon-
sistencies.

3.8. If do reset is True and the current global clock is not present
inside the reset clocks list, the method performs the following
operations:

3.8.1. It appends the current global clock to the reset clock list, so
that a reset is not re-generated at the corresponding position
for the current test interval.

3.8.2. It calls the reset() method exposed by the VMState object,
and then restores a checkpoint by calling the do restore()
method that the CheckpointManager object exposes.

3.8.3. If the stack is allocated into the FRAM, it calls the method
has stack activation record inconsistencies(). If such method
returns True, ScEpTIC restores the dump and it stops the cur-
rent intermittent analysis. This operation is required since
the activation record is inconsistent, and the following oper-
ations may lead to a crash.

3.8.4. It calls the test run() method, that manages the re-execution
of instructions until the current one is reached.
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4. If restore at the end is equal to True, the method restores the dump.

As we discussed in Section 6.4.6, ScEpTIC runs this test using the run test()
method that the VM class exposes, which we show in Example 6.12. ScEp-
TIC runs the program sequentially until the intermittent execution required()
method returns True. Then, ScEpTIC calls the run with intermittent execution()
method, that performs a checkpoint and tests an interval of the program for
inconsistencies. ScEpTIC repeats this behavior until it reaches the end of
the program, resulting in a complete coverage of the code.

7.1.5 Analysis Output

The result that the DataInterruptionManager returns consists the list of
the found inconsistencies, represented with their respective class. ScEp-

TIC converts such list into a textual representation, and stores it into a
data inconsistencies.txt file contained in the directory that we set in the
save dir configuration variable.

Let us suppose that we want to test Example 7.1 for data inconsisten-
cies, using a dynamic analysis. As first operation, we generate the LLVM
IR associated with the source code, which Example 7.2 shows. Then, we
configure ScEpTIC with a reasonable execution depth, and we set it to use a
configuration similar to the one of Hibernus [11], that consists in a dynamic
checkpoint mechanism with the stack and heap allocated in SRAM. More-
over, we set that the computation does not stop after a checkpoint is taken.
Note that in the example only the variable glob fram is allocated in FRAM.

Example 7.3 shows the result that the DataInterruptionManager pro-
duces after it runs the analysis. Such result tells us that there is a Write
After Read Inconsistency, that it a Data Access Inconsistency, at line 6 of
the main function. For a better interpretation of this result, we can look in
the code directory that is present in our test result folder. In such directory
we have one file for each function, that contains the version of the code of
such function that ScEpTIC uses for running the analysis.

1 int g lob fram a t t r i b u t e ( ( s e c t i o n ( ” . TI . p e r s i s t e n t ” ) ) ) = 3 ;
2
3 int main ( ) {
4 int i ;
5 for ( i = 0 ; i < 100 ; i++) {
6 g lob fram = glob fram + 1 ;
7 }
8 return g lob fram ;
9 }

Example 7.1: Example of code to be tested for data inconsistencies.
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1 @glob fram = g loba l i 32 3 , s e c t i o n ” . T I . p e r s i s t e n t ”
2
3 de f i n e i 32 @main ( ) {
4 %1 = a l l o c a i32
5 %2 = a l l o c a i32
6 s t o r e i 32 0 , i 32 ∗ %1
7 s t o r e i 32 0 , i 32 ∗ %2
8 br l a b e l %3
9

10 ; < l a b e l > :3:
11 %4 = load i 3 2 , i 32 ∗ %2
12 %5 = icmp s l t i 32 %4, 100
13 br i 1 %5, l a b e l %6, l a b e l %12
14
15 ; < l a b e l > :6:
16 %7 = load i 3 2 , i 32 ∗ @glob fram
17 %8 = add nsw i32 %7, 1
18 s t o r e i 32 %8, i 32 ∗ @glob fram
19 br l a b e l %9
20
21 ; < l a b e l > :9:
22 %10 = load i 3 2 , i 32 ∗ %2
23 %11 = add nsw i32 %10, 1
24 s t o r e i 32 %11, i 32 ∗ %2
25 br l a b e l %3
26
27 ; < l a b e l > :12:
28 %13 = load i 3 2 , i 32 ∗ @glob fram
29 r e t i 32 %13
30 }

Example 7.2: LLVM IR version of Example 7.1.

In our example there is only the main function, and thus we have only
the main.txt file. Example 7.4 shows its content. From our result we can
understand that the memory read happens at instruction number 8 of the
main, and the memory write happens at instruction number 10. In those
two lines there are respectively a load and a store operation that target
the variable glob fram. Such instructions are the one associated with the
inconsistency. Moreover, we are also able to retrieve such information by
looking at the LLVM IR, but we must consider only the actual instructions
that can be executed. For example, we must ignore the blank lines and
the labels. As result, our incriminated operations are at line 16 and 18 of
Example 7.2, and they correspond to the operations number 8 and 10 of
the @main. We can note that the mapping between the code that ScEpTIC
uses and LLVM IR is trivial, and thus it is easy retrieving the corresponding
LLVM IR operations.
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1 Found i n c o n s i s t e n c i e s : 1
2
3 [ Write After Read Incon s i s t ency ]
4 Ce l l address : FGST−0x0
5 Correct content : 3
6 Read content : 4
7 Read at c l o ck : 6
8 Written at c l o ck : 8
9 Memory Read happens at :

10 @main −> #8 ( Line : 6 ; Column : 12 ; Function name : main ;
F i l e : . / t e s t i n g s amp l e s / t e s t 1 . c )

11 Memory Write happens at :
12 @main −> #10 ( Line : 6 ; Column : 12 ; Function name : main ;

F i l e : . / t e s t i n g s amp l e s / t e s t 1 . c )

Example 7.3: Results of the data inconsistency analysis over Example 7.1.

The obtained result describes us a possible inconsistent scenario of Ex-
ample 7.2. Let us suppose that a checkpoint happens before the execution
of line 16, and that the MCU shuts down after the execution of line 181,
due to a low energy buffer. The execution of line 18 changed the value of
glob fram from 3 to 4. When there is enough energy to restart the computa-
tion, we restore the stack, the register file and the program counter. Then,
we resume the execution form the instruction at line 16, which loads a wrong
value of glob fram from the FRAM. In fact, glob fram has a value of 4, that
was set by the future instruction at line 18 during the previous execution,
and differs from the one that such variable had during the checkpoint, that
was 3.

We can exploit the notions of Chapter 4 for removing the inconsistency
that the analysis found. Firstly, we must choose a static checkpoint mech-
anism, since there is no way to solve such inconsistency using a dynamic
checkpoint mechanism, since we are not able to choose where checkpoints
happen. For removing the inconsistency, we should put a checkpoint between
line 16 and 18. This operation is possible only if we can modify the LLVM
IR, since such lines corresponds to a single source-code level instruction.

If instead we are only able to work on the source code level, we must
split the increment at line 6 of Example 7.1 into two operations. We as-
sign the value of glob fram, incremented by 1, to a variable x that is not
allocated into FRAM. Then, we place a checkpoint, and finally we update
the value of glob fram with the one stored in x. In this way, the load op-
eration that reads the value of glob fram can not access a value produced
by a future instruction, and thus we fixed the inconsistency. Example 7.5
shows the resulting code. For verifying if our code actually fixes the incon-
sistency, we can run another analysis. In this case, ScEpTIC does not find
any inconsistency, meaning that our fix worked.
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1 [ i n t 32 b i t ] @main ( )
2 00 : [%0] %1 = a l l o c a i n t 32 b i t x 1
3 01 : %2 = a l l o c a i n t 32 b i t x 1
4 02 : s t o r e Value : ( i n t 32 b i t ) 0 in Value : ( i n t 32 b i t ∗) %1
5 03 : s t o r e Value : ( i n t 32 b i t ) 0 in Value : ( i n t 32 b i t ∗) %2
6 04 : branch None %3 None [ Use l e s s ]
7 05 : [%3] R0 = load Value : ( i n t 32 b i t ∗) %2
8 06 : R1 = cmp s l t : Value : ( i n t 32 b i t ) R0 vs Value : ( i n t

32 b i t ) 100
9 07 : branch R1 %6 %12

10 08 : [%6] R0 = load Value : ( i n t 32 b i t ∗) @glob fram
11 09 : R1 = add Value : ( i n t 32 b i t ) R0 , Value : ( i n t 32 b i t ) 1
12 10 : s t o r e Value : ( i n t 32 b i t ) R1 in Value : ( i n t 32 b i t ∗)

@glob fram
13 11 : branch None %9 None [ Use l e s s ]
14 12 : [%9] R0 = load Value : ( i n t 32 b i t ∗) %2
15 13 : R1 = add Value : ( i n t 32 b i t ) R0 , Value : ( i n t 32 b i t ) 1
16 14 : s t o r e Value : ( i n t 32 b i t ) R1 in Value : ( i n t 32 b i t ∗) %2
17 15 : branch None %3 None
18 16 : [%12] R0 = load Value : ( i n t 32 b i t ∗) @glob fram
19 17 : re turn Value : ( i n t 32 b i t ) R0

Example 7.4: ScEpTIC internal representation of Example 7.1.

1 int g lob fram a t t r i b u t e ( ( s e c t i o n ( ” . TI . p e r s i s t e n t ” ) ) ) = 3 ;
2 int tmp ;
3
4 int main ( ) {
5 int i ;
6 for ( i = 0 ; i < 100 ; i++) {
7 tmp = glob fram + 1 ;
8 checkpo int ( ) ;
9 g lob fram = tmp ;

10 }
11 return g lob fram ;
12 }

Example 7.5: Possible fix to the data inconsistency that Example 7.1 has.

Finally, we can exploit the data analysis that ScEpTIC performs for find-
ing the best suited checkpoint mechanism for our program, or for placing
checkpoints in a way which grants data consistency. For achieving such sce-
nario, we can set a dynamic checkpoint mechanism and run the analysis.
In this way, ScEpTIC tests all the possible checkpoint placements, and it re-
turns each inconsistency that our program may present. Depending on the
result of such analysis, we can either place checkpoints manually or choose
a specific checkpoint mechanism.
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7.2 Input Interruption Manager

7.2.1 Overview

In this section we present the InputInterruptionManager, that implements
Algorithm 7 which we described in Section 5.2. Such algorithm recognizes
the access model of each input, and tells us the Input Access Inconsistencies
that our program may present, if any.

The InputInterruptionManager extends the base InterruptionManager
class that we described in Section 6.4.6. As we stated in Section 5.2, the
entire analysis depends on the positions of checkpoints, and thus we can
only execute it with a static checkpoint mechanism.

For executing this analysis, we must specify the access model of each in-
put we want to verify. The InputManager exposes a set consistency model()
method, that permits setting the access model of a specified input. It takes
two arguments:

• The input name, which is the same one that we specify when we create
the input.
• The access model of the input. We must express it using one of the

two constants that the InputManager provides, which are SAVED and
MOST RECENT.

We defined the set consistency model() as a classmethod, and thus we can
directly call it over the InputManager class.

Let us suppose we defined an input named DHT11, as explained in Sec-
tion 6.4.4, and let us suppose that we want to verify if it has a saved access
model. To achieve such scenario, we insert in the configuration file the
following code:
InputManager . s e t c on s i s t en cy mode l ( ’DHT11 ’ , InputManager .SAVED)

For finding the access model of each input, the InputInterruptionMan-
ager exploits different elements:

• An Input Dependency Table, which is used for tracking the prop-
agation of input-dependent values inside the memory and registers.

• A check input lookup() method, which both VirtualMemory and
RegisterFile classes implement. It verifies if the access model of each
input is consistent with the one we specified. Every time ScEpTIC ac-
cesses a register or a memory cell, they automatically call this method
for verifying if an inconsistency is present.

• A checkpoint clock variable, that the VMState class stores. It con-
sists in a counter that is incremented every time ScEpTIC performs a
checkpoint. Such counter permits recognizing the checkpoint interval
where an input is accesses.
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Furthermore, the InputPolicyInconsistency class represents an Input Ac-
cess Inconsistencies. It contains the input name, the measured and required
access models, and the program counter of the instruction that uses the
input inconsistently with respect to the required access model.

7.2.2 Input Dependency Table

The Input Dependency Table maps a memory element such as a VirtualMem-
oryCell or a Register to a data structure called Input Lookup Data. It keeps
track of the name of the inputs on which the value of the memory elements
depends on. An Input Lookup Data element contains a list of input names,
and for each of them it tracks the checkpoint clock value at which they were
read. It consists in a python dictionary which maps a checkpoint clock value
to the respective list of input names.

The implementation of the Input Dependency Table depends on the class
of the associated memory element:

• VirtualMemoryCell : the Input Lookup Data is included in the lookup
variable, that we already described for the data inconsistencies, and it
is under the key input.

• Register : inside the RegisterFile base class there is a input lookup
variable that contains the Input Lookup Data of each register. It is a
python dictionary that maps a specified register to its corresponding
Input Lookup Data.

Both the VirtualMemoryCell and RegisterFile classes expose two method
for interacting with their Input Lookup Data transparently:

• set input lookup(): it associates to a memory element the Input Lookup
Data that we pass as argument.

• get input lookup(): it returns the Input Lookup Data associated to the
required memory element.

Note that the methods that the RegisterFile class exposes take also as ar-
gument the register name, since they are not executed directly over the
memory element.

Every time a memory element is modified, ScEpTIC updates the Input
Lookup Data accordingly, and keeps track of the input elements used for
computing the altered value. Figure 7.8 shows how such data is updated:

1. Invalidation of the input lookup data. When ScEpTIC alters a
memory element, the associated Input Lookup Data is not valid any-
more, and thus it must invalidate such lookup data. For this rea-
son, the write() methods that both VirtualMemory and RegisterFile
classes expose call the set input lookup() method over the written el-
ement, passing an empty Input Lookup Data. As result, they update
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Figure 7.8: Sequence diagram representing how ScEpTIC updates the Input
Lookup Data during the execution of a BinaryOperation.

the memory element with the new value, and the input lookup data
of such element is emptied.

2. Input lookup data update. As described in Section 6.5, each ScEp-

TIC AST instruction extends the Instruction base class, and must im-
plement a get val() or run() method. Depending on how an instruction
is executed, it must implement a way to update the input lookup data:

• The execution of the instruction is achieved using the method
that the Instruction base class implements. In this case, the
run() method exposed by the Instruction base class updates the
input lookup data. If the executed operation has a target register,
the run() method retrieves the new input lookup data by calling
the get input lookup() method. Then, it updates the input lookup
data associated to the target register, using the set input lookup()
method that the RegisterFile exposes.
The Instruction base class provides an implementation of the
get input lookup() method which returns an empty dictionary. It
is important that each instruction writing a register implements
such method, so to return the correct input lookup data. For
example, the implementation available in the BinaryOperation
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1 int main ( ) {
2 int a , b , c ;
3 a = input1 ( ) ;
4 b = input2 ( ) ;
5 checkpo int ( ) ;
6 c = input3 ( ) ;
7 return a + b + c ;
8 }

Example 7.6: Example of two
input accesses

1 de f i n e i 32 @main ( ) {
2 %1 = c a l l i 32 @input1 ( )
3 %2 = c a l l i 32 @input2 ( )
4 @checkpoint ( )
5 %3 = c a l l i 32 @input3 ( )
6 %4 = add i32 %1, %2
7 %5 = add i32 %3, %4
8 r e t i 32 %5
9 }

Example 7.7: LLVM IR of
Example 7.7.

class gets the input lookup data of its operands and returns their
combination.
• The execution of the instruction is achieved using a custom run()

method. In this case, the implemented run() method must also
take into consideration the input lookup data.
In this category reside input operations. In fact, they are speci-
fied as ScEpTIC built-ins, and thus they are executed as function
calls. When ScEpTIC executes the corresponding ReturnOpera-
tion, its custom run() method implements the creation of new
input lookup data, which is then assigned to the target register.

For a better understanding on how ScEpTIC updates the Input Depen-
dency Table, let us focus on the execution of Example 7.7, for which Exam-
ple 7.6 shows the corresponding C version.

We set the initial checkpoint clock to zero, and then we start the execu-
tion of the first instruction, that is a call to an input element. When such
call returns, ScEpTIC sets the input lookup data of the virtual register %1
equal to {0: [’input1’]}. The same action happens for the second instruc-
tion, and the input lookup data of %2 is set to {0: [’input2’]}. Then, we
execute the third instruction, which is a checkpoint, and thus we increment
the checkpoint clock to 1. We continue the execution, and ScEpTIC sets the
input lookup data of %3 equal to {1: [’input3’]}, since the checkpoint clock
is now 1. As next operation, we run the add instruction of line 6, which uses
as operands the virtual registers %1 and %2. For this reason, we combine
their input lookup data to obtain the one of %4, which is {’0’: [’input1’,
’input2’]}. We apply the same behavior to the instruction at line 7, and
thus we set the input lookup data of %5 equal to {0: [’input1’, ’input2’], 1:
[’input3’]}.

As we can notice in the described example, the combination of two input
lookup data consists in a union of the contained elements: the dictionary
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Figure 7.9: Flow chart representing the work flow of the
check input lookup() method.

keys are combined, and each list with the same key is merged into a single
one.

For obtaining the access model of each input, we must verify the Input
Lookup Data associated to a memory element every time we read it. For
permitting such operation, both VirtualMemory and RegisterFile classes
expose a check input lookup() method. It takes as only argument the mem-
ory element on which we want to verify the presence of an Input Access
Inconsistency.

The purpose of the check input lookup() method is to verify the ac-
cess model of each input used for computing the value that is stored in
the specified memory element. For automatically analyze the presence of
Input Access Inconsistencies, the read() methods that the RegisterFile and
VirtualMemory expose automatically calls the check input lookup().

Figure 7.9 shows the execution flow of the check input lookup() method,
which consists in the following operations:

1. It gets the current checkpoint clock value and the input lookup data
that is associated to the target memory element.
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2. For each key in the input lookup data, it performs the following oper-
ations:

2.1. It measures the access model. A key corresponds to a value of
the checkpoint clock, and if it is lower than the current check-
point clock, all the inputs associated to the considered key have a
SAVED access model. Otherwise, they have a MOST RECENT
one.

2.2. For each input associated to the key, it gets the access model that
we configured for such input. If such access model is different from
the one it measured, it found an Input Access Inconsistency.

For better understanding the check input lookup() method work flow,
let us consider the input lookup data which we previously produced from
Example 7.7. Moreover, let us suppose that we are going to execute the add
instruction of line 7. It reads the value of both %3 and %4, and thus ScEpTIC
calls the check input lookup() method for both of them. The current check-
point clock is 1, and for this reason the check input lookup(%3) measures a
MOST RECENT access model over input3. Instead, check input lookup(%4)
measures a SAVED access model for both input1 and input2.

7.2.3 Test Implementation

This analysis does not require to generate an intermittent execution, and
requires only to propagate the Input Lookup Data, so to verify it whenever
a memory element is accessed. The implementation of the InputInterrup-
tionManager is the following:

• The intermittent execution required() method always returns False,
since no intermittent execution is required. The only action it performs
consists in verifying if the instruction to be executed is a checkpoint.
If so, it increments the checkpoint clock variable that the VMState
object contains.

• The run with intermittent execution() method is empty, since this anal-
ysis runs the code sequentially, and thus no intermittent execution is
required.

7.2.4 Analysis Output

The result that the InputInterruptionManager returns consists the list of the
found input access inconsistencies. ScEpTIC converts such list into a textual
representation, and stores it into an input inconsistencies.txt file contained
in the directory that we set in the save dir configuration variable.

Let us suppose that we want to test Example 7.6 for input access in-
consistencies, with a SAVED input access model for every input element.
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1 InputManager . c r e a t e i npu t ( ’ input1 ’ , ’ input1 ’ , ’ i 32 ’ )
2 InputManager . s e t c on s i s t en cy mode l ( ’ input1 ’ , InputManager .SAVED)
3
4 InputManager . c r e a t e i npu t ( ’ input2 ’ , ’ input2 ’ , ’ i 32 ’ )
5 InputManager . s e t c on s i s t en cy mode l ( ’ input2 ’ , InputManager .SAVED)
6
7 InputManager . c r e a t e i npu t ( ’ input3 ’ , ’ input3 ’ , ’ i 32 ’ )
8 InputManager . s e t c on s i s t en cy mode l ( ’ input3 ’ , InputManager .SAVED)

Example 7.8: Configuration of input and output functions.

1 [ i n t 32 b i t ] @main ( )
2 0 : [%0] %1 = c a l l @input1 ( [ ] )
3 1 : %2 = c a l l @input2 ( [ ] )
4 2 : c a l l @checkpoint ( [ ] )
5 3 : %4 = c a l l @input3 ( [ ] )
6 4 : %5 = add Value : ( i n t 32 b i t ) %2, Value : ( i n t 32 b i t ) %1
7 5 : %6 = add Value : ( i n t 32 b i t ) %5, Value : ( i n t 32 b i t ) %4
8 6 : re turn Value : ( i n t 32 b i t ) %6

Example 7.9: Textual representation of the ScEpTIC AST generated from
Example 7.7.

Firstly, we create the required inputs in the ScEpTIC configuration file, and
we set their access model. Example 7.8 shows the code that we insert in the
configuration file of ScEpTIC. Then, we generate the LLVM IR associated
to the source code, which Example 7.7 shows, and we run the analysis.

Example 7.10 shows the result of this analysis, which tells us that there
are two input access inconsistencies over the same input named input3. The
program accesses this input with a MOST RECENT access model, but we
required a SAVED one.

Example 7.9 represents the code that ScEpTIC uses for executing the
analysis. The input access inconsistencies happen at the 5th and 6th opera-
tions of the main, which are both add instructions. We can note that these
two operation corresponds to C instruction present at line 7, and this is why
ScEpTIC signals us two inconsistencies.

To better understand this result, let us focus on the execution of C
version of the code, that Example 7.6 shows. Let us suppose that we run the
code sequentially until we reach the checkpoint at line 5. Now, we retrieve
the input value associated to input3, by running the instruction at line 6.
Let us suppose that, after such operation, a shutdown happens due to a low
energy buffer. When there is enough energy to restart the computation, we
restore the checkpoint, and we resume the execution from the instruction
at line 6, which is re-execute. Such re-execution has the effect of gathering
a new input value for input3, effectively losing the one we have read before
the shutdown. This behavior describes a MOST RECENT access model,
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1 Found i n c o n s i s t e n c i e s : 2
2
3 [ Input Access In con s i s t ency ]
4 Input name : input3
5 Required con s i s t ency model : SAVED
6 Measured con s i s t ency model : MOSTRECENT
7 Checkpoint happens at :
8 @main −> #2 ( Line : 5 ; Column : 6 ; Function name : main ;

F i l e : . / input . c )
9 Input Access happens at :

10 @main −> #5 ( Line : 7 ; Column : 19 ; Function name : main ;
F i l e : . / input . c )

11
12 [ Input Access In con s i s t ency ]
13 Input name : input3
14 Required con s i s t ency model : SAVED
15 Measured con s i s t ency model : MOSTRECENT
16 Checkpoint happens at :
17 @main −> #2 ( Line : 5 ; Column : 6 ; Function name : main ;

F i l e : . / input . c )
18 Input Access happens at :
19 @main −> #6 ( Line : 7 ; Column : 6 ; Function name : main ;

F i l e : . / input . c )

Example 7.10: Results of the input access inconsistency analysis over
Example 7.6.

but we requested a SAVED one for this input element.
Considering the result of our analysis, we can exploit the notions we

described in Section 5.2 for solving the found inconsistency. We can proceed
in three different ways:

1. We move the checkpoint after the call to the input function. This
approach will make us move the checkpoint at line 5 after line 6.

2. We move the call to the input function before the checkpoint. This
approach will make us move the call to the input function at line 6,
before line 5.

3. We create a new checkpoint just after the call to the input function.
This approach will make us create a new checkpoint just after line 6.

At a first look, the first two approaches might seem the same, but it is not
always possible to move a checkpoint, and in some cases it is simpler moving
the input call. For example, let us consider Example 7.11, that represents
a modified version of Example 7.6, and thus presents the same input access
inconsistency. If we move the checkpoint after line 9, we cause a data access
inconsistency on the variable global fram, which is stored in FRAM. In this
case we must move the instruction at line 9 before the checkpoint at line 7,
so to maintain data consistency.
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1 int g lob fram a t t r i b u t e ( ( s e c t i o n ( ” . TI . p e r s i s t e n t ” ) ) ) = 3 ;
2
3 int main ( ) {
4 int a , b , c ;
5 a = input1 ( ) ;
6 b = input2 ( ) ;
7 checkpo int ( ) ;
8 g lob fram = a + b ;
9 c = input3 ( ) ;

10 b = glob fram + c ;
11 g lob fram = a − 1 ;
12 return a + b + c ;
13 }

Example 7.11: Alteration of Example 7.6.

7.3 Interaction Interruption Manager

7.3.1 Overview

In this section we present the implementation of Algorithm 8, that we de-
scribed in Section 5.3. It profiles different combinations of intermittent ex-
ecutions, and helps us to verify the behavior of intermittence-based inputs.

The InteractionInterruptionManager class implements the algorithm for
such analysis, and it extends the base InterruptionManager class, that we
described in Section 6.4.6. As we stated in Section 5.3, the entire analysis
depends on the positions of checkpoints, and thus it can only be executed
with a static checkpoint mechanism. Furthermore, such analysis exploits the
following elements for profiling and tracking the execution of the program:

• An input table: it is a python dictionary that the InputManager
contains, and keeps track of the value that each input function has.

• An output table: it is a python dictionary that the OutputManager
containes, and keeps track of the value that each output function has.

• A profiling variable, that the VMState object contains. It is a python
dictionary that associate to each checkpoint, the input and output
functions that are executed after it.

• Two markers, named ProfilingStart and ProfilingReset that we must
place in the code we want to test. They are used for producing specific
intermittent execution flows.

• A marker named ProfilingLog that saves into the output of this analysis
the value of a given variable.
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Figure 7.10: Sequence diagram representing the operations that ScEpTIC

executes for updating the input table and the output table.

Figure 7.10 shows how ScEpTIC updates the input table and output table
whenever it executes an input and output function. As we stated in Sec-
tion 6.4.4, ScEpTIC treats input and output elements as extensions of the
Instruction base class. For this reason, the update of input and output
tables happen automatically when ScEpTIC calls the run() method of the
InputSkeleton or OutputSkeleton, that are the classes representing input and
output elements.

7.3.2 Profiling Start, Reset, and Log

This analysis requires generating specific combinations of intermittent exe-
cutions, and thus we must specify the corresponding sequence of shutdowns
that cause them. The combination of intermittent executions we need to
analyze depends on the source code and on the effects we want to verify.
For this reason, we must specify the boundaries where ScEpTIC profiles the
execution, and where it generates power resets. We define such boundaries
as checkpoint intervals, that consist in the subset of instructions contained
between two checkpoints.

For specifying such boundaries, ScEpTIC makes available to us two C
functions, that we can put in our source code:

• profiling start(int resets count): we place such function call before
a checkpoint, and we use it as a marker to indicate that ScEpTIC

must profile the following checkpoint interval. This function takes
as argument an integer representing the number of power resets that
ScEpTIC has to generate during the profiling of the marked checkpoint
interval.
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• profiling reset(int reset id): we place such function call in the point
where we want that ScEpTIC performs a power reset. When ScEpTIC

starts profiling a checkpoint interval, it initializes a reset clock. Every
time it generates a power reset, it also increments such reset clock.

The profiling reset function takes as argument an integer that repre-
sents the value of the reset clock at which ScEpTIC should generate
the reset in the point marked by the profiling reset.

Note that if this argument is set to -1, a reset will happen whenever
ScEpTIC encounters this function call. Instead, if ScEpTIC does not
encounter a profiling reset associated to the current value of the re-
set clock, it generates a power reset when it reaches the end of the
checkpoint interval it is profiling.

Furthermore, we may want to analyze the value that a given variable
assumes during the execution of our test. For doing so, ScEpTIC permits us
to use the profiling log(char* name[], variable) function inside our source
ode. The name parameter is the identifier that ScEpTIC uses for saving the
variable inside the result. We can set it equals to the actual name of the
variable, or we can set it equals to an arbitrary string. Instead, the variable
parameter represents the variable we want to log. During the execution of
the analysis, when ScEpTIC encounters a profiling log() function call, it saves
the variable inside the profiling dictionary that contains the execution trace
of the analysis.

It is important to note that ScEpTIC does not treat profling start(),
profiling reset(), and profiling log() as function calls, and thus they do not
interfere with the program execution. During the creation of the ScEpTIC

AST, ScEpTIC converts them to a node represented by the class Profil-
ingStart, ProfilingReset, or ProfilingLog. Such classes do not execute any
operation, and they just contain a variable representing the associated pa-
rameter, which is resets count for ProfilingStart, reset id for ProfilingReset,
and name and variable for ProfilingLog.

To better understand how we can use these functions for analyzing an
intermittent execution, let us consider Example 7.12 and let us suppose
that the output lock variable is allocated into FRAM. Such variable is a
intermittence-based input, that allows the program to execute the output
function output1 at most once.

For testing this behavior, we must place a profiling start() before the
checkpoint at line 9. Since we want to verify that output1 is called at most
once, we can set the reset number of the profiling start() to 2. Moreover, we
may be also interested in verifying the value that the variable output lock
assumes at each re-execution. For doing so, we put a call to the function
profiling log(’output lock’, output lock) after the checkpoint at line 9. Then,
we can put a profiling reset(0) after the output1 function. ScEpTIC will
generate the second reset at the end of the checkpoint interval, which is
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1 int output lock = 0 ;
2
3 int a , b , c ;
4
5 int main ( ) {
6 a = input1 ( ) ;
7 b = input2 ( ) ;
8
9 checkpo int ( ) ;

10 c = a + b ;
11 i f ( output lock == 0) {
12 output lock = 1 ;
13 output1 ( c ) ;
14
15 }
16 c = c − 1 ;
17 checkpo int ( ) ;
18 return c ;
19 }

Example 7.12: Example of a
program exploiting an
intermittence based input.

1 int output lock = 0 ;
2
3 int a , b , c ;
4
5 int main ( ) {
6 a = input1 ( ) ;
7 b = input2 ( ) ;
8 p r o f i l i n g s t a r t (2 ) ;
9 checkpo int ( ) ;

10 p r o f i l i n g l o g ( ’ o l ’ ,
output lock ) ;

11 c = a + b ;
12 i f ( output lock == 0) {
13 output lock = 1 ;
14 output1 ( c ) ;
15 p r o f i l i n g r e s e t (0 ) ;
16 }
17 c = c − 1 ;
18 checkpo int ( ) ;
19 return c ;
20 }

Example 7.13:
Placement of profiling functions
in Example 7.12.

before the checkpoint at line 17. Example 7.13 shows the resulting code
that permits us to run such analysis.

7.3.3 Test Implementation

This analysis requires to generate an intermittent execution scenario only
for the checkpoint intervals that we marked for profiling. For this reason,
the implementation of the intermittent execution required() method returns
True only if the next instruction that ScEpTIC will run is a ProfilingStart,
otherwise it returns False.

When the method intermittent execution required() returns True, ScEp-
TIC invokes the run with intermittent execution() method. It performs the
following operations:

1. It verifies that the current instruction is a ProfilingStart operation,
and that the next one is a checkpoint operation. If such conditions
are not respected, it raises a RuntimeException, because the position
of the ProfilingStart operation is not correct. In this case, we must
move the ProfilingStart operation in the correct place, that is before
a checkpoint, and then we must restart the analysis.
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2. It initializes the run id variable to 0, which is the reset clock. Then,
it sets the variable total runs equals to the resets count parameter of
the ProfilingStart operation.

3. It saves the checkpoint program counter into the checkpoint pc vari-
able, and the global clock into the checkpoint clock variable. It uses
this last variable for differentiating between multiple executions of the
same checkpoint. Then, it performs the checkpoint by calling the
do checkpoint() method that the CheckpointManager exposes.

4. It initializes the tracking variable, which is a python dictionary that
will contain all the information about the execution of the current
checkpoint interval. Its keys correspond to the different values of the
reset clock, and they are associated to a list which will be populated
with the profiling information. For example, if we set reset count to
2, the method initializes the tracking variable to {0 : [ ] , 1 : [ ] } .

Figure 7.11: Flow chart representing how the
run with intermittent execution() method executes a single instruction.
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5. It runs the operations that Figure 7.11 shows, as long as run id is
higher than total runs:

5.1. It verifies if an Activation Record Inconsistency is present, by
calling the has stack activation record inconsistencies() method
that the base InterruptionManager exposes. If so, it is not possi-
ble to continue the analysis in the checkpoint interval, since this
kind of inconsistency is unrecoverable and may lead to a program
crash. For this reason, it appends to t r a ck ing [ run id ] a mes-
sage representing this information. Then, it restores a dump by
calling the restore dump() method that the CheckpointManager
exposes, and ends the cycle.

5.2. It verifies if it should generate a power reset before executing the
current instruction. If so, it increments the run id variable by
1, it calls the do restore() method that the CheckpointManager
exposes, and then it skips to the next cycle iteration.

Moreover, for generating a power reset ScEpTIC verifies the fol-
lowing conditions:

• The instruction to be executed is a checkpoint. If so, we have
reached the end of the checkpoint interval, and thus a power
reset is required.
• The instruction to be executed is a ProfilingReset having the

reset id equal to the current value of run id If so, the user
specified to generate a reset here, and thus ScEpTIC must
generate it.
• We have reached the end of the program. If so, we have also

reached the end of the checkpoint interval, and thus a reset
is required.

5.3. It verifies if the instruction to be run is an input or output func-
tion. If so, it performs its execution until the I/O function re-
turns. Then, this method gets the name and value associated to
the I/O function, and it generates a new instance of the RunInfo
class. It appends this instance to t r a ck ing [ run id ] , so to keep
track of it.

5.4. It verifies if the instruction to be run is a ProfilingLog opera-
tion. If so, it generates a new instance of the RunInfo class,
which contains the name and value of the variable specified in
the ProfilingLog parameters by the programmer. It appends this
instance to t r a ck ing [ run id ] , so to keep track of it.

5.5. It runs the current instruction.

6. It stores the information that the tracking variable contains into the
profiling variable of the VMState object, saving it with the key check-
point clock.
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To better understand how ScEpTIC runs this test, let us try to execute
it on Example 7.13. The analysis starts when ScEpTIC reaches the Profil-
ingStart instruction of line 8. ScEpTIC initializes the run id variable to 0,
and total runs to 2, as the ProfilingStart instruction specifies. As first op-
eration, we execute the checkpoint of line 9, and then we start the profiling
analysis. The first instruction ScEpTIC executes is the one at line 10, which
is a ProfilingLog. It gets the current value of output lock variable and then
it generates the associated RunInfo. We continue the execution, and we
reach the if statement of line 12. Since its condition returns True, as next
instruction we execute line 13, which has the effect of updating output lock
to 1. Now, the next instruction we have to execute is an output function.
For this reason, we generate the associated RunInfo instance, and then we
run it. We continue the execution until we reach line 15, which tells us to
generate a reset only if run id is equal to 0. Since this condition is met, we
increment run id to 1, and we restore the checkpoint. The execution of our
analysis restarts from line 10, which logs the value of output lock with the
name ol, and as next instruction we evaluate the condition of the if state-
ment. Since the output lock variable is allocated in FRAM, its value is not
restored by the checkpoint, and thus it is equal to 1. Now, the condition of
the if statement is not met, and we execute the instruction at line 17. The
next instruction we are going to execute is a checkpoint, which meets the re-
set condition. For this reason, we increment run id to 2, and we restore the
checkpoint. The execution restarts from instruction at line 10, and follows
the same behavior of the previous iteration. When it reaches instruction at
line 17, we increment run id to 3 and we restore the checkpoint. Now the
analysis stops, since run id is higher than total runs, and we generated the
required intermittent execution.

7.3.4 Test Output

The result that the ProfilingInterruptionManager returns consists in content
of the profiling variable. It contains the information about I/O functions
executed for each checkpoint interval tested, and the value of the logged
variables. ScEpTIC converts such list into a textual representation, and
stores it into an interaction profiling.txt file contained in the directory that
we set in the save dir configuration variable.

Let us suppose we want to run the analysis over Example 7.13, which we
already configured with the profiling start() and profiling reset() functions.
Firstly, we configure the I/O functions that are present in the source code,
as Example 7.14 shows. Then, we generate the LLVM IR of our source file,
and we run the analysis.

Example 7.15 shows the result that this analysis returns. It tells us that
only one checkpoint interval was tested, and that it is the one starting at
the checkpoint of line 10. The content of Run #0 represents the profiling
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1 InputManager . c r e a t e i npu t ( ’ input1 ’ , ’ input1 ’ , ’ i 32 ’ )
2 InputManager . s e t i n pu t v a l u e ( ’ input1 ’ , 5)
3
4 InputManager . c r e a t e i npu t ( ’ input2 ’ , ’ input2 ’ , ’ i 32 ’ )
5 InputManager . s e t i n pu t v a l u e ( ’ input2 ’ , 4)
6
7 OutputManager . c r ea t e output ( ’ output1 ’ , ’ output1 ’ , ’ i 32 ’ , ’ void ’ )

Example 7.14: Configuration of input and output functions for running the
profiling analysis over Example 7.13.

1 Observed checkpo int i n t e r v a l s : 1
2
3 Checkpoint @main −> #7 ( Line : 9 ; Column : 6 ; Function name :

main ; F i l e : . / p r o f i l e . c )
4 Global c l o ck : 26
5
6 Run #0:
7 [OUTPUT]
8 Name : output1
9 Value : 9

10 I n s t r u c t i o n program counter :
11 @main −> #19 ( Line : 14 ; Column : 7 ; Function

name : main ; F i l e : . / p r o f i l e . c )
12
13 [VAR]
14 Name : o l
15 Value : 0
16
17 Run #1:
18 [VAR]
19 Name : o l
20 Value : 1
21
22
23 Run #2:
24 [VAR]
25 Name : o l
26 Value : 1

Example 7.15: Result of the profiling analysis over Example 7.13.

information associated to the first run of the checkpoint interval. Instead,
the one that is present after Run #1 represents the profiling information of
the second run of such interval, that is after the first reset, and so on. As
we can see, the output1 function is called only on the first run, and thus
our code seems to behave as expected. In fact, output1 was executed at
most once. Also, in each run interval we can see the value of the output lock
variable that we decided to log with the name ol.
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When a user tests intermittence-based inputs, he must generate all the
possible reset scenarios so to verify that the code behave as he expects. For
this reason, this kind of analysis may require multiple runs. Furthermore,
for having a valid result, we must cover all possible execution scenarios,
otherwise we might lose some information.

For example, if we want a full coverage of all the possible execution flow
scenarios of Example 7.13, we should also generate a reset in such a way
that the output1 function is never executed. To achieve that, we can move
the profiling reset(0) of line 15 up of one line in the code. In this way, we
can execute the analysis for verifying that output1 is never executed. The
result of the analysis reports No interactions to each run of the checkpoint
interval. Now, with this second execution of our analysis, we are able to
establish that output1 is executed at most once, independently on where a
reset happens.

Finally, if the analysis returns a result which does not reflect the behavior
we want on our code, it means that we did not consider some execution
scenarios, and thus our code must be modified to account for that.

7.3.5 Testing Output Inconsistencies

For testing output inconsistencies we can use Algorithm 9, which we de-
scribed in Section 5.4. As we stated in Chapter 5, it is a particular case
of Algorithm 8, in which we generate one power reset after the execution
of any output function. The InteractionInterruptionManager implements
Algorithm 8, and we can use it to analyze output inconsistencies. For doing
so, we can simply set up the analysis in this way:

• We put a profiling start(n) before each checkpoint, with n equal to
the number of outputs present in the following checkpoint interval. In
this way, we profile every checkpoint interval twice, and we are able
to verify the effects of the re-execution of the output elements.

• We put a profiling reset(i) after every output, with i equal to the
number of outputs preceding the one we are considering. For example,
if we have two outputs, the first one has i = 0, and the second one has
i = 1. In this way, we perform a reset just after the first execution of
the output element.

Let us suppose we want to verify how outputs behave in Example 7.16.
Example 7.17 shows the corresponding placement of the tracking functions.
Once we run the analysis, its result will contain the information about the
execution of the output functions, and we can inspect it to verify if the re-
execution of the output functions leads to an inconsistent behavior of our
program.

The more output we have, the more profiling reset() we must insert in
our program. Moreover, if the outputs are inside branches, it gets more
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1 int a , b , c ;
2
3 int main ( ) {
4 a = input1 ( ) ;
5 b = input2 ( ) ;
6 checkpo int ( ) ;
7 c = a + b ;
8 output1 ( c ) ;
9 output2 ( a ) ;

10 checkpo int ( ) ;
11 return c ;
12 }

Example 7.16: Example of a
program exploiting an
intermittence based input.

1 int a , b , c ;
2
3 int main ( ) {
4 a = input1 ( ) ;
5 b = input2 ( ) ;
6 p r o f i l i n g s t a r t (3 ) ;
7 checkpo int ( ) ;
8 c = a + b ;
9 output1 ( c ) ;

10 p r o f i l i n g r e s e t (0 ) ;
11 output2 ( a ) ;
12 p r o f i l i n g r e s e t (1 ) ;
13 checkpo int ( ) ;
14 return c ;
15 }

Example 7.17:
Placement of profiling functions
in Example 7.16.

complicated identifying the positioning parameter i of the profiling reset(i)
function.

This analysis can be completely automatized in a way which does not
require the user to insert in its code the profiling start() and profiling reset()
instructions. In fact, resets must be generated in fixed points (i.e., after
outputs), and we have to test any checkpoint interval. For this reason, and
for reducing the code modifications required by the user for performing this
analysis, we created an OutputInterruptionManager class, which implements
only the output analysis and does not require the user to put any additional
code inside its program. It implements Algorithm 9, and it consists in a
lighter version of the InteractionInterruptionManager. As consequence, the
OutputInterruptionManager has a similar logic with respect to it.

As we stated in Section 5.4, before running our analysis, we must classify
our inputs into two categories: idempotent and non-idempotent. We are
interested in analyzing the behavior of non-idempotent inputs, since the re-
execution of idempotent ones can not cause any output inconsistency. Once
we classified our inputs, we must set in our configuration file the idempotency
of the inputs. For doing so, we can call the set idempotency() method that
the OutputManager exposes, which takes two parameters:

• output name: identifies the output to which set the idempotency cat-
egory.

• idempotency : identifies the idempotency category to be associated
with the output. It can be OutputManager.IDEMPOTENT or Out-
putManager.NON IDEMPOTENT
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If we do not set the idempotency category of an output, the default be-
havior of the OutputManager is to consider it to be non idempotent. We
can alter this default behavior in the configuration file by setting Output-
Manager.default idempotent to True, which will make the OutputManager
to consider outputs idempotent by default.

Let us now consider the elements which OutputInterruptionManager uses
for running the analysis. It exploits the same output table and profiling vari-
ables we described for the InteractionInterruptionManager as data struc-
tures. Moreover, the work-flow is very similar, but performs fewer opera-
tions.

The intermittent execution required() method returns always True, since
we are interested in verifying all the checkpoint intervals. In this way, the
run with intermittent execution() method runs and analyzes the entire pro-
gram with the following execution flow:

1. We can enter this method in two cases: at the start of the program, and
when a checkpoint is encountered. For this reason, as first operation,
it verifies if we are at the start of the program. If so, it generates a
checkpoint, so to initialize the first checkpoint interval. Otherwise, it
verifies that the current operation is a checkpoint, and performs it.

2. It initializes two tracking dictionaries and a variable:

• tracking : contains the tracking information about the execution
of the output functions.
• reset no: tracks the amount of resets generated after each output

routine, so to perform only one reset after each output routines.
• resetting out : tracks the output routine after which we performed

a reset. It is used as index for the tracking.

3. It starts running the program, and performs a subset of the operations
we described for the InteractionInterruptionManager, which we show
in Figure 7.11:

3.1. ScEpTIC verifies if an Activation Record Inconsistency is present.
If so, it is not possible to continue the analysis for the checkpoint
interval, since this kind of inconsistency causes the program to
crash. For this reason, it appends to t r a ck ing [ r e s e t t i n g o u t ] a
message representing this information. Then, it restores a dump
and ends the cycle.

3.2. It verifies if the current instruction is a call to an output routine
which is configured as non-idempotent. If so, it performs the
following operations:

3.2.1. ScEpTIC executes the output routine and sets the variable
resetting out to the name associated with it.
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3.2.2. ScEpTIC generates a new instance of the RunInfo class, con-
taining the profiling information relative to the execution of
this output routine, and appends it to tracking[resetting out].

3.2.3. ScEpTIC increments the reset no[resetting out] by one, and
verifies if it is equal to 1. If so, no reset was generated after
this output routine, and thus it generates a reset and restores
the saved checkpoint. Otherwise, it continues the execution.

3.3. It executes the current instruction.

4. The above cycle is executed until we reach the next checkpoint, or if
the program ends.

5. When the analysis of the current checkpoint interval ends, ScEpTIC
appends the tracking variable to the profiling dictionary present in
the VMState instance.

To better understand how this test is run, let us try to execute it on
Example 7.16. Moreover, let us suppose we configured both output1 and
output2 to be non-idempotent. We start the execution, and as first oper-
ation we call intermittent execution required(), which returns True. For
this reason, we call run with intermittent execution(). It generates a check-
point, since we are at the start of the program, and initializes its local
variables. Then, it starts executing the code. In this first checkpoint in-
terval, no output routine is present, and thus it executes the code sequen-
tially, reaching the checkpoint() routine at line 6. The method returns,
and we call the intermittent execution required(), which returns True.
Now we enter run with intermittent execution(), which performs a check-
point, initializes its local variables, and starts executing the code. When
it reaches the first output instruction at line 8, it sets resetting out to
output1. Then, it generates the RunInfo associated to the execution of
output1, and appends it to tracking[resetting out]. As next operation, it
increments reset no[resetting out], and since it is equal to 1, it generates a
power reset. The execution restarts from the instruction at line 7. When
we reach the output routine at line 8, we execute the same operations we
previously described, except for the reset. In fact reset no[resetting out]
is now 2, and thus we do not reset. As next instruction, we execute the
output routine output2, and we generate both the associated RunInfo and a
reset, in the same way we described. The execution restarts, and we finally
reach the checkpoint at line 10. Since we reached the end of the check-
point interval, the method returns. As next instruction, we call the method
intermittent execution required(), which returns Ture, and thus we call
run with intermittent execution(). In this checkpoint interval there are no
output routines, and thus the method executes the code sequentially until
we reach the end of the program.
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1 Checkpoint : @main −> #0
2 No output executed
3
4 Checkpoint : @main −> #6 ( Line : 6 ; Column : 2 ; Function name :

main )
5
6 Output output1
7 [OUTPUT]
8 Value : 2
9 Execution c l o ck : 32

10 Run id : 0
11 I n s t r u c t i o n program counter :
12 @main −> #12 ( Line : 8 ; Column : 2 ; Function

name : main )
13
14 [OUTPUT]
15 Value : 2
16 Execution c l o ck : 32
17 Run id : 1
18 I n s t r u c t i o n program counter :
19 @main −> #12 ( Line : 8 ; Column : 2 ; Function

name : main )
20
21
22 Output output2
23 [OUTPUT]
24 Value : 1
25 Execution c l o ck : 47
26 Run id : 0
27 I n s t r u c t i o n program counter :
28 @main −> #14 ( Line : 9 ; Column : 2 ; Function

name : main )
29
30 [OUTPUT]
31 Value : 1
32 Execution c l o ck : 47
33 Run id : 1
34 I n s t r u c t i o n program counter :
35 @main −> #14 ( Line : 9 ; Column : 2 ; Function

name : main )
36
37 Checkpoint : @main −> #15 ( Line : 10 ; Column : 2 ; Function name :

main )
38 No output executed

Example 7.18: Result of the output analysis over Example 7.16.

Example 7.18 shows the result of this analysis. As we can see, it is
similar to the one that the InteractionInterruptionManager returns, but
it only contains information about the execution of output elements. As
we can see, output1 may be executed twice in an intermittent execution



7.3. INTERACTION INTERRUPTION MANAGER 189

happening inside the checkpoint interval identified by the checkpoint at line
8. In both the executions it sends the value 2 to the environment. A similar
case happens for output2.

With this result, we are able to identify if the environment interactions
leads to an inconsistency. Let us suppose that output1 increments the posi-
tion of a servo of x degrees, with x equals to the value sent. As we can see
in the result, output1 is executed twice, and thus the final position of the
servo will be 4 instead of 2. Depending on our requirements, we can state if
this behavior is expected or not, and correct our code accordingly.



190 CHAPTER 7. TESTING MECHANISMS IMPLEMENTATION



Chapter 8

Evaluation

8.1 Overview

This chapter describes the evaluation of ScEpTIC within the different testing
aspects analyzed in Chapter 4 and Chapter 5, which are Data inconsistencies
testing, Input inconsistencies testing, Output inconsistencies testing, and
Intermittence-based inputs analysis.

We run all the tests for our evaluation over a system with an Intel i7
2600k, 16 Gb of RAM (DDR3, 1600Mhz, dual-channel configuration), Win-
dows 10 (build 1709), and Python 3.7.2. We compiled our test cases using
Clang 5.0.1-4 with LLVM 5.0.

ScEpTIC is a tool that focuses its analysis in finding inconsistencies and
in analyzing how the program behaves in their presence. At the moment
there is no other tool with the same goal, and the ones available mainly focus
on providing a debugging environment with energy analysis capabilities.

Furthermore, the algorithms developed for inconsistency-free placements
of checkpoints, such as the ones present in DINO [1] and Ratchet [10], are
not applicable for finding inconsistencies. In fact, they are not designed for
verifying the presence of inconsistencies given a checkpoint placement, but
they are designed for positioning the checkpoints in a way which grants data
integrity with respect to their memory configuration.

For these reasons, we will consider two different approaches for evaluating
ScEpTIC:

• A qualitative approach, consisting in the analysis of the user inter-
vention required to use and/or modify a different tool for performing
the same analysis that ScEpTIC covers. For this aim, we want to com-
pare our tool with respect to the available debugging environments,
such as EDB [13] and SIREN [17]. They are not designed for the same
goal of ScEpTIC, which focuses on testing intermittent executions, but
they can be adapted for achieving the same objective. For this reason,
we use those tools as baselines for our qualitative evaluation.

191
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As qualitative aspects, we will consider:

– Tool Alteration: the minimum required alterations to the de-
bugging tool a user needs to implement, for achieving the same
testing results of ScEpTIC.

– User Interactions: the number of actions a user needs to man-
ually perform, to achieve the same testing results of ScEpTIC

(e.g. resets, insertion of controls, etc.). Note that ScEpTIC re-
quires user manual intervention for specifying input, outputs, and
insertion of specific instructions (e.g. profiling start() and profil-
ing reset()) for performing inconsistency-based interaction anal-
ysis, as described in Section 6.4.4 and Section 7.3.

– Effectiveness: the result obtained, in terms of testing and in-
consistencies found, after performing all the required actions and
alterations over the debugging environment.

• A quantitative approach, consisting in the comparison of the results
achieved using a simple and non-optimized algorithm with respect to
the one implemented by ScEpTIC. Our objective is to evaluate the
performance of the implemented algorithms (i.e., Algorithm 4 and Al-
gorithm 7), and thus we will compare them with their equivalent sim-
pler and non-optimized versions (i.e., Algorithm 2 and Algorithm 11),
which will be used as baselines. To achieve that, we implemented
each non-optimized algorithm as an InterruptionManager of ScEpTIC,
so that the only element which differs is the actual algorithm that is
applied over the input program, and not the entire architecture. In
this way we are able to compare the performance of each algorithm
on equal terms, so to find the possible benefits of the implemented
optimizations.

As quantitative metrics, we will consider:

– Number of executed instructions: ScEpTIC executes instruc-
tions over the host machine, and the execution time may vary
depending on its available resources. Using only the execution
time for measuring performance may lead to inaccurate results,
because the measurement will be dependent not only on available
resources, but also on other host related aspects, such as the ver-
sion of Python installed, and the optimizations available in the
host architecture running ScEpTIC. For these reasons, we will use
the total number of instructions executed by ScEpTIC over the
emulated architecture. In this way, the evaluation done will grant
the same results independently of the setup used.

– Number of support memory accesses: as explained in Sec-
tion 7.1.1 and Section 7.2.2, ScEpTIC uses different data struc-
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tures for verifying the presence of inconsistencies. Whenever an
instruction is executed, ScEpTIC can both modify or accesses such
data structures to verify if the state is consistent. These memory
accesses introduce a testing overhead which is not included within
the executed instructions, and the combination of these two met-
rics grant a correct estimation of the overall resources invested
on the host machine to run tests with ScEpTIC. Furthermore, we
are comparing algorithms which use different approaches to find
inconsistencies, and thus they use different data structures or ac-
cess methods over them. The variation of such elements might
not change the number of executed instructions over the emulated
architecture, but do certainly change the number of operations
performed by ScEpTIC over the host machine. Measuring these
accesses permits us to have an accurate comparison of the varia-
tion in the performance of the used algorithms, as a function of
the used support data structures and access methods. For these
reasons, we will include the number of support memory accesses
as quantitative metric.

– Number of generated resets: as explained in Section 4.5.1,
we must recreate an intermittent execution scenario for verifying
the presence of inconsistencies, by performing resets of the state
and restoring a checkpoint. The number of executed instructions
is directly dependent on the number of generated resets, and an
optimization of where resets are performed leads to an increase
of performance. By including this metric with the ones used, we
are able to understand if there is a performance drop due to a
high or unnecessary number of generated power resets.

– Number of checkpoints tested: this metric is relevant only
with a dynamic checkpoint mechanism, since in this case a check-
point could happen at any line of code. The number of executed
instructions is also directly dependent on the number of check-
points tested. By including this metric with the ones used, we
are able to understand if there is a performance drop due to a
high or unnecessary number of checkpoints tested.

– Number of restored snapshots: as explained in Section 7.1,
when ScEpTIC finds an inconsistency, it might restore a snapshot
to continue the analysis, since the runtime state is inconsistent
with respect to the equivalent sequential execution of the pro-
gram. Restoring a snapshot is time-consuming and causes the
analysis to restart from a previous point. By looking at the num-
ber of snapshots restored we are able to understand if there is a
performance drop due to a high or unnecessary number of snap-
shots restored.
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– Number of inconsistencies found: the result of the analysis
performed by ScEpTIC consists in the list of found inconsistencies,
which is then analyzed by the user to solve the problems presented
by the program. A high number of inconsistencies might cause
multiple restorations of snapshots, and considering this metric
helps us to understand their correlation. Furthermore, the lack
of generalization in the representation of inconsistencies causes an
algorithm to show an unnecessarily high number of them, making
the work of the user which has to read the result of the analysis
harder. On the other hand, if the analysis does not return all the
possible inconsistencies, the result shown to the user is incomplete
and will not help him to solve all the problems presented by the
analyzed program.

– Execution time: as we previously stated, the execution time is
a host-dependent metric which, if it is used alone, can lead to an
inaccurate evaluation of ScEpTIC performance. To overcome this
problem, we decided to consider also the Instructions Executed
and the Support Memory Accesses metrics, which influences with
different weights the execution time. For these reasons, we will
not use the execution time as an individual metric for evaluating
ScEpTIC, but instead we will use it as a secondary metric together
with other ones. In this way, we can understand and properly
weight the effects of an increased or decreased value of different
metrics with respect to the amount of time required to run an
analysis.

8.2 Memory Inconsistencies

For performing the evaluation of ScEpTIC from the point of view of test-
ing memory inconsistencies, we are able to apply both a quantitative and
qualitative approach.

8.2.1 Baselines

The algorithms which can be used for finding memory inconsistencies are
described in Section 4.5, and ScEpTIC implements a variant of Algorithm 4.
For the quantitative evaluation, we want to evaluate the performance of
the algorithm we implemented in ScEpTIC, and thus we will compare it
with Algorithm 1, which is the most simple algorithm able to find memory
inconsistencies.

Unfortunately, this algorithm is extremely inefficient in performing a dy-
namic checkpoint analysis: it tests a checkpoint placement at every line, and
for each of them it generates a reset at every instruction in the interval de-
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fined by the execution depth. The resulting number of executed instructions
can be calculated with the formula:

nexecuted =

nops−1∑
i=0

(

ED(i)∑
j=1

j + 1)− 1 (8.1)

where:

ED(i) = min(ED,nops − i+ 1)
nops = total number of instructions of the program
ED = execution depth set by the user

For understanding this formula, let us suppose that our code has 3 in-
structions. The test stars by testing a checkpoint before the first instruction,
and it generates a reset after all the three instructions. The resulting exe-
cution trace is 1→ R→ 1→ 2→ R→ 1→ 2→ 3→ R, where R indicates
that we perform a reset, and we verify the state. The resulting number of
instructions executed is 6, and this number is calculated by the inner sum of
the formula. Then, we have to test a checkpoint placed after the instruction
1, and for doing so we first have to run instruction 1, and then we are able to
perform a checkpoint. This single execution is accounted by the +1 which
is after the inner sum. These operations are repeated until we reach the
end of the program. Once we reach the final instruction, we do not need to
re-execute it for testing a checkpoint after it. For this reason, we subtract 1
from the entire sum. The resulting complexity of Equation 8.1 is O(n3ops).

Independently of the algorithm we use, for verifying the presence of in-
consistencies we need to compare the state that a power reset produces with
the one that the equivalent sequential execution of the same code produces.
Furthermore, when we find an inconsistency, we must restore a snapshot, so
to continue the analysis from a consistent state. These operations introduce
an overhead that limits the overall speed of the analysis we are performing:
the environment we used for evaluating ScEpTIC comprehends an Intel i7
2600k with 16 Gb of RAM, and we were able to reach a maximum speed of
1.8 · 104 instructions per second.

Such overhead and the high number of instructions to be executed make
not feasible run an analysis using Algorithm 1 with a dynamic execution
scenario. In fact, if we consider the lowest execution depth we estimated
in Section 8.2.3 (i.e., 2470), and the number of instructions of the smaller
benchmark we selected in Section 8.2.4 (i.e., CRC, 5.2 · 104 instructions),
the overall number of instructions that the algorithm tests is 1.54 · 1011.
Considering that our environment is able to analyze 1.8 · 104 instructions
per second, it would take around 99 days for performing the entire dynamic
analysis.

For this reason, for the evaluation of the dynamic analysis we will ana-
lytically calculate the overall number of executed instructions, and we will
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also compare the performance of ScEpTIC with an optimized version of Al-
gorithm 1, which we refer as Dummy ScEpTIC. It consists in a modified
version of Algorithm 1 to which we applied the following optimizations:

• It tests a checkpoint placement before each LOAD operation which
read data from NVM.
• It tests a checkpoint placement before the first instruction of each

subroutine if the stack is allocated into NVM.
• It generates a reset after each STORE operation which saves data into

NVM.
• It generates a reset after each CALL operation if the stack is allocated

into NVM.

Such optimizations are a subset of the ones that ScEpTIC implements,
and we described them in Section 4.5. They reduce the amount of the time
required to perform an exhaustive dynamic analysis by reducing the number
of checkpoint to be tested and resets to be generated. Furthermore, it is
important to consider that we selected this subset of optimizations because
they do not modify the way in which Algorithm 1 recognizes inconsistencies,
and instead they only reduce the time required to run the analysis.

Moreover, for comparing ScEpTIC performance with the one of the two
algorithms, we have created two extensions of the InterruptionManager base
class: BaselineDataInterruptionManager and DummyScEpTICDataInter-
ruptionManager. They respectively implement Algorithm 1 and Dummy
ScEpTIC.

Finally, for a better analysis of our results, we must consider some im-
plementation details shared by both Baseline and Dummy ScEpTIC algo-
rithms:

1. Inconsistency representation: as we explained in Section 4.2, data
inconsistencies may happen between two instruction such that the first
one reads the same memory location written by the second one. If such
sequence is re-executed, the first instruction is the one which uses the
inconsistent value produced by the previous execution of the second
instruction. One of the key elements of the data analysis performed
by ScEpTIC is the recognition of such instruction pairs, which it is not
possible to be achieved in Baseline and Dummy ScEpTIC. In fact, for
how they verify the presence of inconsistencies, they are not able to
properly find which is the instruction reading the inconsistent value,
and they only find if an inconsistent value is present. For this reason,
they consider the checkpoint generated as the reading instruction.

2. Differential memory comparisons: for finding data inconsisten-
cies, both Baseline and Dummy ScEpTIC compare the memory state
obtained after the restoration of a checkpoint with the snapshot taken
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when such checkpoint was executed. This can lead to the miss classifi-
cation of inconsistencies, which results in considering every reset point
to be inconsistent.

To understand this problem, let us focus on Example 8.1, which con-
sists in the LLVM IR of the loop body of the code shown in Exam-
ple 8.2. Let us apply the Baseline algorithm to find inconsistencies. As
first action, we take both a snapshot of the memory state and a check-
point. Then, we execute the instruction at line 4, and we simulate a
reset with the consequent restoration of the checkpoint. Now, as next
action, we compare the memory state with the content of the snapshot
we previously took. We repeat this operation until we reach the store
instruction at line 8, which creates an inconsistent memory state. As
next step of our analysis, we restore the snapshot, and we run the load
instruction at line 9. Then, we perform a reset with the consequent
restoration of the checkpoint. When we compare the memory states,
we find another inconsistency. In this case, such inconsistency is not
caused by the operation at which we reset the memory state, but it
is caused by the previous one. The lack of recognizing where an in-
consistency really happen leads to the miss-classification of this reset
point.

1 [ . . . ]
2 c a l l void @checkpoint ( )
3 [ . . . ]
4 %6 = load i 3 2 , i 32 ∗ @a
5 %7 = load i 3 2 , i 32 ∗ @i
6 %8 = mul nsw i32 %7, 3
7 %9 = add nsw i32 %6, %8
8 s t o r e i 32 %9, i 32 ∗ @a
9 %10 = load i 3 2 , i 32 ∗ @a

10 %11 = add nsw i32 %10, 1
11 s t o r e i 32 %11, i 32 ∗ @b
12 %12 = load i 3 2 , i 32 ∗ @b
13 %13 = sd iv i32 %12, 7
14 s t o r e i 32 %13, i 32 ∗ @c
15 [ . . . ]

Example 8.1: LLVM version of
the loop body of Example 8.2.

1 [ . . . ]
2 checkpo int ( ) ;
3 [ . . . ]
4 for ( i = 0 ; i < 10 ; i++) {
5 [ . . . ]
6 a = a + i ∗ 3 ;
7 b = a + 1 ;
8 c = b / 7 ;
9 [ . . . ]

10 }
11 [ . . . ]

Example 8.2: Example of a loop.
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We modified the implementation of both Baseline and Dummy ScEp-
TIC in a way which prevents this problem:

• After we perform the memory comparisons that verifies the pres-
ence of inconsistencies, we save a second snapshot of the memory
state into a data structure. In this way, we are able to track the
memory states across different reset points.
• When we compare the memory state with the snapshot’s content,

we extract all the elements which differs. Then, we compare the
value of such elements with the one they assume in the second
snapshot. If they do not differ, the inconsistency is not caused
by the current reset point and thus can be ignored (i.e., has been
acknowledged by a previous iteration of the algorithm). Instead,
if they differ, the current reset point causes an inconsistency.

If we now apply this new behavior to the previous example, when
we reach the store instruction at line 8 we find an inconsistent state.
Then, we save this second snapshot of the memory, we restore the
main one, and finally we run the load instruction at line 9. Now,
when we perform a reset in such point, we compare the memory state,
which differs from the one contained in the main snapshot and thus
we compare it with the secondary one. Since the value of variable b is
the same in such snapshot, the inconsistency is not considered.

We must note that this behavior is not required in ScEpTIC, since it
is designed to avoid this problem.

3. Reset points sub-optimization: if an analysis happens inside a
loop body, it is possible that we generate a reset multiple times in the
same point (i.e., once for each iteration of the loop). Given how the
Baseline and Dummy ScEpTIC algorithms find inconsistencies and
represents them, there is no reason for verifying the same reset point
multiple times. In fact, when an inconsistency is found, a tuple (I1, I2)
is appended to the list of inconsistencies, with I1 the instruction after
which the checkpoint is taken and I2 the instruction after which the
reset is generated. If we perform a loop iteration, and we reach the
previously tested reset point I2, we can either find an inconsistency or
not. If the state is not consistent, we generate a tuple (I1, I2), which is
already included in the list of inconsistencies, and thus we are wasting
computational time.

For this reason, we modified the implementation of Baseline and Dummy
ScEpTIC algorithms so to not retry the same reset points for a given
checkpoint, if an inconsistency has already been found for such reset.

This optimization is only possible because both the Baseline and
Dummy ScEpTIC algorithms are not able to find the operation which
reads the inconsistent value, and they are only able to find instructions
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which produces inconsistent values inside the memory. In fact, if we
apply such optimization to ScEpTIC, we loose relevant information.

Let us now focus on how ScEpTIC analyzes Example 8.1, which is the
LLVM IR version of the loop’s body that Example 8.2 shows. When it
generates a reset after the execution of the store operation at line 11,
it finds an inconsistent state. Such inconsistency is not caused by the
execution of the instruction after which we generated a reset. In fact,
ScEpTIC finds the inconsistent pair (I4, I8), which corresponds to the
load and store of variable a. If we decide to ignore further resets at line
11, we are not able to find the inconsistency (I12, I11), which is tracked
between two different loop iterations (i.e., the load operation at line
12 happens during the loop iteration x and the store operation at line
12 happens during the loop iteration x+1 ). For this reason, ScEpTIC
does not have the same optimization of reset points of Baseline and
Dummy ScEpTIC.

Finally, one may think that we could ignore further reset points at
the instruction I11, which is the one generating an inconsistent state.
Even if it might be true for our simple example, in a more complex
code this leads to a loss of information. In fact, if we have memory
accesses through pointers, we can potentially loose an inconsistency
(i.e., different variables accessed through the same pointer) or we can
potentially loose information about the memory cells which are incon-
sistent (i.e., cells of an array accessed through a pointer). For these
reasons, we can not ignore reset points in ScEpTIC.

8.2.2 Evaluation Inputs

As our evaluation inputs, we must consider three groups of elements:

• Execution depth: ScEpTIC is able to analyze the presence of mem-
ory inconsistencies with both dynamic and static checkpoint mecha-
nisms. Furthermore, as we stated in Section 4.5.1, we can use the
dynamic scenario to test all the possible combinations of static check-
point placements. To run tests in a dynamic scenario, we must specify
the execution depth parameter, which indicates the maximum num-
ber of instructions executed between a checkpoint and the consequent
shutdown. Conversely, with a static checkpoint mechanism, ScEpTIC
does not require such parameter, since checkpoints are explicitly posi-
tioned inside the code.

For this reason, evaluating the performance of the dynamic analysis of
ScEpTIC requires us to consider in our test inputs also the execution
depth, which is set by the user. As we stated in Section 4.5.1, such
parameter depends on various elements, such as the energy source and
the overall capacity of the energy buffer. For using a representative
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value of the execution depth parameter, we will estimate it considering
the energy results obtained by dynamic checkpoint mechanisms such
as Hibernus [11], Hibernus++ [4], and Mementos [3].

• Input files and memory configuration: for evaluating ScEpTIC we
can use the same benchmarks used for the evaluation of checkpoint
mechanisms. It is important to note that a checkpoint mechanism
works with a fixed memory configuration, and instead ScEpTIC can
be configured to reflect different ones. In fact, as explained in Sec-
tion 6.6.4, an user can configure the memory composition with respect
to his testing requirements. Furthermore, from the analysis described
in Section 4.2, we can infer that a program might present data incon-
sistencies only if a portion of its data is allocated into NVM. Since
we are evaluating the performance of ScEpTIC for the analysis of data
inconsistencies, we must recreate the conditions for which an inconsis-
tency may happen (i.e., a portion of data in NVM). For this reason,
for each input file used for the evaluation of ScEpTIC, we will specify
a pair of memory configurations which allocate one or more memory
sections into NVM. In this way, we are sure that inconsistencies are
possible, and we are also able to evaluate the performance of ScEpTIC
with respect to the variation of elements allocated into NVM.

• Checkpoint mechanism: to perform a test with ScEpTIC, we must
provide not only the input file and the memory configuration, but
we are also required to specify the checkpoint mechanism. For this
reason, we will also consider as input to our evaluation the checkpoint
mechanism configuration.

8.2.3 Execution Depth Estimation

For estimating a realistic value range of the execution depth parameter, we
consider as target architecture the MSP430 with FRAM [28], which has also
been used by Hibernus [11], Hibernus++ [4], and Mementos [3].

We are interested in finding how many seconds of computation remain
after a checkpoint is taken, before the MSP430 shuts down. With this
data, we are able to find how many instructions can be executed, which
corresponds exactly to our execution depth.

The energy used by the MCU is stored in a capacitor, which as we can
recall from the literature is a bipole characterized by the following differential
relation:

i(t) = C
dv(t)

dt
(8.2)

In the above equation, C represents the capacitance of the capacitor, i(t)
the current intensity, and v(t) the voltage. Both current and voltage are in
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function of time, but if we consider a constant current draw, we can rewrite
the differential relation as:

I = C
(Vmax − Vmin)

∆t
(8.3)

Since we are interested in finding ∆t, we can rewrite our equation as:

∆t = C
(Vtrig − Vmin)

I
(8.4)

The execution depth corresponds to the number of operations which are
run after a checkpoint is taken, and thus we are interested in the computa-
tional time remaining after the checkpoint, which is:

tremaining = C
(Vtrig − Vmin)

I
− tcheckpoint (8.5)

Accordingly to the MSP430 datasheet, the current draw during the active
mode at 1Mhz of frequency goes from 200µA up to 420µA, depending on
the hit ratio of the cache. Our setup consists in having both SRAM and
FRAM active, so a group of reasonable values for current consumption is
250µA, 270µA, and 310µA, which are respectively the current consumption
with 75%, 66%, and 50% of cache hit, accordingly to the datasheet.

From the analysis done in Hibernus++ [4] we know that tcheckpoint is
1.4ms, Vmin is 1.88V and Vmax was found with respect to a bunch of capac-
itance values. Such values are shown in Table 8.1.

By applying those values to Equation 8.5, we obtain the results shown
in Figure 8.1. The remaining execution time goes from 2.47ms up to 5.8ms,
depending on the configuration.

Since the power consumption used refers to a clock frequency of 1Mhz,
it is sufficient dividing these results by it. The obtained range of execution
depth is shown in Figure 8.2 and goes from 2470 instructions up to 5800
instructions.

This range is valid for evaluating ScEpTIC when it is testing a dynamic
checkpoint mechanism. We are also interested in evaluating ScEpTIC perfor-
mance when we use its dynamic analysis to test all the possible static check-
point placements. In this case, we are required to find an execution depth

C (µF ) Vtrigger (V)

10 2.03

20 1.97

30 1.93

40 1.91

Table 8.1: Capacitance and Voltage before checkpoint pairs found by the
calibration of Hibernus++ [4].
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Figure 8.1: Graphs of the remaining time after a checkpoint is taken
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Figure 8.2: Graphs of the execution depth after a checkpoint is taken

which estimates the maximum distance between two checkpoints, since we
want to perform an exhaustive test. For doing so, we can not consider static
checkpoint mechanism conceived to overcome inconsistencies, otherwise we
would obtain a value which does not find any of them, and our analysis
would not be effective.

A valid static checkpoint mechanism for estimating the execution depth
in such scenario is MementOS [3], which we described in Section 2.3. It
has a dynamic behavior with a static checkpoint placement: whenever a
checkpoint routine is encountered, it verifies the level of the energy buffer
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and, if it is below a certain threshold, it saves a checkpoint. Once the
checkpoint is saved, the execution continues until either the MCU shuts
down or another checkpoint is reached.

Depending on the placement strategy of MementOS (i.e., loop-latch and
function-return), the distance between two checkpoints may vary. The choice
of a placement strategy is purely subjective and it is strictly related to
a specific application. Furthermore, we must also consider that we can
manually place checkpoints, and that a distance granting an exhaustive test
should not be dependent on the strategy used. In fact, the dynamic analysis
of ScEpTIC aims to provide us all the possible inconsistencies and it wants
to help us in the selection of a checkpoint mechanism.

For this reason, we want to find the maximum possible distance between
two checkpoints, which permit us to actually preserve the work done. This
distance can only be such that we are able to reach the second checkpoint
if we restart the computation from the first one, independently of the level
of the energy buffer. Let us suppose that our MCU performs a checkpoint
and then a shutdown happens due to a low energy buffer. Furthermore, let
us suppose that the energy source refills the energy buffer only up to the
minimum amount of energy required to restart the computation. As conse-
quence, the computation restarts and restores a checkpoint. If the distance
from the next checkpoint is too high, we do not have the certainty that we
have enough energy to reach it. In such scenario, we do not only waste all
the performed computation, but we also incur in the non-terminating path
bug [18], which consists in having the program stuck between two check-
points due to the lack of enough energy to reach the second one.

We can refer to this maximum distance considering the voltage level at
which we reach two checkpoints. The minimum level the energy buffer can
reach after the second checkpoint is the shutdown voltage Vmin, otherwise we
could not complete it. In this case, the maximum distance from the previous
checkpoint is exactly one instruction before the voltage level of the energy
buffer reaches the trigger voltage Vtrig. In fact, if it is positioned farther,
we will incur in the non-terminating path bug. Also, another side effect of
such farther positioning would be that neither of these two checkpoints is
executed: when the first one is reached, the level of the energy buffer is
not low enough to trigger the checkpoint with MementOS, and due to the
distance we would not be able to reach the second one. For these reasons,
the maximum distance between two checkpoints is identified by the voltage
pair (Vtrig, Vmin).

Calculating this maximum distance is exactly the same problem of find-
ing the distance between a checkpoint and the consequent shutdown we
calculated before. In fact, we want to find the distance between two check-
points such that when we pass the first one the voltage level is Vtrig, and
when we reach the second one there is just enough energy to perform it
(i.e., after the checkpoint the voltage is Vmin). To find the associated time
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interval between Vtrig and Vmin, we can apply Equation 8.4. The result-
ing value will also include the computational time required to perform the
second checkpoint, and thus we must subtract it. The final result can thus
be obtained by using Equation 8.5, which is the same formula we used for
finding the distance between a checkpoint and the consequent shutdown.
For this reason, to evaluate ScEpTIC performance when we use its dynamic
analysis to test all the possible static checkpoint placements, we can use the
same execution depth we found before.

8.2.4 Input Source Files

As we stated previously, we are interested in testing the behavior of ScEp-

TIC on code which presents inconsistencies. Most of the benchmarks used
in TPC are contained in the MiBench2 suite [29], which consists in the
MiBench [30] benchmark suite ported for IoT devices. Such suite has been
developed for the evaluation of Ratchet [10], and the contained benchmark
algorithms are used for the evaluation of other checkpoint mechanisms. For
example, Hibernus [11] uses the Fast Fourier Transform, and MementOS [3]
uses CRC and RSA.

For the evaluation of ScEpTIC, we selected three different benchmarks
from the MiBench2 [29] suite. They represent a set of heterogeneous use
cases which are common in the TPC domain: data integrity verification
(i.e., CRC ), signal analysis (i.e., FFT ), and encryption (i.e., AES ).

Moreover, we must also consider that the most common application of
devices in TPC comprehend their usage as wireless sensors, and thus their
work flow consists in sensing the environment, processing the sensed values,
and then store the results or send them to the main node of the system.
This is exactly the behavior of different benchmarks named as sense and
used to evaluate MementOS [3], EKHO [20], and QuickRecall [12]. Also, a
similar work flow is used to describe the entire behavior of Chain [16]. For
this reason, we will also evaluate ScEpTIC with a benchmark presenting this
sense behavior.

To perform the evaluation of ScEpTIC, we must also specify the memory
configuration and the checkpoint mechanism we are going to use with each
benchmark. Note that we will consider the checkpoint mechanism described
in Section 2.3.

ScEpTIC is a tool designed for finding all the inconsistencies of a program.
With its help, we can perform comparisons of different configurations for
our application, so that we can select the one which best suits our needs.
For this reason, for selecting the memory configuration and the checkpoint
mechanism for our benchmarks, we will act as a developer which wants to
explore different alternatives for his application.

As side effect, we will also show how ScEpTIC can help in these choices.

Furthermore, for evaluation purposes we will not consider the possibility
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of using dynamic checkpoint mechanisms such as Hibernus [11] and QuickRe-
call [12]. They are designed to not present data inconsistencies by stopping
the computation after a checkpoint is taken. For this reason, the analysis
performed by ScEpTIC would be a simple sequential run of the program,
both in terms of results and executed instructions, and such analysis would
be useless to evaluate its performance.

For each benchmark we selected a set of configurations which allow us
to act as a developer that is testing its code, and that also permits us to
evaluate ScEpTIC under different scenarios.

CRC. Cyclic Redundancy Check codes are usually used to detect errors
in data exchanged by devices. This benchmark generates the CRC code of
a predefined input in two different ways: crcSlow and crcFast. The second
method exploits a table called crcTable to keep track of intermediate results,
so to reuse them instead of performing the same computation multiple times.
The content of such table is not dependent on the data from which the CRC
is generated.

Now that we analyzed the structure of this program, we can explore
different configurations. As first action, we could select a checkpoint mech-
anism, and thus the memory configuration it supports. Before doing so, we
must consider that when we move a portion of memory into NVM, we reduce
the checkpoint overhead at the expenses of data inconsistencies. In fact, the
amount of data to be saved by a checkpoint is reduced, but checkpoints
must happen more frequently to avoid data inconsistencies. Performing the
selection of a checkpoint mechanism without considering the amount of in-
consistencies introduced by its memory configuration can cause a significant
energy waste in our program.

For these reasons, as first action we should instead explore the inconsis-
tencies introduced by a certain memory configuration. Then, if we are sat-
isfied by the results, we can then select the checkpoint mechanisms which
are designed to work with such configuration. Otherwise, we can explore
another memory configuration and repeat this process over again.

The steps we follow for analyzing different memory configurations are:

1. Dynamic analysis with global variables in NVM
If we do not allocate any element into NVM, we do not have any data
inconsistency, and each checkpoint contains the entire main memory.
To reduce the size of a checkpoint, we can move the global variable
crcTable into NVM, and thus we can analyze the inconsistencies caused
by such movement.
The static checkpoint mechanisms which can work with this memory
configuration are MementOS [3] and DINO [1]. MementOS automat-
ically places checkpoints accordingly to a user-specified policy, and it
does not take care of data inconsistencies. Instead, DINO relies on
the user to place checkpoint boundaries, and then it creates versions
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of variables to preserve data consistency.
Since we do not want to stick a priori with one of these two checkpoints
mechanisms, we will run a dynamic analysis with ScEpTIC. In this
way, it will try all the possible static checkpoint placements, and it
will return all the inconsistencies present in the program.
Once we have this result, we know the amount of data inconsistencies
present in our program. This number tells us the overhead intro-
duced by the versioning of DINO, and it also represents the number
of checkpoints required to minimize such overhead. In fact, in DINO
checkpoint boundaries are directly translated into checkpoints, and
thus we can exploit the methods we described in Chapter 4 to place
checkpoints in a way which resolves data inconsistencies.
We must note that with DINO the burden of placing checkpoints is
leaved to us. If we try to solve all the inconsistencies with a checkpoint
placement, DINO would not insert any versioning of variables. How-
ever, it might be possible that the number of checkpoint we introduced
is too high, resulting in an excessive overhead.
Furthermore, if the program does not present any inconsistency with
this memory configuration, we are still required to find a placement
which minimizes the overhead introduced by checkpoints.
As we will see in the results, this memory configuration does not
present any kind of data inconsistency. For this reason, placing crcTable
in NVM reduces the checkpoint overhead without introducing data
inconsistencies, and we do not need to analyze if the checkpoint place-
ment of MementOS solves the found inconsistencies.

2. Static analysis with stack in NVM
As next step, we want to explore the possibility of allocating the stack
into NVM. As we explained in Section 4.3, in such scenario each mem-
ory access and call operation has the potential to produce inconsistent
results. When we allocate the stack into NVM, we know a priori which
magnitude of data inconsistency we can expect. In fact, it is directly
proportional to the number of function calls and local variables. Fur-
thermore, the amount of all the possible data inconsistencies makes
unmanageable their resolution without the help of a checkpoint mech-
anism, and thus we can only use one which can support it. For these
reason, running a dynamic analysis with such setup would not tell us
useful information.
Ratchet [10] is the only static checkpoint mechanism designed to work
with the stack allocated in NVM, and in doing so it introduces a high
overhead. An alternative solution consists in exploring the possibility
of using MementOS with a loop-latch strategy, and in evaluating the
amount of checkpoints required to solve the found inconsistencies.
If the effort required to solve data inconsistencies is reasonable, we
can use it instead of Ratchet, with the benefit of a reduced checkpoint
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overhead. In fact, in our configuration, MementOS does take a check-
point only if the level of the energy buffer is low enough, and thus the
overall number of checkpoints executed during runtime is lower than
the one of Ratchet.
For this reason, we will run a static analysis with ScEpTIC over our
program, with applied the checkpoint placement produced by the loop-
latch strategy of MementOS.

3. Dynamic analysis with stack in NVM
As we previously stated, running such analysis will not tell us useful
information for our scope. However, we decided to run such analysis
to demonstrate such statement and for evaluation purposes.

FFT. Fast Fourier Transform is used to convert a signal from the domain
of time into the one of frequencies, so that we can analyze an input using
its frequency. This benchmark computes the FFT and inverse FFT over
two different random input signals. It uses a set of global variables (i.e.,
realin, imagin, realout, and imagout) to store intermediate results. The real
work of the program is computed inside the fft float function, which access
through pointers such variables.

Now that we analyzed the structure of this program, we can explore
different configurations. As we stated before, we do not want to stick a
priory with a specific checkpoint mechanism. Instead, we want to explore
different memory configurations, so to evaluate the possibility of reducing
the checkpoint overhead. In doing so, we expect an increase of data incon-
sistencies but, depending on their frequency, it can be worth to use such
memory configuration.

The steps we follow for analyzing different memory configurations are:

1. Dynamic analysis with realin, imagin, realout, and imagout in NVM

As first action for our analysis, we want to evaluate the inconsistencies
introduced by the movement of global variables into NVM. Since most
of the work is performed over only four global variables (i.e., realin,
imagin, realout, and imagout), we want to evaluate the inconsistencies
introduced by their movement into NVM.

Once we have the result of such test, we are able to understand the
contribution of this set of variables to data inconsistencies. Since most
of the work is performed on such set, if they introduce an unreason-
able amount of inconsistencies, we can stop our analysis. In fact, by
allocating all the global variables or the entire stack into NVM, we
are also including in it the analyzed variable set. If we do not afford
to solve the inconsistencies generated by the analyzed variable set, we
will certainly not be able to afford the inconsistencies generated by the
allocation of more elements into NVM.
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Instead, if the effort required to solve the introduced inconsistencies
is affordable for us, we can continue our analysis. As we will see, the
amount of data inconsistencies generated by such variables is relatively
low, and thus we can continue our analysis.

2. Dynamic analysis with global variables in NVM

Since the first analysis returned us a positive result, as next step we
run a dynamic analysis with all the global variables allocated into
NVM. The result of such analysis will tell us the contribution to data
inconsistencies of all the other global variables not included in the set
we previous analyzed.

As we will see, the amount of inconsistencies is the same of the one
found by the previous analysis, and thus the other global variables
does not introduce any new inconsistency. As for what we did in the
CRC case, we can use this result to reduce the versioning overhead
of DINO, or we can evaluate if the found inconsistencies are resolved
by the loop-latch placement of MementOS. Note that, since the most
computational-intensive part of this program consists in for loops, we
do not consider the function-return strategy.

3. Static analysis with global variables in NVM

As next step, we decide to run a static analysis considering the loop-
latch placement of MementOS. In this way, we are able to compare the
effort required to solve the found inconsistencies with the one required
to reduce the versioning overhead of DINO.

As we will see, this analysis returns the same results of the previous
one, meaning that the loop-latch strategy of MementOS does not re-
solve any inconsistency. If we choose to stop our analysis here, we can
choose either to select MementOS or DINO as our checkpoint mecha-
nism.

However, given the relatively low amount of data inconsistencies, we
can decide to go further with the analysis, and we can evaluate the
amount of data inconsistencies generated by the placement of the stack
into NVM.

4. Static analysis with stack in NVM

As final step, we want to explore the possibility of allocating the stack
into NVM. As we previously stated in the CRC case, running a dy-
namic analysis with stack in NVM would not tell us useful information,
and we are restricted to choose a checkpoint mechanism which support
this memory configuration.
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Moreover, we can directly choose to use Ratchet, but we are per-
forming such choice without knowing the effort required to solve data
inconsistencies with the loop-latch placement of MementOS.

For this reason, we will run a static analysis with ScEpTIC over our
program, with applied the checkpoint placement produced by the loop-
latch strategy of MementOS.

AES. Advanced Encryption Standard or AES is a cryptographic algorithm
which is commonly used in TPCs for enabling the possibility of exchanging
data securely between devices. This benchmark consists in running AES
encryption and decryption over predefined inputs in two different modes
(i.e., ECB and CBC).

The main function calls four subroutines, one for each pair of action and
mode, which runs the requested part of the benchmark. Each subroutine
setups a part of the benchmark using local variables, and then it calls the
required cryptographic function.

Accordingly to the comment in the source file, the global variables sbox,
rsbox, and rcon define data structures characterizing AES, and during the
program execution no write operation changes their content. For this rea-
son, we can directly allocate them into NVM. In this way, we are reducing
the checkpoint overhead for free, since we are not increasing checkpoint fre-
quency (i.e., no data inconsistency introduced).

Continuing our analysis of the source code, we can notice that there
exists other four global variables: state, Key, IV, and RoundKey. The first
three variables are pointers, and when a cryptographic function is called, it
links them with the local variables passed as arguments. All the functions
that compute the intermediate results works without any argument, and
they directly refers to these three global variables.

Due to this particular design choice, we expect a high level of inconsis-
tencies if the stack is allocated into NVM, since most of the computation
happens on data stored in it. Furthermore, the number of function calls
is substantial, and thus we also expect a substantial number of Activation
Record Inconsistencies.

The steps we follow for analyzing different memory configurations are:

1. Dynamic analysis with global variables in NVM

As first analysis, we want to evaluate the amount of inconsistencies
introduced by the movement of global variables into NVM. As we
previously stated, the global variables sbox, rsbox, and rcon are not
written by any operation and thus can be safely allocated into NVM
without introducing any inconsistency.

The other group of global variables is composed by:

• The variable RoundKey, which is used to derive elements from
the cryptographic key when a cryptographic function is called.
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• The variables state, Key, and IV, which are pointers used to ac-
cess local variables across different function.

With a first look, we might think that the amount of work computed
on the global variables will not produce a relevant number of data
inconsistencies. For this reason, we choose to run a dynamic analysis
with the entire set of global variables allocated into NVM.

As we will see, ScEpTIC will find a substantial number of data incon-
sistencies (i.e., about 100 ) when it runs the previous analysis. By
looking at this result, we are able to notice that all the inconsistencies
but one happens due to the placement of the variable state into NVM.
In fact, if we take a closer look at our source code, we will see that such
variable is reassigned every time an intermediate result is produced.

This result tells us that we are able to reduce almost for free the
checkpoint overhead by placing all the global variables but the state
one into NVM. In fact, such placement does only produce one data
inconsistency, which it is easy to solve.

2. Static analysis with global variables in NVM

If we take a closer look at the inconsistencies produced by the place-
ment of the variable state into NVM, we can notice that most of the
inconsistencies has a pattern. They all happen when the checkpoint
is taken in a function, and a shutdown happens during the execution
of another one. For this reason, we can proceed with our analysis,
and we can evaluate if using MementOS would resolve a substantial
number of them.

This program present both frequent function calls and loops. For this
reason, we will explore both options by running two different static
analyses: one considering the loop-latch strategy of MementOS, and
one considering the function-return one.

As we will see, both the strategies solves all the inconsistencies, and
thus we can choose one of them. Furthermore, we can notice that
the placement produced by the loop-latch strategy has a significantly
lower amount (i.e., one sixth) of checkpoint executed with respect to
the function-return one. This results in a lower checkpoint frequency,
and thus a lower overhead. For this reason, we can choose this strategy.

3. Static analysis with stack in NVM

The results we obtained until now are positive, and thus we can explore
the possibility of allocating the stack into NVM. As we previously
stated, running a dynamic analysis does not help in such scenario,
and we can either choose to use Ratchet or to verify the amount of
inconsistencies produced by MementOS.
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Our program present a high frequency of function calls, and thus acti-
vation record inconsistencies will be one of our main problems. As we
stated in Section 4.3, they may happen when a function returns and
another one is called. Using the function-return strategy of MementOS
will certainly resolve such kind of inconsistencies but, as we previously
seen, we are increasing by 6 times the frequency of checkpoints. On
the other hand, using the loop-latch strategy certainly does not solve
any activation record inconsistency, and it can be a valuable option if
the number of checkpoints required to solve such inconsistencies does
not increase their frequency by six times.

For these reasons, as for the previous case, we will explore both options
by running two different static analyses: one considering the loop-latch
strategy of MementOS, and one considering the function-return one.

Once we have these results, we are able to find the most valuable
option for us.

Sense. As we previously stated, the most common application for devices
in TPC comprehend their usage as wireless sensors. For this reason, most
of the work done in the TPC field, such as MementOS [3], EKHO [20],
and QuickRecall [12], uses a benchmark called sense. It does not refer to
a specific program, but instead it consists in the description of a particular
behavior: sensing the environment, processing the sensed values, and finally
send the results to the main node of the system. In fact, the sense bench-
marks used by previous works are different from each other from the point
of view of the code, but they are the same from the point of view of the
behavior.

Example 8.3 shows the sense benchmark we will use for the evaluation
of ScEpTIC, and it computes the mean and variance over a set of sensed
samples. This benchmark does not present any function call, and its main
work flow is contained into for loops. The global variables are used for
storing sensed data, and for computing intermediate results.

As for previous cases, we are interested in finding the best memory con-
figuration which does reduce the checkpoint overhead and does not introduce
an excessive amount of data inconsistencies. In fact, allocating memory di-
rectly into NVM reduces the checkpoint overhead, but we might introduce
an excessive number of data inconsistencies. This will require us to insert
checkpoints into specific places, with the effect of increasing the checkpoint
frequency, reducing the benefits of a smaller checkpoint overhead.

The steps we follow for analyzing different memory configurations are:

1. Dynamic analysis with global variables in NVM

As it is possible to note in the code, most part of the work is performed
over global variables. The only local variable is i, which is used as
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1 int data [ 5 0 ] ;
2
3 f loat s t d i n c r = 0 ;
4 f loat sum = 0 , var iance = 0 , mean = 0 ;
5
6 int main ( ) {
7 int i ;
8
9 // sense 50 samples

10 for ( i = 0 ; i < 50 ; i++) {
11 data [ i ] = input ( ) ;
12 }
13
14 // compute sum and mean
15 for ( i = 0 ; i < 50 ; i++) {
16 sum = sum + data [ i ] ;
17 }
18 mean = sum / 50 ;
19
20 // compute var iance
21 for ( i = 0 ; i < 50 ; i++) {
22 // pow( data [ i ] − mean , 2 ) => s t d i n c r ∗ s t d i n c r
23 s t d i n c r = data [ i ] − mean ;
24 var i ance = var iance + s t d i n c r ∗ s t d i n c r ;
25 }
26 var iance = var iance / 50 ;
27
28 // send computed data to main node
29 out (mean , var iance ) ;
30 }

Example 8.3: Program used for evaluating ScEpTIC algorithm, which
presents a behavior similar to sense benchmark of MementOS [3]

loop iterator. For this reason, we will run a dynamic analysis with the
global variables in NVM, so to find the inconsistencies introduced by
such configuration.

Once we have this result, we are able to establish if the amount of
data inconsistencies introduced by the allocation of global variables
into NVM is reasonable or not. As we will see, the number of data
inconsistencies is relatively low, and thus the placement of global vari-
ables into NVM is a viable option.

Now we can either choose to exploit this result for minimizing the
versioning overhead of DINO, or we can explore the possibility of using
MementOS.
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2. Static analysis with global variables in NVM

If we look at the results of the previous analysis, we can see that all the
data inconsistencies happens within different iterations of for loops.
We can note that placing checkpoints after the end of each loop will
certainly remove all the inconsistencies. For this reason, DINO seems
to be a reasonable option. Since the amount of work performed inside
loops is relatively low, we could just place checkpoint boundaries at
their ends.

Before considering our analysis done, we still want to evaluate other
options. For this reason, we choose to apply the loop-latch strategy of
MementOS to our program, and thus we run a static analysis.

As we will see in the results, this configuration leaves only one data
inconsistency, which can be easily resolved by placing a checkpoint in
a specific position. Unfortunately, the checkpoint frequency would be
higher than the one of DINO, and with this configuration our best
option is thus using it.

3. Static analysis with stack in NVM

Since the amount of inconsistencies introduced by the movement of
global variables into NVM is manageable, we want to evaluate the
possibility of allocating the stack into NVM. As we stated in the other
test cases, we could either use Ratchet or MementOS.

Since there are no function calls, we will run a static analysis consid-
ering the loop-latch placement of MementOS. Furthermore, we do not
expect to introduce a large amount of data inconsistencies by mov-
ing the stack into NVM, since there exists only one local variable and
there are no function calls.

As we will see in our results, we introduced more inconsistencies due
to the positioning of the iterator i into the NVM. Even if the num-
ber of inconsistencies is relatively low (i.e., 7), it is not beneficial to
us allocating the stack into NVM. In fact, we reduce the checkpoint
overhead by one single memory cell (i.e., local variable i), but we have
to introduce seven more checkpoints, thus increasing their frequency.
The reduction of the overhead does not compensate for this increased
frequency, and thus we will obtain a loss in performance.
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8.2.5 Quantitative Evaluation Results

In this section we discuss the results of the tests we previously described for
evaluating ScEpTIC data analysis performance. For running our dynamic
tests we used an execution depth of 3000, which a reasonable value within
the rage we found in Section 8.2.3.

CRC:

1. Dynamic analysis with global variables allocated in NVM.

Figure 8.3 shows the results of this evaluation. Since it consists in a
dynamic analysis, we did not measure the performance of the Base-
line algorithm. As we explained in Section 8.2.1, it would take too
much time for such algorithm to complete a dynamic analysis. Using
Equation 8.1, we can analytically calculate that the Baseline algo-
rithm would execute 2.25 · 1011 instructions, since nops is 5.2 · 104 for
CRC. Considering that in our configuration we were able to reach a
maximum speed of 1.8 · 104 instruction/s, it would take not less than
1.25 · 107 seconds to complete the analysis, which are 144 days. Fur-
thermore, in this case there is only one instruction writing the NVM,
which is the assignment of crcTable variable inside the crcInit() func-
tion. For this reason, we can also analytically calculate the number
of found inconsistencies, which would be 3000. In fact, the Baseline
algorithm tries a checkpoint at every line of code, and since the exe-
cution depth is 3000, we reach the writing instruction starting from
3000 instructions before it. As we stated in Section 8.2.1, the Baseline
algorithm represents inconsistencies pairs of (checkpoint, reset), and
since we reach the inconsistent state with 3000 different checkpoints,
we will have 3000 different inconsistencies.

For these reasons, the Baseline algorithm performance is not com-
parable to the one of ScEpTIC and Dummy ScEpTIC, and it largely
outperformed by both of them. Furthermore, the Baseline algorithm
returns 3000 miss-classified inconsistencies, leading to unusable anal-
ysis result.

Let us now continue our comparisons, considering only ScEpTIC and
Dummy ScEpTIC. As first metric, we are interested in the number of
inconsistencies found by each algorithm, which is shown in Figure 8.3d.
In this case, Dummy ScEpTIC and ScEpTIC find the same number
of inconsistencies, which is 0. As we will see in the results of the
next benchmarks, Dummy ScEpTIC is subject to miss-classification of
inconsistencies. In this case, it does not miss-classify any inconsistency
thanks to knowledge of the optimizations of the reset points taken from
ScEpTIC.
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Figure 8.3: Data evaluation results: Dynamic Analysis of CRC benchmark
with global variables allocated in NVM.

Let us now consider Figure 8.3b and Figure 8.3c, which show respec-
tively the instructions executed and the support memory accesses.
ScEpTIC executes 5.2 · 104 instructions with 3.3 · 104 support mem-
ory accesses, and instead Dummy ScEpTIC executes 5.7 · 104 instruc-
tions with only 9 support memory accesses. This increased number
of executed instructions in Dummy ScEpTIC is caused by the num-
ber of checkpoint tested and snapshots restored, as it is possible to
see in both Figure 8.3f and Figure 8.3g. In fact, ScEpTIC tests only
one checkpoint placement and it does not restore any snapshot. In-
stead, Dummy ScEpTIC tests 18 different checkpoint placements, and
it restores a snapshot at the end of each tested checkpoint, even if no
inconsistency is found. This action is required for Dummy ScEpTIC
to perform an exhaustive dynamic analysis. In fact, if it does not re-
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store a snapshot at the end of each test, it would skip the test of any
checkpoint placement contained in the tested interval.

Let us now consider Figure 8.3a, which shows the time required for
running this benchmark, that is in the same order of magnitude for
both the two algorithms. We are not interested in this metric alone,
and instead we are interested in understanding its relationship with
other metrics. Dummy ScEpTIC takes 2.5 times more than ScEp-

TIC for running this analysis. This is caused by the higher number of
checkpoints tested by Dummy ScEpTIC. Thanks to its optimizations,
ScEpTIC has only to test one checkpoint and it does not restore any
snapshot, since the state remains consistent. The lack of such opti-
mizations in Dummy ScEpTIC causes an excessive number of check-
points tested, resulting in an overall worst performance with respect
to ScEpTIC. Moreover, since we are performing a dynamic analysis,
we are considering checkpoints to happen at any line of code. For
this reason, Dummy ScEpTIC has to restore a snapshot after it fin-
ishes testing all the resets point associated to a checkpoint placement.
This is required for granting an exhaustive test from the checkpoint
placement standpoint. In fact, if it avoids this behavior, the next in-
struction to be executed is the one after the latest rest point tested.
As consequence, the next checkpoint placement to be tested can be
only after such reset point, with the effect of skipping the testing of
checkpoint placements which happens between the previously tested
checkpoint and the latest reset point.

Finally, given the results of such benchmark, we can also establish that
the largely higher number of support memory accesses that happens in
ScEpTIC does not influence the execution time of the test as much as
it does the number of checkpoints tested and the consequent number
of instructions executed which happens in Dummy ScEpTIC.

Given the results we just described, we can say that the performance
of ScEpTIC is sensibly better than Dummy ScEpTIC and Baseline for
this benchmark. Furthermore, Dummy ScEpTIC has a better per-
formance with respect to Baseline thanks to the optimizations taken
from ScEpTIC.

2. Static analysis with stack allocated in NVM and checkpoints placed
accordingly to the loop-latch strategy of MementOS [3].

Figure 8.4 shows the results of this benchmark. It consists in a static
analysis, and thus the checkpoints to be tested are fixed inside the
code. As consequence, we are also able to get the results from the
analysis performed by the Baseline algorithm.

Firstly, let us consider Figure 8.4a, which shows the time required by
the three algorithms for running the benchmark. As we can see, the
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Figure 8.4: Data evaluation results: Static Analysis of CRC benchmark,
with checkpoints placed accordingly to the loop-latch strategy of MementOS
[3] and the stack allocated in NVM.

execution time is in the same order of magnitude for the three algo-
rithms. Baseline is the algorithm that takes more time for completing
the analysis, and Dummy ScEpTIC is the one which takes less time.

For understanding this result, let us focus on Figure 8.4e, which shows
us the resets generated during the analysis. In all the three algo-
rithms, the generation of a power reset is followed by the restoration
of a checkpoint, and thus the number of power resets also indicates
the number of checkpoints restored. As consequence, we can say that
resets are correlated to the amount of different combinations of in-
termittent execution scenarios tested. The excessive high number of
resets generated by Baseline is caused by the lack of an optimization to
the reset points, which is instead present in both ScEpTIC and Dummy
ScEpTIC. Dummy ScEpTIC performs a number of resets which is sig-
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nificantly lower than the other two algorithms, and this is the main
reason for the lower execution time. The lack of such optimizations
results also in a higher number of support memory accesses, as we can
see in Figure 8.4c. In fact, every time a reset is generated, the support
memory is accessed for verifying the presence of inconsistencies inside
the obtained state.

The loop-latch placement of MementOS [3] places checkpoints at the
end of the loop body, and thus the same checkpoint must be tested
multiple times, since they happen inside a loop iteration and at each
one of them the state is different. Dummy ScEpTIC performs such a
low number of resets due to its representation of inconsistencies. In
fact, as we explained in Section 8.2.1, it is not able to find the actual
instruction causing an inconsistency, and instead it assumes that is
the instruction before the reset point which caused the inconsistency.
As consequence, once Dummy ScEpTIC finds an inconsistency, it does
not retry the associated reset points for a given checkpoint, and thus
it will skip the associated resets for all the subsequent analysis of
the same checkpoint. Instead, ScEpTIC performs the analysis of the
subsequent loop iterations even if an inconsistency was found, since
different data might cause different inconsistencies, as we explained
in Section 8.2.1. As consequence, Dummy ScEpTIC tests a lower
number of intermittent execution scenarios, and returns us less precise
information about inconsistencies compared to ScEpTIC.

Let us now consider Figure 8.4b, which shows the number of instruc-
tions executed. ScEpTIC executes a number of instructions which is
higher with respect to the ones executed by Dummy ScEpTIC and
Baseline. This is caused by both the resets generated and the snap-
shots restored, as we can see in Figure 8.4e and Figure 8.4g. In the
three algorithms, a snapshot is restored whenever the state is incon-
sistent. The subsequent operations consist in a sequential execution of
the code, which is required for reaching the latest reset point and con-
tinuing the analysis. For this reason, restoring a snapshot increases
the number of instructions executed, but since they are run using
a sequential execution scenario, it does not influence the execution
time excessively. In fact, testing an intermittent execution is more
time-consuming with respect to a sequential execution, and thus the
number of snapshots restored has a significant lower impact on the
execution time with respect to the number of resets generated. This is
the reason for the fact that ScEpTIC has a significant higher number
of instructions executed with a contained execution time.

Moreover, Figure 8.4c shows the support memory accesses performed
by the three algorithms. The support memory is accessed whenever
an algorithm requires verifying if the state is consistent.
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1 [ Write After Read Incon s i s t ency ]
2 Ce l l address : S−0x24
3 Correct content : 8
4 Read content : 7
5 Read at c l o ck : 64
6 Written at c l o ck : 66
7 Memory Read happens at :
8 @main −> #6 ( Line : 37 ; Column : 3 ; Function name : main )
9 @crcSlow −> #52 ( Line : 116 ; Column : 32 ; Function

name : crcSlow )
10 Memory Write happens at :
11 @main −> #6 ( Line : 37 ; Column : 3 ; Function name : main )
12 @crcSlow −> #54 ( Line : 116 ; Column : 32 ; Function

name : crcSlow )

Example 8.4: Portion of the results of the analysis returned by ScEpTIC

1 Ce l l address : S−0x24
2 Checkpoint happens at : @crcSlow −> #51
3 Caused by : @crcSlow −> #55
4
5 Ce l l address : S−0x24
6 Checkpoint happens at : @crcSlow −> #57
7 Caused by : @crcSlow −> #55
8
9 Ce l l address : S−0x24

10 Checkpoint happens at : @crc In i t −> #48
11 Caused by : @crcFast −> #42

Example 8.5: Portion of the results of the analysis returned by Dummy
ScEpTIC

Dummy ScEpTIC perform such analysis every time it generates a
reset, and instead ScEpTIC performs accesses to the support memory
every time it executes an instruction. If we consider the metric alone,
we might think that Dummy ScEpTIC performs better than ScEp-

TIC, but if we instead consider when the memory is accesses, we can
notice that the usage ratio of the support memory is higher in Dummy
ScEpTIC. In fact, it performs 42 resets with 2.4 ·104 memory accesses,
which means 517 support memory accesses per reset. Instead, ScEp-
TIC executes 2.1·105 instructions with 1.6·105 memory accesses, which
means 0.76 memory accesses per instruction.

Finally, let us now consider Figure 8.4d, which shows the inconsisten-
cies found by the three algorithms. Baseline finds an excessive number
of inconsistencies, and this is the direct consequence of its inability of
recognizing the actual instructions causing a reset, as we explained in
Section 8.2.1. As consequence, the results returned by Baseline are
almost unusable, since the efforts required for manually verifying the
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actual instructions causing the inconsistencies is not irrelevant, consid-
ering that it finds 221 inconsistencies. Instead, Dummy ScEpTIC and
ScEpTIC find a comparable number of inconsistencies. For comparing
their results, we must consider how the two algorithms represents in-
consistencies. Example 8.5 and Example 8.4 shows a portion of the
results returned by Dummy ScEpTIC and ScEpTIC. Dummy ScEpTIC
represents inconsistencies identifying the cell address, the checkpoint
and the reset point causing the inconsistency. Instead, ScEpTIC iden-
tifies where the memory read and write happen. ScEpTIC returns us a
precise information about the inconsistency. For how Dummy ScEp-
TIC represents inconsistencies, it is not able to represents them as it
does ScEpTIC. As consequence, we have imprecise and redundant in-
formation. In fact, Example 8.4 shows an inconsistency identified by
ScEpTIC which happens at the address 0x24 in the stack. The same
inconsistency is identified as three different ones by Dummy ScEpTIC,
as Example 8.5 shows.

Recognizing an inconsistency with the result returned by Dummy
ScEpTIC requires us to analyze the code, for understanding where
the memory read and write associated to the inconsistency happen.
The results returned by ScEpTIC contains this information, which is
essential for avoiding inconsistencies. If we inspect the results of this
analysis, we can find another similar case for the cell with address
0x18: Dummy ScEpTIC finds 10 inconsistencies over this same cell,
and ScEpTIC finds that the actual cause is a single memory write. If
we deepen into this analysis, we can also notice that Dummy ScEpTIC
does not find all the inconsistencies found by ScEpTIC. For example,
ScEpTIC finds an inconsistency with the memory cell at address 0x1e,
which is not even analyzed by Dummy ScEpTIC. This is caused by
the reset points sub-optimization of Dummy ScEpTIC, which makes
it skip some resets points. In fact, it would be useless re-test the same
reset point in a future analysis, since Dummy ScEpTIC is not be able
to analyze the memory as ScEpTIC does, and thus it would not find
any new inconsistency.

In this benchmark, the Baseline algorithm is outperformed by ScEpTIC

and Dummy ScEpTIC, especially because it returns us an unmanage-
able number of inconsistencies. As we stated in Section 8.2.1, Dummy
ScEpTIC is the algorithm obtained by applying some optimization of
ScEpTIC to the Baseline algorithm. Dummy ScEpTIC and Baseline
share the same representation for inconsistencies, and thus their result
is not as precise as the one of ScEpTIC.

Dummy ScEpTIC has a lower execution time with respect to ScEpTIC,
but it tests a significant lower number of combinations of intermittent
executions, and the quality of the information returned is significantly
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lower than the one returned by ScEpTIC. For these reasons, we can
state that for this benchmark, ScEpTIC performs a better analysis
with a comparable execution time.

3. Dynamic analysis with stack allocated in NVM.

Figure 8.5 shows the results of this evaluation. As we previously ex-
plained, we do not have the measures of the Baseline algorithm since
we performed a dynamic analysis, and it would not be able to complete
it in a reasonable amount of time.

The difference in performance between algorithms of this analysis are
similar to the one of the first benchmark setup. As we did for it, we
can analytically calculate that the Baseline algorithm would execute
2.25 ·1011 instructions, and it would take 1.25 ·107 seconds to complete
the analysis, which are 144 days. Both the number of instructions ex-
ecuted and the execution time are way above the respective metric
of both Dummy ScEpTIC and ScEpTIC, as we can see in Figure 8.5a
and Figure 8.5b. Moreover, since Dummy ScEpTIC is obtained by ap-
plying some optimization of ScEpTIC to the Baseline algorithm, the
number of inconsistencies found by the Baseline algorithm can not
be lower than the one of Dummy ScEpTIC. As consequence, from an
inconsistency standpoint it can only perform as equal or worse than
Dummy ScEpTIC. For these reasons, we can say that the Baseline
algorithm performance is significantly worse than the other two algo-
rithms, which largely outperform it.

Let us now focus only on Dummy ScEpTIC and ScEpTIC. As we previ-
ously explained, Dummy ScEpTIC restores a snapshot after it finishes
testing all the resets point associated to a checkpoint placement, oth-
erwise its analysis is not exhaustive. During an intermittent execution
test, ScEpTIC analyzes the instructions executed so to understand if
a checkpoint placement should be tested before any of them. For this
reason, it is able to restore a lower number of snapshots with respect to
Dummy ScEpTIC, as we can see in Figure 8.5g. As consequence, it is
also able to skip testing useless checkpoint placements, while maintain-
ing the test exhaustive. This results in a lower number of checkpoints
test, as shown in Figure 8.5f.

The lack of such optimization, causes Dummy ScEpTIC to test an
excessive number of checkpoints. This results in a significantly higher
amount of time required for completing the analysis with respect to
ScEpTIC, as we can see in Figure 8.5a.

Finally, let us consider Figure 8.5d, which shows that Dummy ScEp-
TIC finds 534 inconsistencies and ScEpTIC only 72. At a first look we
could think that ScEpTIC is not able to classify some inconsistencies,
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Figure 8.5: Data evaluation results: Dynamic Analysis of CRC benchmark
with the stack allocated in NVM.

but it is not the case. In fact, as we previously stated, Dummy ScEp-
TIC finds all the pairs of checkpoint / reset which cause the state to
be inconsistent, and instead ScEpTIC is able to find the actual cause
of them. As consequence, all the information about inconsistencies
found by Dummy ScEpTIC is included within the result of ScEpTIC.
In fact, if we analyze the information returned by Dummy ScEpTIC
for finding the actual cause of inconsistencies, we will have the same
result returned by ScEpTIC. Moreover, Dummy ScEpTIC is an op-
timization of the Baseline algorithm which, as we explained in Sec-
tion 4.5.1, classifies each write operation into NVM as inconsistency.
As consequence, the information returned by Dummy ScEpTIC con-
tains also miss-classified inconsistencies, which instead are not present
in ScEpTIC.
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Considering these results, we can say that ScEpTIC largely outperforms
its two counterparts in this benchmark, both from performance and
inconsistency standpoints.

Given the results of these three benchmarks, we can state that ScEpTIC
largely outperforms Dummy ScEpTIC and Baseline in the two Dynamic
Analysis. Instead, in the Static Analysis it has a comparable performance
from an execution standpoint, but it returns a very precise information
about inconsistencies, making its overall performance to be better than the
other two algorithms. Moreover, Dummy ScEpTIC has a significantly bet-
ter performance with respect to Baseline, and this is achieved thanks to the
optimizations taken from ScEpTIC.

FFT:

1. Dynamic analysis with variables realin, imagin, realout, and imagout
allocated in NVM. Figure 8.6 shows the results of this benchmark,
which are very similar to the results of the dynamic analysis we pre-
viously analyzed for the CRC benchmark.

We are not able to get the results for the Baseline algorithm since
it is a dynamic analysis. As we did for the first setup of the CRC
benchmark, we can use Equation 8.1 to analytically calculate that the
Baseline algorithm would execute 1.7 · 1012 instructions, since nops is
3.82·105 for FFT. Considering that in our configuration we were able to
reach a maximum speed of 1.8·104 instructions/s, it would take 9.4·107

seconds to complete the analysis, which are 1093 days. Moreover, as
we previously stated, Baseline finds a number of inconsistencies which
can not be lower than the one found by Dummy ScEpTIC, since this
last one is an optimization of the Baseline algorithm.

For these reasons, and accordingly to the results present in Figure 8.6,
we can say that the Baseline algorithm is largely outperformed by the
other two algorithms.

Let us now focus on the performance of ScEpTIC and Dummy ScEp-
TIC. As we can see in Figure 8.6a, ScEpTIC is significantly faster than
Dummy ScEpTIC for performing the overall analysis. This result is
similar to the one of the dynamic analysis we performed for CRC,
and the reasons of such better performance are the same. In fact,
the cause of the higher execution time of Dummy ScEpTIC is the
excessive number of tested checkpoints, as we can see in Figure 8.6f.
As we explained in the description of the CRC analysis, ScEpTIC is
able to test a lower number of checkpoints thanks to its optimizations.

A direct consequence of the higher number of tested checkpoints is a
higher number of instructions executed, as we can see in Figure 8.6b.
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Figure 8.6: Data evaluation results: Dynamic Analysis of FFT benchmark
with variables realin, imagin, realout, and imagout allocated in NVM.

Moreover, as we stated in the dynamic analysis we performed in CRC,
another cause of such higher number of tested checkpoints causes also
a higher number of restored snapshots, as we can see in Figure 8.6g.

Let us now consider Figure 8.6e, which shows the resets generated by
the two algorithms. As we can see, Dummy ScEpTIC generates a
lower number of power resets. As we explained for the dynamic setup
of the CRC benchmark, this is caused by both its representation of
inconsistencies and the number of inconsistencies it finds. As conse-
quence, it tests a lower number of intermittent execution scenarios, as
in the CRC case.

Finally, let us consider Figure 8.6d, which shows the number of incon-
sistencies found by the two algorithms. As we can see, Dummy ScEp-
TIC finds 108 inconsistencies. As we explained in the CRC bench-
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marks, the representation of inconsistencies of Dummy ScEpTIC is
not as precise as the one of ScEpTIC. As consequence, if we analyze
all the 108 inconsistencies found by Dummy ScEpTIC, we will end up
with the 8 inconsistencies found by ScEpTIC.

The verdict of this dynamic evaluation for the FFT benchmark is the
same of the CRC one. The baseline algorithm is outperformed by
both Dummy ScEpTIC and ScEpTIC. ScEpTIC performance is higher
with respect to the one of Dummy ScEpTIC, since it not only takes a
significant lower amount of time for running the analysis, but it also
returns us a more concise information about inconsistencies. Moreover,
Dummy ScEpTIC is able to outperform the Baseline algorithm thanks
to the optimizations which are taken from the knowledge present in
ScEpTIC.

2. Dynamic analysis with global variables allocated in NVM.

Figure 8.7 shows the results of this benchmark. Its setup differs from
the previous one only by the number of variables allocated into NVM.
The additional variables allocated into NVM do not introduce any new
inconsistency, as we can see in Figure 8.6d and Figure 8.7d. Moreover,
the comparison of the different metrics gives us the same conclusion
of the previous benchmark setup, and also the same of the dynamic
analysis we performed with CRC.

In fact, since it is a dynamic analysis, Baseline algorithm is largely
outperformed by the other two algorithms, for the same reasons we
explained in the previous dynamic analysis of FFT.

As we can see in Figure 8.7a, Dummy ScEpTIC takes a substantial
higher amount of time to complete the analysis with respect to ScEp-

TIC. As for the previous benchmark, it is caused by the higher number
of checkpoints tested by Dummy ScEpTIC, which are shown in Fig-
ure 8.7f. A consequence of such higher number of tested checkpoints
is the high number of snapshots restored, as we can see in Figure 8.7g.

Finally, let us now consider Figure 8.6d and Figure 8.7d, which shows
us the inconsistencies found by the two algorithms in the two different
benchmarks. ScEpTIC finds the same number of inconsistencies, mean-
ing that the newly allocated variables into NVM do not introduce any
new inconsistency. Instead, Dummy ScEpTIC finds more inconsisten-
cies with respect to the previous benchmark. This increased number
of inconsistencies tells us that Dummy ScEpTIC miss-classifies some
memory writes into NVM, and considers them to generate an inconsis-
tency. As consequence, the result provided by the analysis of Dummy
ScEpTIC is not only less precise with respect to the one of ScEpTIC,
but also contains miss-leading information about inconsistencies.
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Figure 8.7: Data evaluation results: Dynamic Analysis of FFT benchmark
with global variables allocated in NVM.

As for the previous dynamic analysis of CRC and FFT, ScEpTIC per-
formance is higher with respect to the other two algorithms, and out-
performs them both from an execution time and provided information
standpoints.

3. Static analysis with global variables allocated in NVM and checkpoints
placed accordingly to the loop-latch strategy of MementOS [3].
Figure 8.8 shows the results of this benchmark. Baseline is largely
outperformed by the other two algorithms. In fact, it has a signifi-
cantly higher execution time and number of instructions executed, as
we can see in Figure 8.8a and Figure 8.8b. Moreover, as we previously
explained, it represents inconsistencies in the same way as Dummy
ScEpTIC does. For this reason, the higher number of inconsisten-
cies Baseline finds consists in redundant information or miss-classified
inconsistencies.
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Figure 8.8: Data evaluation results: Static Analysis of FFT benchmark, with
checkpoints placed accordingly to the loop-latch strategy of MementOS [3]
and global variables allocated in NVM.

Let us now consider Figure 8.8a, which shows the execution time re-
quired for running the analysis. Dummy ScEpTIC is faster than ScEp-

TIC, but their execution time has the same order of magnitude, even if
the number of instruction executed is significantly higher in ScEpTIC,
as we can see in Figure 8.8b. The higher number of instruction exe-
cuted by ScEpTIC is caused by both the number of resets it generates
and snapshots it restores, as we can see in Figure 8.8e and Figure 8.8g.
Both the two metrics are largely higher in ScEpTIC, but the execution
time is not affected significantly by such high difference. As we pre-
viously stated, restoring a snapshot does not affect significantly the
execution time, since it produces a sequential execution of the code.
As consequence, the significantly higher number of snapshots restored
by ScEpTIC does not influence the execution time, since the following
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instructions are executed sequentially. The high difference of resets
generated between ScEpTIC and Dummy ScEpTIC does not influence
the execution time as much as we might think. ScEpTIC generates a
43 times higher number of resets with respect to the one generated
by Dummy ScEpTIC, but the execution time is in the same order of
magnitude.

The reason for this discrepancy resides in the support memory ac-
cesses. Let us consider Figure 8.8c, which shows the support memory
accesses of the three algorithms. The accesses performed by Dummy
ScEpTIC and ScEpTIC are in the same order of magnitude, but the
performance of Dummy ScEpTIC is significantly lower with respect
to ScEpTIC. For understanding this statement, we must consider when
the memory is accessed: ScEpTIC accesses the support memory during
the execution of every instruction, and Dummy ScEpTIC accesses it
only when it performs a reset. As consequence, we can notice that
the usage ratio of the support memory is higher in Dummy ScEpTIC.
In fact, it performs 180 resets with 1.3 · 106 memory accesses, which
means 7.2 · 103 support memory accesses per reset. Instead, ScEpTIC
executes 2.1 · 106 instructions with 2.2 · 106 memory accesses, which
means 1.05 memory accesses per instruction. For this reason, the
overhead introduced by Dummy ScEpTIC for verifying the presence
of inconsistencies is much higher with respect to the one of ScEpTIC.
As consequence, Dummy ScEpTIC has a performance similar to the
one of ScEpTIC, even if the latter generates a 43 times higher number
of resets. We encountered a similar condition in the second setup of
the CRC benchmark, in which we run a static analysis with the stack
allocated into NVM.

Let us now consider Figure 8.8d, which shows the number of inconsis-
tencies found by the algorithms during the analysis. Dummy ScEpTIC
finds a number of inconsistencies which is higher with respect to ScEp-

TIC. As we previously stated, the information returned by Dummy
ScEpTIC is not as precise as the one of ScEpTIC, and it also contains
redundant elements or miss-classified ones. If we analyze the informa-
tion returned by Dummy ScEpTIC, we will achieve the same result
returned by ScEpTIC.

Finally, the Baseline algorithm is largely outperformed by both the
other two algorithms. Dummy ScEpTIC and ScEpTIC have a similar
performance, but the overhead introduced by the state comparison of
Dummy ScEpTIC slows it down significantly. ScEpTIC returns us a
precise information, at the cost of a slight increase of the execution
time. Moreover, we must always keep into consideration that Dummy
ScEpTIC is the optimization of the Baseline algorithm obtained with
the knowledge taken from ScEpTIC. For this reason, we can also say
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that the optimizations of ScEpTIC are very effective for analyzing this
problem.

4. Static analysis with stack allocated in NVM and checkpoints placed
accordingly to the loop-latch strategy of MementOS [3].

Figure 8.9 shows the results of this evaluation, which are very similar
to the ones of the static analysis we performed with CRC.

Let us firstly consider Figure 8.9b, which shows the number of in-
structions executed by the three algorithms. As we can see, ScEpTIC
executes a number of instructions which is significantly higher with
respect to the other two algorithms. If we consider the execution time
shown in Figure 8.9a, we can see a case similar to the previous setup of
this benchmark. The time required by ScEpTIC for executing the anal-
ysis is comparable to the one required by the other two algorithms,
even if it executes a number of instructions which is 4 to 10 times
higher.

The reason for this behavior is the same we described in the previ-
ous benchmark setup, and it resides in the support memory accesses.
For better understanding this condition, we can compare ScEpTIC and
Baseline that takes the same amount of time for completing the anal-
ysis. The number of resets they perform is similar, as we can see in
Figure 8.9e, but the number of instruction executed is 4 times higher
in ScEpTIC. Baseline and Dummy ScEpTIC uses the same technique
for analyzing inconsistencies, and thus they both accesses the support
memory when they generate a reset. ScEpTIC performs 1.08 support
memory accesses for any executed instruction, and instead Baseline
performs 8.2 · 104 support memory accesses every time it generates
a reset. As consequence, generating an intermittent execution has a
higher overhead in the Baseline algorithm with respect to ScEpTIC.

If we consider both Figure 8.9b and Figure 8.9a, we can see an inter-
esting relation between the instructions executed and the execution
time for Dummy ScEpTIC and Baseline algorithms. In fact, the exe-
cution time of Baseline is almost twice the one of Dummy ScEpTIC,
and the instructions executed by Baseline are also almost twice with
respect to Dummy ScEpTIC. This condition is only valid for these two
algorithms, since they introduce the same type of overhead for finding
inconsistencies.

As we stated for the previous benchmarks, the high number of in-
structions executed by ScEpTIC does not affect the execution time as
much as it does for Dummy ScEpTIC or Baseline. In fact, a relevant
part of such instructions are executed with a sequential execution,
since ScEpTIC restores a high number of snapshots, as we can see in
Figure 8.9g.
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Figure 8.9: Data evaluation results: Static Analysis of FFT benchmark, with
checkpoints placed accordingly to the loop-latch strategy of MementOS [3]
and the stack allocated in NVM.

Let us now consider Figure 8.9d, which shows the number of incon-
sistencies found by the three algorithms. Baseline and Dummy ScEp-
TIC have the same representation for inconsistencies, and thus the
information returned by Baseline is full of redundant elements with
respect to the one returned by Dummy ScEpTIC. Furthermore, the
1.1 · 103 inconsistencies returned by Baseline would be very difficult
to analyze. Dummy ScEpTIC returns 230 inconsistencies and, as we
previously stated, they can all be reduced to the one present in the
results of ScEpTIC, which are only 45. As we stated for all the other
benchmarks, ScEpTIC returns an information which is precise and more
concise with respect to the other two algorithms.
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The Baseline algorithm and ScEpTIC take the same amount of time for
running this benchmark, but ScEpTIC returns a more valuable infor-
mation which also takes less efforts to be analyzed. For this reason, we
can say that ScEpTIC has a better performance with respect to Base-
line, especially thanks to the way in which it analyzes and represents
inconsistencies. Dummy ScEpTIC is an optimization of the Baseline
algorithm, and in this benchmark outperforms it, thanks to the opti-
mizations taken from ScEpTIC. Finally, Dummy ScEpTIC takes less
time with respect to ScEpTIC for running the analysis, but the efforts
required for analyzing the results returned by Dummy ScEpTIC will
vanify this performance advantage. In fact, as we previously stated,
ScEpTIC returns us a precise information which does not contain any
redundant element, and directly identifies the causes of the found in-
consistencies.

The overall result of this four benchmarks is similar to the one of the CRC
benchmark. Considering the performance of ScEpTIC, we can state that it
largely outperforms Dummy ScEpTIC and Baseline in the two Dynamic
Analysis. Instead, in the Static Analysis it has a comparable performance
from an execution standpoint, but the concise and precise information it
returns regards inconsistencies makes its performance to be better than the
other two algorithms. In fact, the efforts required for analyzing the results
returned by Dummy ScEpTIC or Baseline vanify any execution time advan-
tage, especially if we consider that we are performing an off-line analysis of a
program. Moreover, in all the four benchmarks Dummy ScEpTIC has a sig-
nificantly better performance with respect to Baseline, and this is achieved
thanks to the optimizations taken from ScEpTIC. For this reason, we can
also say that the optimizations of ScEpTIC are very effective for analyzing
this problem.

AES:

1. Dynamic analysis with global variables allocated in NVM.

Figure 8.10 shows the results of this benchmark setup. This evaluation
scenario returns us a result which is similar to the dynamic analysis
we performed for the CRC and FFT benchmarks.

As we previously explained, the Baseline algorithm is not able to com-
plete a dynamic analysis in a reasonable amount of time. For this
reason, we analytically calculated with Equation 8.1 that the Baseline
algorithm would execute 2.99 · 1012 instructions, since nops is 6.7 · 105

for AES. Considering that in our configuration we were able to reach
a maximum speed of 1.8 · 104 instructions/s, it would take 1.66 · 108

seconds to complete the analysis, which are 1922 days.
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Figure 8.10: Data evaluation results: Dynamic Analysis of AES benchmark
with global variables allocated in NVM.

As consequence, we can say that the Baseline algorithm is largely
outperformed by ScEpTIC and Dummy ScEpTIC.

In this benchmark ScEpTIC is able to outperform Dummy ScEpTIC in
all the metrics thanks to its optimizations and to its representation of
inconsistency. This same behavior is shown in the two dynamic anal-
ysis setups of the CRC and FFT benchmarks we previously described.

In fact, as we can see in Figure 8.10a, ScEpTIC is significantly faster
than Dummy ScEpTIC for performing the overall analysis. As we ex-
plained in the other dynamic analysis benchmarks, Figure 8.10f shows
the cause of the higher execution time of Dummy ScEpTIC, and it is
the excessive number of tested checkpoints. A direct consequence of
this behavior is a higher number of instructions executed, as we can
see in Figure 8.10b.
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Let us now consider Figure 8.10d, which shows the number of incon-
sistencies found by the two algorithms. We can notice that Dummy
ScEpTIC finds 324 inconsistencies, and ScEpTIC finds only 72 of them.
As we explained in previous benchmarks, the representation of incon-
sistencies of Dummy ScEpTIC is not as precise as the one of ScEpTIC.
As consequence, if we analyze all the 324 inconsistencies found by
Dummy ScEpTIC, we will end up with the 72 inconsistencies found
by ScEpTIC.

The verdict of this dynamic evaluation for the AES benchmark is the
same of the CRC and FFT ones. The baseline algorithm is outper-
formed by both Dummy ScEpTIC and ScEpTIC. ScEpTIC has a better
performance with respect to Dummy ScEpTIC, since it not only takes
a significant lower amount of time for running the analysis, but it also
returns us a more concise information about inconsistencies. Moreover,
Dummy ScEpTIC is able to outperform the Baseline algorithm thanks
to the optimizations which are taken from the knowledge present in
ScEpTIC.

2. Static analysis with global variables allocated in NVM and checkpoints
placed accordingly to the loop-latch strategy of MementOS [3].

Figure 8.11 shows the results of this evaluation, and the result are
similar to static analysis with the global variables allocated in NVM
which we performed for the FFT benchmark.

The Baseline algorithm is largely outperformed by Dummy ScEpTIC
and ScEpTIC in all the metrics, except for the number of checkpoints
tested, which is fixed in the code since we performed a static analysis.
The main cause of such bad performance of the Baseline algorithm is
the lack of optimizations for the resets to be generated, which instead
are present in both ScEpTIC and Dummy ScEpTIC. For this reason,
Baseline generates an unnecessary number of resets, as we can see
in Figure 8.11e. Moreover, as we stated in the analysis of previous
benchmarks, resets are used for generating a specific intermittent ex-
ecution of the code, and thus a high number of resets leads to a high
number of instructions executed, as Figure 8.11b shows. The higher
number of resets generates also a higher number of support memory
accesses, since Baseline verifies the presence of inconsistencies each
time it generates a reset. If we consider Figure 8.11c, we can see that
the support memory accesses executed by Baseline are significantly
higher with respect to the other two algorithms. Those are the rea-
sons for the higher execution time required by Baseline for completing
the analysis.

Let us now focus on the performance of Dummy ScEpTIC and ScEp-

TIC. As we can see in Figure 8.11a, they take almost the same amount
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Figure 8.11: Data evaluation results: Static Analysis of AES benchmark,
with checkpoints placed accordingly to the loop-latch strategy of MementOS
[3] and global variables allocated in NVM.

of time for performing the analysis, and the number of instructions
executed is also the same for both algorithms, as Figure 8.11b shows.
The little difference in the execution time is caused by the support
memory accesses. In fact, as we can see in Figure 8.11c, ScEpTIC

executes almost twice the memory accesses of Dummy ScEpTIC. As we
stated for previous benchmarks, ScEpTIC performs a support memory
access every time it runs an instruction, leading to an access ratio of 1.1
support memory accesses per instruction. Instead, Dummy ScEpTIC
perform a memory access every time it generates a reset, leading to
an access ratio of 1227 support memory accesses per resets generated.
When Dummy ScEpTIC generates a reset, it introduces an overhead
for accessing the support memory, and it is significantly higher with
respect to the one of ScEpTIC.
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Let us now consider Figure 8.11e and Figure 8.11g, which shows re-
spectively the resets generated and the snapshots restored. Thanks to
its optimizations, ScEpTIC does not generate any resets and, as conse-
quence, it does not restore any snapshot. Instead, Dummy ScEpTIC
generates 30 resets, which leads it to restore 23 snapshots. Those
numbers do not introduce a measurable overhead, and thus the per-
formance of Dummy ScEpTIC is not influenced from an execution
standpoint, but it is influenced from the point of view of inconsisten-
cies. In fact, as we stated in Chapter 4, ScEpTIC performs a reset only
after operations that write into memory cells allocated into NVM,
and that are read from a previously executed instruction. Instead,
Dummy ScEpTIC executes a reset after every instruction which writes
the NVM. As consequence, the lack of such optimization leads to the
miss-classification of 21 inconsistencies, as we can see in Figure 8.11d.
In fact, ScEpTIC does not find any inconsistency, since it is able to
verify if the possibly inconsistent value preset in memory is used for
producing an inconsistent result. We can also notice that the lack of
such optimization makes also the Baseline algorithm to miss-classify
176 different inconsistencies.

Finally, for the reasons we explained, we can say that ScEpTIC per-
formance is comparable with the one of Dummy ScEpTIC, from an
execution standpoint, since they perform an analysis which almost
consists in a sequential execution of the code. If we consider an in-
consistency standpoint, Dummy ScEpTIC returns an incorrect result,
since it miss-classifies all the inconsistencies. Fixing the inconsisten-
cies that Dummy ScEpTIC returns using the techniques we explained
in Chapter 4 does not produce any benefit, since the code does not
have any inconsistency. In fact, we may increase the overhead due
to the introduction of a new checkpoint, or we may waste our time
moving checkpoints that already grant consistency, with the risk of
introducing an inconsistency that the previous placement avoided.

For these reasons, we can say that ScEpTIC overall performance is
better than the one of Dummy ScEpTIC. Moreover, Dummy ScEpTIC
is able to outperform Baseline thanks to the optimizations taken from
the knowledge present in ScEpTIC. For these reasons, we can say that
ScEpTIC is very effective in analyzing the problem of inconsistencies
in this benchmark.

3. Static analysis with global variables allocated in NVM and checkpoints
placed accordingly to the function-return strategy of MementOS [3].

Figure 8.12 shows the results of this benchmark, and the differences
between the metrics is exactly the same of the previous benchmark.
In fact, Baseline is outperformed by ScEpTIC and Dummy ScEpTIC
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Figure 8.12: Data evaluation results: Static Analysis of AES benchmark,
with checkpoints placed accordingly to the function-return strategy of Me-
mentOS [3] and global variables allocated in NVM.

in any metric. ScEpTIC and Dummy ScEpTIC have almost the same
performance from an execution standpoint but, as for the previous
benchmark, Dummy ScEpTIC produces a result that contains only
miss-classified inconsistencies. For this reason, we can not use such
result and thus we can say that the performance of ScEpTIC is better
than the one of Dummy ScEpTIC, as for the previous benchmark.

4. Static analysis with stack allocated in NVM and checkpoints placed
accordingly to the loop-latch strategy of MementOS [3].

Figure 8.13 shows the results of this benchmark, which are similar to
the static analysis of FFT with the stack allocated into NVM.

The first thing we can notice is that ScEpTIC takes more time for
running this benchmark with respect to the other two algorithms, as
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Figure 8.13: Data evaluation results: Static Analysis of AES benchmark,
with checkpoints placed accordingly to the loop-latch strategy of MementOS
[3] and the stack allocated in NVM.

we can see in Figure 8.13a. The main reason of the higher execu-
tion time is the number of resets generated, as Figure 8.13e shows.
In fact, ScEpTIC generates twice the number of resets generated by
Baseline and 165 times the number of resets generated by Dummy
ScEpTIC. The reason of the lower number of resets generated resides
in the way Baseline and Dummy ScEpTIC finds and represents in-
consistencies. As we stated in the previous benchmarks, they are not
able to understand the actual cause of the inconsistency, and they rep-
resent inconsistencies as pairs of checkpoints and reset points causing
the found inconsistency. Once they find an inconsistency, they will
skip the generation of the same reset point in future analysis of the
same checkpoint. The loop-latch placement of MementOS [3] which
is used in this benchmark places checkpoints at the end of the loop
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body. As consequence, a relevant number of resets is ignored, since
the algorithms would find the same inconsistency over again. As we
explained in Section 8.2.1, since ScEpTIC correctly identifies the ac-
tual cause of inconsistencies, skipping a reset point would lead to an
inaccurate analysis.

The higher number of resets generated by ScEpTIC makes it test a
higher number of different intermittent executions. As consequence,
the number of instruction executed by ScEpTIC is higher with respect
to the other two algorithms, as we can see in Figure 8.13b. The number
of instructions executed by ScEpTIC is more than 30 times higher
than the other two algorithms, but the execution time is comparable
to the one of the Baseline algorithm and only 3 times higher with
respect to Dummy ScEpTIC. The reason of this fact resides both in
the snapshots restored, and in the support memory accesses. In fact,
ScEpTIC tests a higher number of resets, and as consequence it also
restores a higher number of snapshots, as we can see in Figure 8.13g.
As we stated in the analysis of the other benchmarks, restoring a
snapshot causes a subsequent sequential execution of the code, which
is run at the maximum possible speed, since it is not interrupted.
As consequence, such higher number of snapshots restored has a high
impact on the instruction executed, which on the other hand does not
impact significantly on the execution time.

For understanding the contribution of support memory accesses to
the execution time, we have to consider the way in which such mem-
ory is accessed, as we did for the other static setups of the previous
benchmarks. ScEpTIC accesses the support memory every time it ex-
ecutes an instruction. Instead, Dummy ScEpTIC and Baseline access
the support memory every time they perform a reset. Let us con-
sider Figure 8.13c, which shows the support memory accesses of the
three algorithms. ScEpTIC performs 1.6 · 108 accesses with 1.3 · 108

instructions executed, and thus its access rate is 1.23 support memory
accesses per instruction. Instead, Dummy ScEpTIC performs 1.1 · 106

accesses with 370 resets, and thus its access rate is 2973 support mem-
ory accesses per reset. Similarly, Baseline access rate is 3129 support
memory accesses per reset. The overhead paid by ScEpTIC for access-
ing the support memory is several times lower with respect to the other
two algorithms. Moreover, every time Dummy ScEpTIC and Baseline
generate a reset, they pay such overhead, leading to a much slower in-
termittent execution. As consequence, the execution time of ScEpTIC
is within the same order of magnitude of the other two algorithms,
even if ScEpTIC executes and tests a higher number of instructions, as
we can see in Figure 8.13a.
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Let us now consider Figure 8.13d, which shows the number of incon-
sistencies identified by each algorithm. As we stated for the other
benchmarks, ScEpTIC finds the actual cause of inconsistencies, and
thus it does not produce redundant information in its results. Instead,
Dummy ScEpTIC and Baseline have the same representation of in-
consistencies, which makes them unable to identify the actual cause
of inconsistencies. They only verify if the state is different with re-
spect to when the checkpoint was taken, but they do not analyze if
there is an operation which uses such inconsistent value. As conse-
quence, they only find the instructions which modify the NVM, but
they are unable to identify if the alteration produces wrong results,
nor the instruction using such altered value. As consequence, the re-
sults returned by Dummy ScEpTIC and Baseline is full of redundant
elements and is also subjected to miss-classification of inconsistencies.
Dummy ScEpTIC is an optimization of Baseline, and they find the
same kind of inconsistencies. Baseline finds a higher number of incon-
sistencies, since it does not have the same optimizations to reset points
that Dummy ScEpTIC has. For this reason, it finds a higher number
of resets causing an inconsistent state, but if we analyze such results,
we will end up with the same one present in Dummy ScEpTIC. More-
over, if we analyze the results returned by Dummy ScEpTIC along
with the benchmark code, we will be able to identify the actual cause
of the inconsistencies, and we will end up with the same information
returned by ScEpTIC.

The result returned by ScEpTIC is more manageable with respect to
Dummy ScEpTIC and Baseline, and it is also precise about the actual
cause of inconsistencies. The amount of time required by ScEpTIC for
performing the analysis is in the same order of magnitude with respect
to Baseline. The efforts required for analyzing the result produced by
Baseline are higher with respect to the execution time difference with
ScEpTIC. For this reason, we can say that ScEpTIC has a better overall
performance with respect to Baseline. ScEpTIC takes 3 times more the
amount of time required for Dummy ScEpTIC for completing the anal-
ysis, but it also returns 3 times less the number of inconsistencies. The
effort required for analyzing the result returned by Dummy ScEpTIC
are higher with respect to the time difference with ScEpTIC, especially
if we consider that we do not have the information about which are the
actual cause of inconsistencies. Moreover, we are performing an offline
analysis to the code, and since the information returned by ScEpTIC is
more precise and concise, waiting for its completion is worth, especially
if we consider the effort required for analyzing the 337 inconsistencies
returned by Dummy ScEpTIC.
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We can notice that Dummy ScEpTIC outperforms Baseline in all the
metrics. This is achieved thanks to the optimizations taken from the
knowledge of ScEpTIC. As result, we can say that the guidelines we
developed alongside with ScEpTIC for analyzing inconsistencies are
very effective with respect to the ones present in Baseline.

Finally, ScEpTIC overall performance is higher with respect to the
other two algorithms, thanks to the quality of the information it re-
turns. In fact, the time difference between ScEpTIC and the other two
algorithms is not comparable to the effort required for extracting the
actual cause of inconsistencies from their results.

5. Static analysis with stack allocated in NVM and checkpoints placed
accordingly to the function-return strategy of MementOS [3].

Figure 8.14 shows the result of this evaluation. It is similar to the
results of the second and third setup of this same benchmark, in which
the global variables were allocated in the NVM.

In Figure 8.14a we can notice that ScEpTIC and Dummy ScEpTIC
takes almost the same amount of time for running the analysis, and
instead Baseline is slower. If we now consider Figure 8.14b, we can see
that the difference between the instructions executed by the three dif-
ferent algorithms is not reflected over the execution time in the same
way. In fact, as we observed for all the other benchmarks, the ex-
ecution time is highly influenced by the number of resets generated,
snapshots restored, and the ratio of support memory accesses. More-
over, the resets generated and snapshots restored both influences the
instructions executed, but their effects over the execution time is dif-
ferent. In fact, the former produces an intermittent execution of the
code, which is more time-consuming, and instead the latter produces
a sequential execution, which is less time-consuming.

Baseline and ScEpTIC executes almost the same number of instruc-
tions, but the former takes almost twice for executing the analysis.
As we previously stated, this is caused by the higher number of re-
sets generated by Baseline, as we can see in Figure 8.14e. Each time
Baseline performs a reset, it also verifies the state for finding incon-
sistencies. As consequence, the higher number of resets generated also
produces a higher number of support memory accesses, as we can see
in Figure 8.14c.

Dummy ScEpTIC and ScEpTIC runs the benchmark in almost the
same amount of time, but ScEpTIC executes 4 time the number of in-
structions executed by Dummy ScEpTIC. Moreover, Dummy ScEpTIC
generates a lower number of resets and restores also a lower number
of snapshots. As we stated for the other benchmarks, the reason of
the comparable execution time resides in the support memory accesses
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Figure 8.14: Data evaluation results: Static Analysis of AES benchmark,
with checkpoints placed accordingly to the function-return strategy of Me-
mentOS [3] and the stack allocated in NVM.

and the consequent overhead introduces. In fact, ScEpTIC and Dummy
ScEpTIC perform almost the same number of support memory ac-
cesses, but the overhead is significantly higher in Dummy ScEpTIC,
since they slow down its performance. In fact, Dummy ScEpTIC ac-
cesses the support memory each time it performs a reset, leading to
an overhead of 3004 support memory accesses per reset generated. In-
stead, ScEpTIC accesses the support memory during the normal execu-
tion, and the overhead is 0.97 support memory accesses per instruction
executed. The access ratio is significantly lower in ScEpTIC, and the
introduced overhead has almost no impact over the performance. In-
stead, Dummy ScEpTIC pays a significantly higher cost for accessing
the support memory, and thus it has a high impact over the perfor-
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mance. Moreover, we saw this behavior in all the other benchmarks,
and it is caused by the way in which inconsistencies are identified by
ScEpTIC and Baseline/Dummy ScEpTIC.

Let us now consider the number of inconsistencies returned by the
three algorithms, which are shown in Figure 8.14d. As we explained,
Baseline and Dummy ScEpTIC have the same representation of incon-
sistencies, and they do not find the actual cause of them, but only the
resets points which produce a possibly inconsistent state. The exces-
sive higher number of inconsistencies returned by Baseline is caused
by the higher number of resets generated. If we analyze such inconsis-
tencies, we can reduce them to the ones returned by Dummy ScEpTIC.
Moreover, if we analyze the result returned by Dummy ScEpTIC we
will end up with the same result of ScEpTIC, but the effort required
for doing so is considerable. Considering that ScEpTIC and Dummy
ScEpTIC takes the same time for running the analysis, this extra ef-
fort for analyzing the result returned by Dummy ScEpTIC can not be
justified.

The final verdict of this benchmark is very similar to the one of the
second and third benchmark of AES, which we previously described.
Baseline is outperformed by the other two algorithms in almost all the
metrics, and the result it returns is completely unmanageable. ScEp-

TIC and Dummy ScEpTIC takes the same amount of time for running
the analysis, but the overall performance of ScEpTIC is considerably
better, since it returns us more concise and precise information about
inconsistencies. Finally, Dummy ScEpTIC has a better performance
with respect to Baseline thanks to the optimizations taken from the
knowledge present in ScEpTIC. In fact, it is thanks to such optimiza-
tions that Dummy ScEpTIC is able to perform a considerably lower
number of resets with respect to Baseline, resulting in a higher overall
performance.

The overall result of this five benchmarks is similar to the one of the
CRC and FFT benchmarks. Considering the performance of ScEpTIC, we
can state that it largely outperforms Dummy ScEpTIC and Baseline in the
Dynamic Analysis. In fact, its ability in identifying the checkpoints to be
tested permits it to perform a significant lower of checkpoints, resulting in
a better performance.

Instead, in the Static Analysis it has a comparable performance from an
execution standpoint. Since we are performing an offline analysis, we are in-
terested in the quality of the information returned alongside the time efforts
required for obtaining it. As consequence, the concise and precise informa-
tion ScEpTIC returns regards inconsistencies makes its overall performance
to be better than the other two algorithms. In fact, the efforts required for
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analyzing the results returned by Dummy ScEpTIC or Baseline vanify any
execution time advantage.

Moreover, in all the five benchmark setups Dummy ScEpTIC has a sig-
nificantly better performance with respect to Baseline, as it did in all the
benchmarks of CRC and FFT. As we described in Section 8.2.1, Dummy
ScEpTIC algorithm consists in the Baseline algorithm optimized with a
part of the knowledge we developed alongside ScEpTIC. Given the perfor-
mance improvement of Dummy ScEpTIC over Baseline shown also in these
benchmarks, we can also say that the optimizations of ScEpTIC are very
effective for analyzing this problem.

Sense:

1. Dynamic analysis with global variables allocated in NVM.

Figure 8.15 shows the results of this benchmark. We previously de-
scribed the code of this benchmark in Example 8.3, and for this evalu-
ation we used a constant value for the input. This evaluation scenario
returns us a result which is similar to the dynamic analysis we per-
formed for the CRC, FFT, and AES benchmarks.

As we stated in the other dynamic analysis, we did not run this bench-
mark using the Baseline algorithm, since it would take an unreasonable
amount of time for completing the analysis in such scenario. As for
what we did for the other dynamic analysis, we can use Equation 8.1
to analytically calculate that the Baseline algorithm would execute
3.05 ·109 instructions, since nops is 2635 for Sense. Considering that in
our configuration we were able to reach a maximum speed of 1.8 · 104

instructions/s, it would take 1.69·105 seconds to complete the analysis,
which are almost 2 days. Moreover, as we stated previously, Baseline
represents inconsistencies in the same way Dummy ScEpTIC does, and
it has the same method of analysis. For this reason, it would not find a
lower number of inconsistencies with respect to Dummy ScEpTIC, and
we can also see this behavior in the previous benchmarks we run. For
these reasons, and accordingly to the results present in Figure 8.15,
we can say that the Baseline algorithm is largely outperformed in all
the metrics by the other two algorithms.

Let us now compare the performance of ScEpTIC and Dummy ScEp-
TIC. As we can see in Figure 8.15a, ScEpTIC takes less time to com-
plete the analysis. This lower execution time is achieved thanks to the
ability of ScEpTIC of recognizing where checkpoints must be tested. In
fact, in Figure 8.15f we can see that ScEpTIC verifies a lower number
of checkpoints with respect to Dummy ScEpTIC. In Figure 8.15e and
Figure 8.15g we can see the benefits of this behavior. In fact, testing
a lower number of checkpoints permits ScEpTIC to generate a lower
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Figure 8.15: Data evaluation results: Dynamic Analysis of Sense benchmark
with global variables allocated in NVM.

number of resets, since less intermittent executions are required, and
as consequence it also generates a lower number of snapshots. More-
over, this also affects positively the instructions executed during the
analysis, as we can see in Figure 8.15b.

The only metric in which Dummy ScEpTIC seems to perform better
than ScEpTIC is the one measuring support memory accesses. As we
did for the other benchmarks, for comparing the effects of this met-
ric over the performance, we need to consider where support memory
accesses happens. Dummy ScEpTIC verifies the presence of incon-
sistencies every time it generates a reset, and thus the access ratio is
113 support memory accesses per reset. Instead, ScEpTIC verifies the
presence of inconsistencies while it executes the code, resulting in an
access ratio of 1 support memory access per instruction executed. The
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overhead introduced by support memory accesses is higher in Dummy
ScEpTIC, and it is paid every time it generates a reset. As conse-
quence, generating an intermittent execution is more expensive for
Dummy ScEpTIC.

Let us consider Figure 8.15d, which shows the inconsistencies found
by the two algorithms. ScEpTIC returns a single inconsistency, and
identifies as its cause the re-execution of the instruction at line 16 of
the code that Example 8.3 shows. Such instruction increments the
global variable sum, and its re-execution will produce an inconsistent
result. Instead, as we previously stated, Dummy ScEpTIC is not
able to provide us the exact cause of the inconsistency, and it returns
4 possible combinations of checkpoint and reset points that lead to
an inconsistency. If we analyze such combinations, we can see that
Dummy ScEpTIC identifies the same inconsistency of ScEpTIC, but it
also finds that the re-execution of the instruction at line 23 causes an
inconsistency. Such inconsistency represents a miss-classification, since
its re-execution produces always the same result and does not modify
the runtime state. In fact, we used a constant value for the input, and
thus the variance that the program computes is zero. The instruction
of line 23 calculates the standard deviation of the data, which is always
zero for our input, since the variance is zero. For this reason, the re-
execution of the instruction of line 23 can not produce an inconsistent
result, since it does not alter the runtime state, and thus Dummy
ScEpTIC miss-classifies this inconsistency. As we demonstrated, the
result returned by ScEpTIC has more value and provides us a precise
information about the inconsistency. Moreover, it is able to condense
all the information and it is not subjected to the problem of miss-
classification that both Baseline and Dummy ScEpTIC have.

Finally, the verdict of this benchmark is the same of the other dynamic
analysis we performed with CRC, FFT, and AES. In fact, we can say
that the performance of ScEpTIC is better than Dummy ScEpTIC,
especially thanks to both the execution time advantage and the concise
information it returns. As we stated for all the other benchmarks,
we must also consider that Dummy ScEpTIC is able to outperform
Baseline thanks to the optimizations taken from the knowledge we
developed alongside ScEpTIC. This result tells us one more time that
the techniques we developed are very effective for analyzing this kind
of problems.

2. Static analysis with global variables allocated in NVM and checkpoints
placed accordingly to the loop-latch strategy of MementOS [3].

Figure 8.16 shows the result of this benchmark. The differences be-
tween the metrics are almost identical with respect to the results of
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Figure 8.16: Data evaluation results: Static Analysis of Sense benchmark,
with checkpoints placed accordingly to the loop-latch strategy of MementOS
[3] and global variables allocated in NVM.

the third benchmark setup we analyzed for FFT, which had the global
variables allocated into NVM.

As we can see in Figure 8.16a, the time required by the three algo-
rithms for running the analysis is in the same order of magnitude.
Baseline is the algorithm with the highest execution time, and in-
stead Dummy ScEpTIC and ScEpTIC takes almost the same amount
of time for running the analysis. The higher execution time of Baseline
is caused by the higher number of resets generated, as we can see in
Figure 8.16e. In fact, as we stated for the other benchmarks, resets are
used for generating an intermittent execution, and thus the execution
time is affected significantly by them. Moreover, Baseline verifies the
presence of inconsistencies every time it generates a reset. For this
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reason, this higher number of resets also causes the higher number of
support memory accesses shown in Figure 8.16c, with the consequent
overhead. For these reasons, the performance of Baseline is lower with
respect to the other two algorithms.

Dummy ScEpTIC and ScEpTIC have a comparable performance in
all the metrics. Figure 8.16g shows the snapshots restored by the
three algorithms. ScEpTIC restores a higher number of snapshots,
but this does not cause a significant performance loss. In fact, as we
stated in the analysis of the other benchmarks, restoring a snapshot
causes a subsequent sequential execution of a portion of code, that we
perform to pass the reset point causing the inconsistency, and thus
for continuing the test from a consistent state. We run such portion
of code at the maximum possible speed, since it is not interrupted
and we do not require any comparison of states. As consequence, the
higher number of snapshots restored has an impact on the instruction
executed, but it does not influence significantly the execution time.
Moreover, the number of instructions executed by the two algorithms
are almost the same, as we can see in Figure 8.16b. The higher number
of instructions executed by ScEpTIC are caused by the higher number
of snapshots it restores but, as we previously stated, this does not
influence significantly the execution time.

In this benchmark, the support memory accesses are higher in Dummy
ScEpTIC, as we can see in Figure 8.16c. The overhead introduced by
this metric is higher in Dummy ScEpTIC. In fact, as we stated in
the other benchmarks, it accesses the support memory every time it
generates a reset, and thus its access overhead is 104 support memory
accesses per reset. Instead, ScEpTIC accesses the support memory
every while it executes the instructions, leading to an overhead of 1
support memory access per instruction. As consequence, in Dummy
ScEpTIC verifying the presence of inconsistencies has a higher impact
over the performance with respect to ScEpTIC.

The execution time of ScEpTIC and Dummy ScEpTIC is the same,
even if the former executes a higher number of instructions. As we pre-
viously stated, the higher number of instructions executed by ScEpTIC

are run in a sequential execution scenario, and thus they do not influ-
ence the execution time significantly. Moreover, the higher overhead
of Dummy ScEpTIC for verifying the state compensates for the higher
number of instructions executed by Dummy ScEpTIC, making the ex-
ecution performance of the two algorithms to be almost the same.

Let us now consider Figure 8.16d, which shows the number of incon-
sistencies returned by the analysis performed by the three algorithms.
As we previously stated, ScEpTIC is able to identify the actual cause
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of an inconsistency, and instead Baseline and Dummy ScEpTIC re-
turns us pairs of checkpoints and reset which can lead to an inconsis-
tent state. Baseline returns the same list of inconsistencies found by
Dummy ScEpTIC, and the inconsistencies returned by ScEpTIC and
Dummy ScEpTIC are the same of the previous benchmark. In fact,
the static analysis we performed is a particular case of the previous
dynamic analysis, which finds all the inconsistencies introduced by
the allocation of the global variables into NVM, independently of the
checkpoint placement. As we stated for the previous benchmark, the
result returned by ScEpTIC has more value and it does not contain
miss-classified information.

For these reasons, we can say that the overall performance of ScEpTIC
is better with respect to the other two algorithms. From an execution
standpoint, it performs better with respect Baseline, and has a similar
performance with respect Dummy ScEpTIC. Instead, from the point
of view of the returned information, ScEpTIC has a better performance
with respect to the other two algorithms.

Finally, as we stated in the previous benchmarks, Dummy ScEpTIC
is obtained by applying to Baseline a set of optimizations taken from
the knowledge we developed alongside ScEpTIC. Given the increased
performance of Dummy ScEpTIC over Baseline, we can say that the
techniques we developed are very effective in analyzing this problem.

3. Static analysis with stack allocated in NVM and checkpoints placed
accordingly to the loop-latch strategy of MementOS [3].

Figure 8.17 shows the results of this evaluation, which is similar to the
static analysis we performed for the FFT benchmark with the stack
allocated into NVM.

As we can see in Figure 8.17a, the execution time of the three algo-
rithms is within the same order of magnitude. The differences in the
execution time are reflected in the resets generated, as we can see in
Figure 8.17e. In fact, as we previously stated, resets are used for gener-
ating an intermittent execution of the code, with a significant influence
over the execution time. Dummy ScEpTIC is able to perform such a
lower number of resets thanks to the optimizations taken from ScEp-

TIC. Such optimizations are not present in Baseline, and thus it gener-
ates a higher number of them. Moreover, Dummy ScEpTIC performs
such a lower number of resets due to its representation of inconsisten-
cies. In fact, as we stated in the other benchmarks, Dummy ScEpTIC
represents inconsistencies as pairs of checkpoint and reset points caus-
ing an inconsistency, and it skips generating resets in points which
are already present in such pairs. This is possible since re-generating
such resets does not introduce new information in Dummy ScEpTIC.
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Figure 8.17: Data evaluation results: Static Analysis of Sense benchmark,
with checkpoints placed accordingly to the loop-latch strategy of MementOS
[3] and the stack allocated in NVM.

Instead, ScEpTIC has a more detailed representation of inconsisten-
cies, and it is able to find the actual cause of them. For this reason,
skipping the generation of a reset would not grant an exhaustive test,
as we explained in Section 8.2.1.

Generating more resets also leads to restoring a higher number of snap-
shots, as we can see in Figure 8.17g. In fact, if the state is inconsistent
after a reset, it must be restored for performing an accurate analysis,
otherwise we would not be able to properly recognize inconsistencies.

Let us now consider Figure 8.17b, which shows the instructions exe-
cuted by the three algorithms. ScEpTIC executes a higher number of
instructions with respect to Baseline, even if it restores a lower num-
ber of snapshots and generates less resets. This strange fact happens
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because Baseline verifies the presence of inconsistencies only after it
performs a reset. If the state is inconsistent, it restores a snapshots
and executes the instructions until it reaches the next reset point. In-
stead, ScEpTIC verifies the presence of inconsistencies while it runs the
instructions. When it generates a reset, it restores the latest check-
point and continues the execution until it reaches the next reset point.
When it reaches such instruction, if an inconsistency was found, it
restores a snapshots and then it re-executes the instructions until it
reaches the point at which it stopped the execution. As consequence,
if ScEpTIC finds an inconsistency, it re-executes a sequence of instruc-
tions three times: the first one for generating the state changes, the
second one for verifying the effects of the power reset, and the third
one for restoring the snapshot and preparing the analysis of the next
reset point. For this reason, ScEpTIC executes a higher number of
instruction with respect to Baseline, even if it does perform a lower
number of resets and restores a lower number of snapshots.

The described behavior enables ScEpTIC not only to gather the actual
cause of inconsistencies, but also to perform a lower number of sup-
port memory accesses with respect to Baseline, as we can see in Fig-
ure 8.17c. Moreover, as we described in the previous benchmarks, the
overhead introduced for finding inconsistencies is significantly lower in
ScEpTIC with respect to the other two algorithms. In fact, ScEpTIC
has an access ratio to the support memory of 1.18 accesses per instruc-
tion executed. Instead, Dummy ScEpTIC has an access ratio of 100
accesses per reset generated, and Baseline has an access ratio of 120
accesses per reset generated.

Finally, let us consider Figure 8.17d, which shows the inconsistencies
found by the three algorithms. The number of inconsistencies found by
Baseline is significantly higher with respect to ScEpTIC and Dummy
ScEpTIC. As we stated in the previous benchmarks, Baseline and
Dummy ScEpTIC represents inconsistencies in the same way. The
lack of optimizations to the reset points in Baseline makes it clas-
sify a higher number of inconsistencies, but the actual information
contained in the result it returns is the same of the one of Dummy
ScEpTIC. As consequence, we can say that both Dummy ScEpTIC
and ScEpTIC outperform Baseline both from an information and exe-
cution standpoint. The elements returned by Dummy ScEpTIC does
not identify the actual cause of the inconsistency. If we analyze such
elements alongside with the code of the benchmark, we are able to
find such information, and we will end up with the same result re-
turned by ScEpTIC. The efforts required for analyzing the result of
Dummy ScEpTIC does not justify the little performance advantage it
has over ScEpTIC, which is only 2 seconds. For this reason, we can
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say that the overall performance of ScEpTIC is better with respect to
Dummy ScEpTIC, especially thanks to the quality of the information
it returns.

The overall result of this three benchmarks confirm the same conclusions
we stated for the other evaluations. ScEpTIC largely outperforms Dummy
ScEpTIC and Baseline in the Dynamic Analysis, thanks to its optimiza-
tions. Instead, in the Static Analysis it has a comparable performance with
the other two algorithms from an execution standpoint. The efforts re-
quired for analyzing the results produced by Dummy ScEpTIC does not
compensate for its little performance advantage over ScEpTIC. The concise
and precise information ScEpTIC returns regards inconsistencies makes its
overall performance to be better than the other two algorithms, since we do
not require any additional effort for analyzing its result.

Moreover, in all the three benchmark setups Dummy ScEpTIC has a
better performance with respect to Baseline, as it did in all the other
benchmarks. As we described in Section 8.2.1, Dummy ScEpTIC algorithm
consists in the Baseline algorithm optimized with a part of the knowledge
we developed alongside ScEpTIC. Given the performance improvement of
Dummy ScEpTIC over Baseline shown also in these benchmarks, we can
also say that the optimizations of ScEpTIC are very effective for analyzing
this problem.

Conclusion. The final verdict of the data quantitative evaluation is similar
with respect to the conclusions of each evaluation benchmarks. When it
comes to dynamic analysis, we demonstrated that ScEpTIC is significantly
faster with respect to both Baseline and Dummy ScEpTIC. This is achieved
thanks to its optimizations and analysis mechanisms, which enables it to ver-
ify a lower number of checkpoints, without compromising the exhaustiveness
of the test.

Instead, in static analysis ScEpTIC execution performance is comparable
to the one of Dummy ScEpTIC and it is usually faster than Baseline. In this
case, checkpoints are statically fixed inside the code, and thus all the three
algorithms tests the same number of them. The performance boost over
the Baseline algorithm is achieved thanks to the optimizations to the resets
point. Moreover, these optimizations are also the one which enable Dummy
ScEpTIC to outperform Baseline, as we also stated in the benchmarks.
Dummy ScEpTIC have a slightly better performance than ScEpTIC, from
an execution point of view. This is achieved thanks to the same optimiza-
tions shared with ScEpTIC, and due to the way in which Dummy ScEpTIC
represents inconsistencies. The way in which the algorithms represent in-
consistencies defines also how they can analyze the state for finding them.
As we stated in Section 8.2.1, Dummy ScEpTIC does not find the actual
cause of inconsistencies, and instead it finds the possible pairs of checkpoints
and resets that can lead to an inconsistent state.
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As consequence, it is able to skip already tested reset points without
compromising the exhaustiveness of the test it conducts. Instead, ScEpTIC
can not skip resets already tested, since it could miss some relevant infor-
mation about inconsistencies. The way in which ScEpTIC represents incon-
sistencies seems to slow it down in static analysis, but the effort required
for analyzing the results produced by Dummy ScEpTIC or Baseline totally
vanifies the performance advantage. Moreover, verifying the consistency of
the state introduces an overhead caused by support memory accesses, and in
our benchmarks results ScEpTIC had the lowest overhead for accessing the
support memory. For these reasons, and accordingly to the results of the
benchmarks, we can establish that ScEpTIC overall performance is better
than the other two algorithms. In fact, it performs a more accurate analysis
and returns more precise information.

Finally, in all the executed benchmarks we saw Dummy ScEpTIC sig-
nificantly outperform Baseline. As we stated in page 194, Dummy ScEpTIC
is obtained by optimizing Baseline with some optimizations taken from the
knowledge we developed alongside ScEpTIC. This performance boost confirm
us that the analysis technique we developed in this thesis are very effective
against the problem of exhaustively finding data inconsistencies.

8.2.6 Qualitative Evaluation

In this section we compare the analysis of memory inconsistencies ScEpTIC

performs with the ones we can obtain with EDB [13] and Siren [17], that
are two tools conceived for debugging intermittent executions.

They both expose similar functionalities, and we must manually perform
the actions required for analyzing memory inconsistencies, which are:

1. Generating a power reset in precise points during the execution.

Both EDB and Siren do not directly provide such functionality, but
we can achieve it by placing a breakpoint where we want to reset, and
then we can use the reset command which performs the MCU reset.

Moreover, we also need to ensure that the code between checkpoints
and breakpoints is executed without any unwanted shutdown due to
a low energy buffer. EDB provides such possibility through energy
guards, and instead Siren requires us to generate an energy profile
that grants no unwanted power reset.

2. Taking and restoring snapshots, to re-establish a consistent state in
presence of inconsistencies.

Both EDB and Siren do not directly provide such possibility. We can
create and restore a snapshot using the exposed functionalities which
enables direct accesses to the main memory, but we require a way and
a location to store such snapshots.
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3. Generating a checkpoint in precise points during the execution.

This operation is required for running a dynamic analysis, and both
EDB and Siren do not provide such possibility. We can obtain such
functionality by forcing the execution to call the checkpoint function.
This requires us to pause the execution using a breakpoint, manu-
ally prepare the stack for such call, and then force the address of the
checkpoint function into the program counter.

4. Analyzing the runtime state for verifying the presence of inconsistent
results.

EDB and Siren are not conceived for analyzing the presence of memory
inconsistencies in a program, and they do not provide any analysis
technique for testing the presence of inconsistencies in intermittent
executions.

As we demonstrated in the quantitative evaluation, trying all the pos-
sible combinations of checkpoints and resets is not practical. For this
reason, we must use the same techniques ScEpTIC implements, or a
subset of them.

For verifying the presence of inconsistencies with EDB and Siren, we
must manually access the entire memory. We also require a technique
for analyzing the presence of inconsistencies.

In the quantitative evaluation of the analysis ScEpTIC implements,
we demonstrated that its performance advantage resides in both the
reduction of checkpoints and power resets analyzed, and in the way it
analyzes the state for identifying inconsistencies.

Without performing any significant alteration to the tools, we can
adopt the same techniques ScEpTIC implements for reducing the num-
ber of checkpoints and power resets analyzed, obtaining the same set-
tings of Dummy ScEpTIC. Such techniques require pausing the exe-
cution at every clock cycle, and verifying the type and targets of the
instruction to be executed as next operation.

If we want to apply the same approach of ScEpTIC for analyzing the
state, we require performing significant alterations to the tools. In
fact, we have to introduce a lookup table and update it whenever an
instruction is executed.

The analysis of a program with EDB or Siren requires us to manually
perform a significant number of actions that introduce a considerable time
overhead, making the entire process impractical. In fact, we require a break-
point at any line of code, and we must decide where to perform power resets.
Moreover, if we also want to analyze checkpoint placements dynamically, we
require to manually execute them.
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The large number of manual actions we need to perform also makes the
analysis susceptible to human errors, leading to unusable results. Without
altering the two tools, we can reach the same performance and result ef-
fectiveness of Dummy ScEpTIC, which is outperformed by ScEpTIC, as we
demonstrated in the quantitative evaluation of our tool. For these reasons,
the manual analysis using EDB or Siren is not feasible. Moreover, ScEpTIC
automatically performs this analysis, without requiring the user to interact
with the program during runtime, resulting in a lower effort for obtaining a
qualitatively better result.

Automatizing all the manual interactions requires a significant interven-
tion on EDB and Siren. We need to alter how they execute instructions and
implement the analysis logic for performing snapshots, dynamic checkpoints,
and power resets. With these alterations, the performance and results we
can obtain would be almost similar to the ones of ScEpTIC. EDB performs
the analysis over the target device, resulting in a lower performance with
respect to Siren and ScEpTIC, which emulate the execution of the code. In-
stead, Siren only supports the MSP430 [2] architecture, that is a limitation
not present in both EDB and ScEpTIC.

EDB and Siren are very effective for debugging intermittent executions,
but they are not conceived for analyzing memory inconsistencies. Adapting
these two tools for performing this kind of analysis in practical time is only
possible thanks to the testing techniques ScEpTIC provides, but the overall
result might be limited in terms of supported architectures or performance.

8.3 Input Inconsistencies

8.3.1 Evaluation Baseline

The analysis of input inconsistencies is completely user-dependent, since an
input access is considered to be consistent based on the user requirements.
The algorithm implemented in ScEpTIC for analyzing input inconsistencies
has a linear complexity with respect to the total number of executed in-
structions in a sequential run of the program. Furthermore, for finding
input value propagation, ScEpTIC exploits a lookup table.

As baseline for both qualitative and quantitative evaluation, we need
to find another algorithm for which we can also recreate its behavior in a
debugging environment.

Let us focus on Example 8.6, which represents an input accessed with
a saved access model, and let us try to execute the code as we are in the
debugging environment. We set input I1 to produce a value of 1, and we
start executing the entire code until we reach the checkpoint at line 3. Now,
for verifying the access model of our input, we perform the checkpoint and
continue the execution of the code in two parallel instances. In the first
instance we will run the code sequentially, as normal. In the second instance,
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1 [ . . . ]
2 R0 = input (I1 )
3 CHECKPOINT
4 ADD R1 , R0 , 3
5 [ . . . ]
6 CHECKPOINT

Example 8.6: Access to input I1
with a saved input access model

1 [ . . . ]
2 CHECKPOINT
3 R0 = input (I1 )
4 ADD R1 , R0 , 3
5 [ . . . ]

Example 8.7: Access to input I1
with a most recent input access
model

1 CHECKPOINT
2 R0 = input (I1 )
3 BRANCH (R0 != 1) , END
4 ADD R1 , R0 , 3
5 END:
6 [ . . . ]

Example 8.8: Example
of code which cannot be properly
analyzed by Algorithm 11.

1 [ . . . ]
2 R0 = input (I1 )
3 CHECKPOINT
4 R1 = input (I2 )
5 ADD R2 , R1 , 3
6 [ . . . ]

Example 8.9: Example of two
inputs.

we change the value of input I1 to another arbitrarily one (e.g. 3), and then
continue the execution. When we reach in both instances the checkpoint at
line 6, we stop the execution, and we compare the resulting memory states.
In this case there is no discrepancy between the two parallel executions, and
so the save access model is granted, because changing of the input value
does not modify the produced data. If, instead, a discrepancy is found, the
input access model is most recent.

Let us now apply the same procedure on Example 8.7, and let us suppose
that input I1 is initialized with the value 1. We reach the checkpoint at line
2, and thus we create two instances of our execution. The first instance
continues the execution considering the initialized value of input I1, and
when it reaches instruction at line 4, it sets R1 to 4. To run the second
instance, we first need to change the value of I1 to an arbitrary value, let
us say 3. When the instruction at line 4 is executed, R1 is set to 6. Now,
let us suppose we stop our instances because we reach another checkpoint.
We must compare the obtained memory states, and we obtain two different
values of R1, which are 4 and 6. This discrepancy shows a most recent access
model.

These examples describe the most simple algorithm we can think of,
which is able to find input access inconsistencies. For this reason, we will
use it as baseline for the evaluation of ScEpTIC, and we have summarized it
in Algorithm 11. A limitation of this algorithm is not being able to analyze
programs which includes input-dependent data inside branch conditions.
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In fact, if we change the input data, we might also change the evaluation of
the branch, thus resulting in a different execution flow.

To show this case, let us consider Example 8.8, and suppose that the
register R1 has a value of 4 before the execution of line 4. Furthermore,
suppose we impose a most recent access model to input I1. We run the first
instance with the value of input I1 set to 1, and we obtain a value of 4 inside
register R1. For running the second instance, we must change the value of
input I1, with the effect of skipping the branch. In this case R1 is still set
to 4, since it has not changed. When we verify the memory, we expect some
discrepancy, since we required a most recent access model. Unfortunately,
in this case we obtain no discrepancy, and thus the algorithm miss classifies
an inconsistency on input I1.

Another limitation of is Algorithm 11 not being able to analyze multiple
inputs at the same time. In fact, since it requires to change an input value
for analyzing its access model, the algorithm must re-execute n + 1 times
the same portion of code, with n equal to the total number of inputs. Let
us focus on Example 8.9, which has 2 inputs: I1 and I2. To analyze access
models, we should run 3 times the code below line 3: the first run does not
modify any input value and it is used for comparison, and the other two
runs change respectively the value of I1 and I2. Then, at the end of the
second and third run we are able to compare the memory states to verify
the access model of the considered input.

Furthermore, Algorithm 11 does not propagate input usages, and thus
it is not able to verify if an input is actually used or not in the portion of
code analyzed. This prevents the automatic recognition of inconsistencies
for inputs with a MOST RECENT access model, because we can not be
sure if such input is used or not. In fact, let us consider the checkpoint at
line 3 of Example 8.9, and let us suppose we want a MOST RECENT access
model over input I1. For analyzing I1 the algorithm changes its value and
compares the obtained state with the one of the unmodified execution of the
same portion of code (i.e., below line 3). Since both states are equivalent, it
measures a SAVED access model for input I1, and should display an incon-
sistency. Unfortunately, input I1 is not used within the analyzed portion of
code, and the algorithm is not able to recognize that for the lack of input
usages tracking.

For this reason, the algorithm returns access model of each input within
the analyzed portions of code, even if its value is not used in it. It is up to
the user analyzing the code for finding where its input data propagates, so
to consider only the relevant input access models measured by the algorithm
in each function of code. The only inconsistencies automatically found and
displayed are the ones of inputs with a SAVED access model which behave
with a MOST RECENT one, which are the only ones the algorithm is able
to verify.
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As baseline for the quantitative evaluation, we implemented the de-
scribed algorithm as an extension of the InterruptManager module.

Algorithm 11 Alternative input access model analysis algorithm, used as
baseline

Require: access models, an array specifying the access model of each in-
put.

1: while program end not reached do
2: // Save snapshot from which instances will run
3: base snapshot← snapshot of memory and registers
4: skip checkpoint
5:

6: // Run until next checkpoint
7: while current instruction 6= CHECKPOINT do
8: run current instruction
9:

10: // Save snapshot from which memory comparisons will be made
11: target snapshot← snapshot of memory and registers
12:

13: for each input i ∈ inputs do
14: restore base snapshot
15: change value of input i
16:

17: // Run until next checkpoint
18: while current instruction 6= CHECKPOINT do
19: run current instruction
20:

21: // Compare current state with target snapshot
22: // for finding access model
23: if current state 6= target snapshot then
24: access model of input i in this section of code is most recent
25:

26: if access models[i] == saved then
27: return input access inconsistency for input i

28: else
29: access model of input i in this section of code is saved

30:

31: // restore snapshot to continue analysis from next checkpoint inter-
val

32: restore target snapshot
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8.3.2 Input Source File

As stated in Section 5.2, input-based inconsistencies can be analyzed only
with a static checkpoint mechanism. For this reason, we will consider Me-
mentOS [3] as our checkpoint mechanism. Furthermore, since we are not
verifying data access inconsistencies, we will not allocate any memory ele-
ment to the NVM.

The only benchmarks present in the literature which consider inputs
are the ones which presents a behavior called sense. Such benchmark does
not refer to a specific program, but instead it consists in the description
of a particular behavior: sensing the environment, processing the sensed
values, and finally send the results to the main node of the system. Most
of the work done in the TPC field, such as MementOS [3], EKHO [20], and
QuickRecall [12], uses such kind of benchmark for the evaluation of their
performances.

On the contrary of data inconsistencies, input inconsistencies are not con-
sidered from previous works, and thus there are no established benchmarks.
To recreate a real-life case scenario, we can use as source file a program ac-
cessing inputs and processing their values, thus presenting a behavior similar
to sense. Furthermore, we must perform our evaluation considering differ-
ent numbers of inputs, so to verify if the variation of such number produces
changes in the performance.

Our sense benchmark is shown in Example 8.10, which we will use for
the evaluation of the input inconsistency analysis of ScEpTIC. It consists in
a program which senses values from the environment, performs their sum,
and sends it to the main node. Before sending data, it also verifies if the
sum exceeds a critical value, and if so it sends an error message to the main
node. To tune the number of inputs, input functions will be added in a way
which grants an equilibrium in the number of inputs before and after the
checkpoint. For example, Example 8.11 will be used for testing 4 inputs.

The considered code does not have a high computational complexity,
since we are not interested in evaluating computation performance, and in-
stead we are interested in the analysis one. For this reason, the benchmark
program mainly focuses on input accesses. The only computation is repre-
sented by the sum of input values, and this is required because it represents a
sort of value processing, but more importantly it grants incremental changes
in the sum variable, making us able to verify the support memory accesses.
If no processing was present, the algorithm will still work without any prob-
lem, but no input propagation would happen, and thus ScEpTIC will not
access any support memory for tracking such propagation.

To evaluate the levels of performance in different conditions, we will
consider four scenarios, in which the number of input is respectively one,
two, three and four. For each scenario we will execute the evaluation con-
sidering every possible combination of access models. For example, in the
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1 int i ;
2 int va l ;
3 int sum = 0 ;
4 int c r i t i c a l = 10000 ;
5
6 int main ( ) {
7 // Read data and update sum
8 for ( i = 0 ; i < 50 ; i++) {
9 va l = input ( ) ;

10 checkpo int ( ) ;
11 sum = sum + val ;
12
13 i f (sum > c r i t i c a l ) {
14 out ( ’ Error : c r i t i c a l va lue exceeded ! ’ ) ;
15 }
16 }
17
18 // Send sum to main node
19 out (sum) ;
20 }

Example 8.10: Program used for evaluating ScEpTIC input analysis
algorithm, inspired by real-world scenarios and the sense benchmark of
MementOS [3].

scenario with two inputs we will run the program four times: one time with
MOST RECENT for both inputs, one time with SAVED for both inputs,
and two times by alternating MOST RECENT and SAVED for the two in-
puts. In this way, we can not bias our evaluation by focusing only on one
case, and we are able to consider all the possible combination of inconsis-
tencies over input accesses.

Finally, the memory configuration is not important for this analysis since
we are not testing data inconsistencies. The algorithm implemented by
ScEpTIC does not perform any reset, and thus no data inconsistency can
interfere during the analysis of input access inconsistencies. Instead, the
algorithm used as baseline is not able to analyze input access inconsistencies
if the state is inconsistent. In fact, it changes input values to verify the
access model of each input, and thus if a data inconsistency is present,
it might classify an input access inconsistent due to the presence of a data
inconsistency. Since we are not interested in evaluating ScEpTIC with respect
to the worst case scenario of the baseline algorithm, we will use as memory
configuration the same one of MementOS [3], which does not allocate any
memory element into NVM, except for the checkpoint.
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1 int i ;
2 int val1 , val2 , val3 , va l4 ;
3 int sum = 0 ;
4 int c r i t i c a l = 10000;
5
6 int main ( ) {
7 // Read data and update sum
8 for ( i = 0 ; i < 50 ; i++) {
9 va l1 = input1 ( ) ;

10 va l2 = input2 ( )
11 checkpo int ( ) ;
12 va l3 = input3 ( ) ;
13 va l4 = input4 ( ) ;
14 sum = sum + val1 + val2 + val3 + val4 ;
15
16 i f (sum > c r i t i c a l ) {
17 out ( ’ Error : c r i t i c a l va lue exceeded ! ’ ) ;
18 }
19 }
20
21 // Send sum to main node
22 out (sum) ;
23 }

Example 8.11: Version of Example 8.10 with 4 input elements.

8.3.3 Quantitative Evaluation Results

We run the previously described sense benchmark multiple times, configur-
ing it with one, two, three, and four inputs. For each one of these four con-
figurations, we evaluated every possible combination of input access models.
For example, for the configuration with one input, we run the benchmark
two times: one with a most recent access model set for the input, and one
with a saved one. As result, we run the benchmark 30 times: 2 times with
one input, 4 times with two inputs, 8 times with thee inputs, and 16 times
with 4 inputs. The different execution of each input configuration gave the
same results from all the metrics, except for the inconsistencies found. In
fact, both Baseline and ScEpTIC do not vary the execution depending on
the input access models selected.

Figure 8.18 shows the metrics relative to the execution of the four input
configurations, and Figure 8.19 show the inconsistencies found by each run
of the four input configurations.

Execution. Firstly, let us consider the performance from an execution
point on view. Figure 8.18a shows the amount of time required by the two
algorithms for running the analysis. As we can see, ScEpTIC is faster with
respect to Baseline in every benchmark configuration. The higher execution
time of Baseline is caused by the higher number of instructions it executes
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Figure 8.18: Input evaluation results: metrics of the input access analysis
with one, two, three, and four different inputs.

for running the analysis, as we can see in Figure 8.18b. In fact, ScEpTIC
performs a sequential execution for running the analysis, and instead Base-
line generates multiple intermittent executions. As consequence, ScEpTIC
executes a significant lower number of instructions with respect to Baseline
in all the four different configurations of the benchmark, and thus it requires
less time for completing the analysis.

Moreover, as we can see in Figure 8.18b, when the number of inputs
present in the program increases, the instructions executed by the two algo-
rithms also increase. ScEpTIC performs a sequential execution of the code,
and this increase is a consequence of the introduction of new instructions.
Instead, Baseline performs a number of intermittent executions which is de-
pendent on the number of inputs. As consequence, increasing the number
of inputs makes Baseline to generate a higher number of intermittent exe-
cutions, which leads to a substantial increase of the instructions executed.

Figure 8.18d shows the number of checkpoints executed by each algo-
rithm in the four benchmark configurations. ScEpTIC performs this analysis
as a sequential execution, and thus it does not execute any checkpoint. In-
stead, Baseline runs this analysis as an intermittent execution, and thus
it performs a checkpoint every time it is encountered. Moreover, we can
also notice that Baseline performs the same number of checkpoints, inde-
pendently of the number of inputs present in the code. The reason of this
behavior is that checkpoints are statically fixed inside the code, and thus
their execution does not depend on the input configuration.
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As consequence, adding more inputs does not change the number of check-
points executed during the analysis.

Let us now consider Figure 8.18e, which shows the number of snap-
shots restored during the analysis. As we can see, ScEpTIC does not restore
any snapshot. In fact, it performs a sequential execution, and analyzes
the correctness of the required access models by propagating the informa-
tion regarding input accesses across the support memory. Instead, Baseline
produces different intermittent executions, and tests the access models by
changing the value returned by an input so to measure the changes in the
state. As consequence, it restores multiple snapshots for analyzing input
access models. In fact, as we stated in Section 8.3.1, every time it has to
verify the access model of an input, it firstly run the code until it reaches
a checkpoint, and then it saves the runtime state into the support memory.
As next operation, it restores the snapshot taken when the previous check-
point was executed, and sets a new value for an input. Finally, it executes
the program until it reaches the next checkpoint, and compares the runtime
state with the one saved in the support memory, so to find the access model
of the input. For this reason, a higher number of inputs results in a higher
number of snapshots restored, as we can see in Figure 8.18e.

As we previously stated, the higher number of instructions executed by
Baseline is a consequence of the intermittent execution it performs, which
is characterized by the execution of checkpoints, generation of resets, and
restoration of snapshots. These operations are the ones used for creating an
intermittent execution, and thus are the ones causing Baseline to have such
higher number of instructions executed with respect to ScEpTIC. Moreover,
we did not report the graph representing the power resets generated, since
both the two algorithms did not generate any reset. In fact, ScEpTIC per-
forms a sequential execution, and thus it does not perform any power reset.
Instead, Baseline directly restores a snapshot for generating intermittent
executions, since it is interested in the generation of multiple intermittent
executions which starts from a consistent state. Generating a power resets
might introduce Data Inconsistencies, as we shown in Chapter 4, which
would lead to an inaccurate analysis. In fact, in such a scenario, Baseline
would not be able to understand if the difference in the state was caused by
a data inconsistency or the changed input value.

Let us now consider Figure 8.18c, which shows the support memory ac-
cesses performed by the two algorithms. As we can see, ScEpTIC perform
a higher number of support memory accesses with respect to Baseline. We
can also see that increasing the inputs of the program, decreases the gap
between the support memory accesses of the two algorithms. As we pre-
viously explained, the sequential execution of ScEpTIC permits it to run a
lower number of instructions, and to both avoid the execution of checkpoints
and restoring snapshots. All these operations influences the execution time
significantly, and instead support memory accesses seems to not affect it.
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Algorithm One Input Two Inputs Three Inputs Four Inputs

ScEpTIC

(accesses/instruction)
2.59 2.73 2.77 2.93

Baseline
(accesses/snapshot)

14.71 14.38 14.71 15.29

Table 8.2: Access ratio to the support memory of ScEpTIC and Baseline.

In fact, the support memory accesses ScEpTIC performs with 4 inputs are
64% higher with respect to the ones it performs with 1 input, but the exe-
cution time is not affected.

Moreover, for understanding the relation of this metric with the others,
we must consider when and how the support memory is accesses, as we did
for the evaluation of data inconsistencies.

ScEpTIC uses the support memory for keeping track of input-dependent
elements in the runtime state. During the execution of the program, when-
ever ScEpTIC reads the value of an element such as a register or a memory
cell, it also verifies if such value is input-dependent, and thus it is able to
measure the access model. Instead, Baseline saves into the support mem-
ory a snapshot of the runtime state. Then, it executes the multiple times
the same portion of code, each time modifying the value returned by an
input access. It uses the support memory for comparing the runtime state
present at the end of these multiple executions, so to verify if a variation
to the input value changes the state. For these reasons, we can say that
ScEpTIC accesses the support memory every time it executes an instruction,
and instead Baseline accesses the support memory every time it generates
a snapshot. Table 8.2 shows the support memory access ratios of the two
algorithms in the different configurations of the benchmark. As we can see,
ScEpTIC has a significantly lower access ratio with respect to Baseline, and
thus the overhead introduced by accessing the support memory is higher in
Baseline. Moreover, we can also see that increasing the number of inputs in
the program produces a higher access ratio in both the two algorithms, but
Baseline is subjected to a higher increase with respect to ScEpTIC.

In Table 8.2 we can observe that when we increase the number of inputs
from one to two, we see a decreased access ratio in Baseline. For under-
standing the reason of this strange behavior, let us focus on how Baseline
works. It analyzes the program considering multiple checkpoint intervals,
which consist in sequences of instructions such that the first and last ones
are checkpoints. Baseline runs each checkpoint interval n + 1 times, with
n equal to the number of inputs. The first run is used for observing the
runtime state achieved without modifying the value returned by the input,
which is saved into the support memory. The other runs are used for verify-
ing if the state changes when the value returned by each input is modified,
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and for doing so it compares the runtime state with the snapshot saved into
the support memory. Between each run, a snapshot representing the initial
runtime state of the checkpoint interval is restored. The number of support
memory writes does not depend on the inputs, and instead depends on the
number of checkpoint intervals tested, which are measured as checkpoints ex-
ecuted in Figure 8.18d. As consequence, if we increase the number of inputs
in our program, the support memory writes remain unchanged. Instead,
we increase the number of support memory reads and snapshots restored,
since we introduce a new execution for each checkpoint interval. For each
checkpoint interval, the overall number of support memory accesses should
be n + 1 times the dimension of the saved runtime state, since we perform
1 write and n reads of the same memory elements. Instead, when Baseline
compares the current runtime state with the one saved into the support
memory, it stops as soon as it finds a discrepancy, and thus it performs a
lower number of support memory reads with respect to the ones we esti-
mated. This is the reason of the decreased access ratio in Baseline when we
increase the number of inputs to two: the overall number of support mem-
ory accesses introduces are not proportional to the increase of snapshots
restored. In fact, the support memory writes are almost not incremented,
since the variation to the number of elements in the runtime state is only of
one memory cell and one register. Instead, the support memory reads intro-
duced increase more than 95%, but they are not doubled. As consequence,
the overall increase of support memory accesses is 46%, and the snapshots
restored increments by 50%. As consequence, we see a decreasing access
ratio. Ideally, the access ratio of Baseline should be constant, since the
support memory accesses and the snapshots restored should both increment
by 1/n. The way in which Baseline performs state comparisons makes it
able to increment the support memory accesses by less than 1/n, and thus
we see a decrease of the access ratio in some cases.

The support memory accesses of ScEpTIC are higher with respect to
Baseline, but ScEpTIC has a lower overhead for performing support memory
accesses, as we saw in the access ratios. In fact, Baseline accesses the support
memory every time it restores a snapshot, and instead ScEpTIC accesses it
during the execution of the instructions.

From an execution standpoint, we demonstrated that the overall per-
formance of ScEpTIC is significantly better than the one of Baseline. The
more input we have in the program, the better ScEpTIC performs when it
is compared to Baseline. We could argue that the access ratio of ScEpTIC

increases alongside the inputs present in the program, and instead Baseline
has the tendency of a constant access ratio with respect to the increase of
inputs. Clearly, with a significantly high number of inputs, the access ratio
of ScEpTIC will be higher with respect to the one of Baseline. In such case,
the execution time of ScEpTIC will be exponentially lower with respect to
Baseline, since the former performs a sequential execution, and instead the
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(c): Inconsistencies found using three inputs
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(d): Inconsistencies found using four inputs
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Figure 8.19: Input evaluation results: inconsistencies found in the four con-
figurations of our benchmark. Each configuration was run once for every
possible combination of input access methods of its inputs.

latter will perform multiple intermittent executions. For this reason, the
advantage on the support memory access ratio of Baseline would not grant
a performance advantage over ScEpTIC.

Returned information. Let us now focus on the quality of the information
returned by the two algorithms about input access inconsistencies.

Let us consider Figure 8.19, which shows the inconsistencies found by
the algorithms in the different configurations of this benchmark. As we
previously stated, we run each configuration multiple times, one for every
possible combination of the inputs access models.

We represented input access models as binary values with length equal
to the number of inputs in the program. The i− th bit represent the access
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model of the i− th input. We associated a 0 to a SAVED access model, and
a 1 to a MOST RECENT. We encoded this binary values as integers, and
we placed them under the corresponding group in the x axis of the graphs.
For example, 1 corresponds to 01, and indicates that we run the test with a
SAVED access model for the first input, and with a MOST RECENT one
for the second input.

Figure 8.19a shows the number of inconsistencies found by the two al-
gorithms during the analysis of the benchmark configured with one input.
We see two different groups of results: in the first one we configured a
SAVED access model for the input, and in the second one we configured
a MOST RECENT access model. In the first analysis, the two algorithms
return the same number of inconsistencies. Instead, in the second analysis,
ScEpTIC identifies 20 inconsistent input accesses, and Baseline is not able
to identify any inconsistency since it can only identify inconsistencies over
inputs configured with a SAVED access model, as we stated in Section 8.3.1.
To overcome this problem, Baseline returns also a list containing the access
model measured for each input in every tested checkpoint interval, but the
actual recognition of inconsistencies is leaved to us.

Let us now consider Figure 8.19b, which shows the number of inconsis-
tencies found by the two algorithms during the analysis of the benchmark
configured with two inputs. The first group refers to the analysis configured
with a SAVED access model for both the two inputs. ScEpTIC finds 12 in-
consistencies, and instead Baseline finds 4 of them. This difference does not
imply that Baseline is not able to find all the inconsistencies. In fact, with a
deeper inspection of the results returned by both the two algorithms, we can
state that they are able to identify all the inconsistencies, and the different
number found is a consequence of the different representation of inconsis-
tencies in the results of the two algorithms. ScEpTIC tracks the propagation
of input-dependent values across the memory elements, and thus it is able
to provide us information about the instructions accessing an input with an
access model different with respect to the one we specified. As consequence,
it returns us an inconsistency for every instruction accessing an input in-
consistently. Instead, Baseline is only able to identify the access model of
an input, but not the instructions accessing its value. As consequence, it
returns a list of checkpoint intervals in which the input is accesses inconsis-
tently. For this reason, we can say that both the two algorithms are able to
correctly identify the inputs which are accessed inconsistently, but ScEpTIC
is able to provide us a more detailed information about where such accesses
happens.

If we consider the other three groups of Figure 8.19b, we can see also in
this case that Baseline finds a lower number of inconsistencies with respect
to ScEpTIC. In this three cases the reason of such lower number of incon-
sistencies recognized by Baseline resides also in the fact that it is not able
to identify if an input with a MOST RECENT access models is accessed
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inconsistently. Baseline provides us the list of the measured access models,
but we have to analyze it alongside the code for verifying if inputs are ac-
cessed inconsistently. Moreover, in the fourth configuration group, Baseline
is not able to identify any inconsistency, since the two inputs are configures
both with a MOST RECENT access model.

We can find the same condition we described in both Figure 8.19c and
Figure 8.19d, which shows the inconsistencies found with three and four
inputs. The first group is the only one in which Baseline is able to identify
all the inconsistencies, since all the inputs are configured with a SAVED
access model. Instead, in the latest groups of the two benchmarks, Baseline
is not able to automatically identify any inconsistency, since all the inputs
are configured with a MOST RECENT access model. In the other groups,
Baseline is only able to identify the inconsistencies regarding the inputs
configured with a SAVED access mode. For verifying the inconsistencies of
the inputs configures with a MOST RECENT access model, we must rely
on the returned list which provides the measured access models of each input
for every checkpoint interval.

The information returned by ScEpTIC is more complete with respect
to the one of Baseline, and it is always able to provide us the actual list
of inconsistencies. Instead, Baseline is not able to identify if inputs with a
MOST RECENT access model are accessed inconsistently, and thus we have
to analyze the code alongside with the list containing the measured access
models. Moreover, Baseline does not provide us any information about the
instructions using an input inconsistently, and thus it is harder to solve such
inconsistency.

Considering our analysis of the results that Figure 8.18 and Figure 8.19
show, we can say that ScEpTIC performs better than Baseline, not only
from the execution standpoint, but also in the quality of the information
returned. The key of its better performance resides in the tracking of the
propagation of input values, which is not performed by Baseline. In fact,
such tracking permits ScEpTIC both to perform a sequential execution and
to identify the instructions using input-dependent values. As consequence,
it is able to gather a more precise information about inconsistencies in less
time with respect to Baseline.

8.3.4 Qualitative Evaluation

In this section we compare the analysis of input access inconsistencies ScEp-
TIC performs with the ones we can obtain with EDB [13] and Siren [17],
that are two tools conceived for debugging intermittent executions. They do
not address input inconsistencies, and thus we require adopting a technique
for analyzing the presence of this inconsistency type.

We can choose to use Algorithm 7, that is the one ScEpTIC implements
for analyzing input access inconsistencies. This technique does not require
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the analysis of intermittent executions, and it simply runs the program se-
quentially. For implementing such mechanism, we require a lookup table
that keeps track of input accesses, and we must propagate this information
every time an instruction is executed.

EDB directly runs on the device we want to test, and thus we are not
able to modify how instructions are executed. As consequence, we must
execute interactively the program, so to manually propagate the elements
of the lookup table. This process is not practical, since it requires us to
perform a significant number of actions.

Instead, Siren emulates the execution of the program, and thus we are
able to extend its code for keeping track of input value propagation. The
alteration required for such implementation are significant, since we must
propagate input values every time both registers and memory cells are ac-
cessed. The performance and result effectiveness we can obtain with Siren
will be comparable to the ones of ScEpTIC, especially thanks to the analysis
technique the latter provides.

Both EDB and Siren are not conceived to track the propagation of
input values, and the efforts required for implementing or performing such
operation are significant. Another approach we can follow for analyzing
input access inconsistencies is to use Algorithm 11, that is the one we used
as baseline for our quantitative evaluation. It equires us to analyze various
intermittent executions of the code, and we are not required to modify the
tools.

For running this kind of analysis, we must perform the following actions:
1. Generating a power reset in precise points during the execution.

Both EDB and Siren do not directly provide such functionality, but
we can achieve it by placing a breakpoint where we want to reset, and
then we can use the reset command which performs the cpu reset.
Moreover, we also need to ensure that the code between checkpoints
and breakpoints is executed without any unwanted shutdown due to
a low energy buffer. EDB provides such possibility through energy
guards, and instead Siren requires us to generate an energy profile
that grants no unwanted power reset.

2. Taking and restoring snapshots, for analyzing the obtained access
model and for restoring a consistent runtime state.
Both EDB and Siren do not directly provide such possibility. We can
create and restore a snapshot using the exposed functionalities which
enables direct accesses to the main memory, but we require a way and
a location to store such snapshots.

3. Reproducing specific input values, for analyzing their effects over the
execution.
EDB is a hardware-based solution, and thus we require reproducing a
physical event for generating a specific value of an input element.
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Instead, Siren is a software-based solution, and it makes simpler gen-
erating a specific value for input elements such as sensors.

4. Analyzing the runtime state for verifying the access model of input
elements.
For verifying the access model, we must compare the snapshot with
the current memory state. Both EDB and Siren expose functionalities
for manually accessing and reading the content of single memory cells.

Manually performing this analysis permits us to overcome the problem
of not being able of recognizing all the input inconsistencies, since we an-
alyze their presence while we run the program. With this approach, we
require putting breakpoints before and after each checkpoint, since we re-
quire restoring snapshots and producing power resets in such positions. The
number of power resets we need to generate depends on the number of
input elements present in the program, as we demonstrated in the quanti-
tative evaluation of our tool. The number of actions we need to perform
introduces both a considerable time overhead and the possibility of human
errors, making the entire process impractical, especially with a high number
of inputs.

Automatizing this approach requires us to perform a significant alter-
ation to the tools, and would lead us to reduce the effectiveness of the
analysis. In fact, we would not be able to recognize automatically all the in-
puts inconsistencies, as we demonstrated in the quantitative evaluation. For
this reason, the automation of this analysis techniques does not introduce
any benefit, and we must discard this option. Moreover, EDB still requires
the user to manually produce different input values, and thus we are not
entirely able to automatize this analysis using such tool.

With a low number of inputs, we can use this approach for identifying
input inconsistencies using EDB and Siren, obtaining a result effectiveness
similar to the one of ScEpTIC.

We can exploit EDB and Siren for analyzing input access inconsistencies,
but they are not conceived for this kind of analysis. Independently of the
technique we consider, we can not automatize the analysis with EDB, and
thus we are not able to reach the same performance of ScEpTIC. Instead,
Siren can be extended to support the analysis performed by ScEpTIC, but
the analysis will be limited to the MSP430 [2] architecture.

8.4 Intermittent Execution Analysis

8.4.1 Evaluation Setup

As we described in Section 5.3, Intermittence-based inputs are user-dependent,
since their definition is subjective and depends on the application require-
ments. Testing their correctness consists in debugging the effects of a de-
fined set of power resets, and thus we do not require the generation of all
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the possible intermittent execution combinations. Moreover, as we stated
in Section 5.4, Output Inconsistencies can be tested in the same way we
test intermittence-based inputs. In fact, we only have to generate a power
reset after the execution of an output routine, so to measure the effects of
its possible re-execution over the environment.

The analysis performed by ScEpTIC for Data Inconsistencies and In-
put Inconsistencies optimizes both where checkpoints need to be tested and
where resets needs to be generated. Instead, for analyzing both intermittence-
based inputs and output inconsistencies, the algorithm implemented by ScEp-

TIC does not optimize the resets to be generated, since they are user-defined.
Moreover, as we stated in Section 5.3, this kind of analysis requires a static
checkpoint mechanism, and thus we must test all the checkpoints. The ac-
tual optimization ScEpTIC aims to provide is the one regarding the actions
required to the user for debugging intermittent executions.

In fact, once the user configure the reset points, the checkpoints to be
analyzed, and the variables to be tracked, ScEpTIC produces and analyzes
the resulting intermittent executions.

For these reasons, we will evaluate this kind of analysis qualitatively, and
we will especially focus on the user intervention. In fact, profiling operation
like the one we described does not require a particular algorithm, and can be
easily performed in the available debugging environment, like EDB [13] and
Siren [17]. The real difference between ScEpTIC and the other debugging
environments consists in the user-dependent actions required for analyzing
an inconsistency-based execution flow. For example, in ScEpTIC the user is
required to modify the source code by inserting where resets should happen,
and then the entire analysis is automatically performed. Instead, in other
debugging environments the user is required to put breakpoints for both
performing a reset and analyzing the state. These actions are comparable,
and thus we are interested in evaluating the user experience with the different
approaches available in ScEpTIC, EDB [13], and Siren [17].

As input for our evaluation, we will consider only a static checkpoint
mechanism since, as described in Section 5.3, this analysis can be only per-
formed in such scenario. Moreover, for the purpose of this evaluation we
will not differentiate between inputs and outputs routines, since the actions
taken by ScEpTIC and the debugging environments consist in tracking the
executed function, independently of their type. For this reason, we will
threat them as general I/O routines.

Unfortunately, no previous work considers intermittence as input of the
program, nor the possibility of output inconsistencies, and thus no bench-
mark exists in the literature for this scenario. To perform our qualitative
evaluation, we need to base our reasoning over a source file representing
a real-world scenario for this domain, like the sense benchmark previously
described. We will not perform the execution of the benchmark in ScEpTIC,
but instead we will describe and compare the required actions the user needs
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1 int i ;
2 int r e s t a r t s ; // in NVM
3 f loat o r i e n t a t i o n ;
4
5 int main ( ) {
6 [ . . . ]
7 for ( i = 0 ; i < 10 ; i++) {
8 r e s t a r t s = 0 ;
9 checkpo int ( ) ;

10 execut i on s = execut i on s + 1 ;
11
12 i f ( execut i on s > 8) {
13 send ( ’ Reca l i b r a t i on f a i l e d ’ ) ;
14 send (0 ) ;
15 }
16 else i f ( execut i on s > 3) {
17 o r i e n t a t i o n = ge t s e r vo ( ) + 0 . 2 ;
18 send ( ’ Reca l i b r a t i ng unstab le source ’ ) ;
19 s e t s e r v o ( o r i e n t a t i o n ) ;
20 }
21 else i f ( execut i on s > 1) {
22 send ( ’ code re−executed ’ ) ;
23 }
24 [ . . . ]
25 checkpo int ( ) ;
26 }
27 [ . . . ]
28 }

Example 8.12: Benchmarks used for the evaluation of intermittence-based
inputs.

to perform for testing the execution flow.

Furthermore, to test this scenario, we require these conditions:

1. Inconsistencies over one or more variables, which may influence the
execution flow.

2. A bunch of I/O function which are executed depending on the value
of inconsistent variables.

We will base our reasoning on Example 8.12, which represents a real
case scenario of the TPC domain. Before analyzing the code, we must
consider that we are not interested in computational intensive tasks for the
evaluation of this analysis, because we do not need to focus on computational
power or on checkpoint placements, and instead we are interested in the
user perspective. Moreover, we will use the source file only for reasoning
purposes, so that the actions taken by the user are more clear.

Our benchmark consists in a simple calibration mechanism for an energy
source. Let us suppose that we have a solar panel attached to a servo
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which controls its orientation, and that we can move such servo through
the output function set servo(). The input function get servo() returns the
current orientation of our servo, and the output function send() is used for
communications purposes. Our intermittence-based input is the variable
executions, which tracks the number of times the code between lines 10 and
24 is executed. Thanks to this input, we are able to perform different actions
accordingly to the number of re-executions.

8.4.2 Qualitative Evaluation

In this section we compare ScEpTIC with EDB [13] and Siren [17], that are
two tools conceived for debugging intermittent executions.

For analyzing environment interactions and the behavior of a program
running in an intermittent execution scenario, we require:

1. Tracking environment interactions, so to analyze their execution.
• ScEpTIC abstracts the elements capable of environment interac-

tions, such as sensors and actuators, and threat them as program
functions. It automatically tracks the execution of input and
output elements, and their values.
• EDB has a direct connection to the bus managing I/O peripher-

als, and it supports monitoring I/O events.
• Siren requires emulating each external components, and it al-

ready provides an implementation of the most commonly used
ones. It permits logging events happening on I/O ports.

2. Reproducing specific input values, for analyzing their effects over the
execution. EDB is a hardware-based solution, and thus we require
reproducing a physical event for generating a specific value of an in-
put element. Instead, both Siren and ScEpTIC are software-based
solutions, and they make simpler generating a specific value for input
elements such as sensors.

3. Retrieving the value of variables, and signaling the execution of certain
code regions.
• ScEpTIC provides a printf() function that can be used inside the

program for printing the value of any variable. It also provides a
profiling log() function that can be used for tracking events and
variable values.
• EDB provides both a printf() function and commands for di-

rectly accessing the memory, that can be used for retrieving vari-
able values. Instead, for tracking events it provides watchpoints.
• Siren provides a siren command() function that can be used for

both printing the value of variables and for tracking events. It
also provides commands for directly accessing the memory, and
has a built-in support for tracking the executed code and for
monitoring events.
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4. Generating the combination of intermittent executions that reproduce
the conditions we want to test. This can be achieved either by generat-
ing a shutdown or performing a reset arbitrarily during the execution.
• ScEpTIC permits us to generate a set of precise intermittent exe-

cutions by placing profiling start() and profiling reset() func-
tions directly inside the code. It automatically handles the gen-
eration of shutdowns and the re-execution of the code.
• EDB does not provide a direct way for generating a power reset

in a precise point. For achieving such functionality, we must set a
breakpoint where we want to reset, and then we can use the reset
command which performs the MCU reset. We also need to use
an energy guard or a constant power source to ensure that the
code between checkpoints and breakpoints is executed without
any shutdown due to a low energy buffer.
• Siren does not provide a direct way for generating a power reset,

and requires us to perform the same actions we described for
EDB. Siren does not have energy guards, and for ensuring that
power resets happens only where we require, we must generate
an energy profile that grants such behavior.

As we can see, for this analysis the main difference between these tools
resides in how we generate a specific intermittent execution.

Let us now focus on how we can analyze the behavior of Example 8.12,
which exploits the intermittence-based variable restarts. We can use the
guidelines we provide in Section 5.3.2.

A simple way to test the behavior of this code, is to generate 7 power
resets after the execution of line 24, since the code block executed changes
after the first, third, and eight resets. Then, we track the value of executions
variable, and the execution of send and set servo I/O functions. The result
of this analysis should tell us which portion of code is executed after each
power reset, and the I/O events that are generated within such execution.

The action we require performing with ScEpTIC for testing these combi-
nations of intermittent executions are:

1. We create the configuration for send(), set servo(), and get servo()
I/O functions.

2. We place in our code a profiling start(7); before line 8.
3. We place in our code a profiling reset(−1); after line 24.
4. We place in our code a profiling log(executions); after line 10, so to

track the value of the executions variable alongside I/O events.
5. We run the analysis.
Performing the same analysis with EDB requires us to:

1. Attach the hardware component of EDB to the board we want to
analyze.

2. Attach to the board the servo and the hardware component enabling
the communication through the send() function.
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3. Place a printf(”%d”, executions) after line 10.
4. Set a code breakpoint at line 24.
5. Set an energy guard between lines 8 and 24, so to ensure no unwanted

power reset happens.
6. Activate the logging for I/O events.
7. Start the execution, and when we reach the code breakpoint, we ex-

ecute the reset command. In this way, the MCU resets its volatile
state and restarts the execution. We require repeating this step for
each power reset we want to generate.

Finally, executing this same analysis with Siren requires us to:
1. Create the module implementing the servo and the communication

system.
2. Place a siren command(”PRINTF”, executions) after line 10.
3. Set a breakpoint at line 24.
4. Generate an energy profile that ensures no unwanted power reset hap-

pens.
5. Activate the logging for I/O events.
6. Start the execution, and when we reach the breakpoint, we execute

the reset command. In this way, the MCU resets its volatile state and
restarts the execution. We require repeating this step for each power
reset we want to generate.

For analyzing a defined set of intermittent executions we do not need to
modify any tool, since they are all conceived for this kind of analysis.

EDB and Siren have a similar workflow for performing this analysis.
The only difference is that EDB is a hardware-based solution that requires
a direct connection with the device we want to test, and the MCU runs
the code we want to analyze. Instead, Siren has the advantage of being
a software-based solution and thus does not require such user intervention.
Both EDB and Siren require us to generate intermittent executions during
runtime. Instead, ScEpTIC permits us to define at compile time the set of
intermittent executions to be analyzed. In our example, we generated all the
power reset in the same point, and thus interacting with the program during
runtime for producing intermittent execution is trivial. If we want to test
power resets in different points, we either have to remove a breakpoint once
we reach it and insert a new one, or place multiple breakpoints and choose
the correct one for executing the reset command. The higher is the number
of different power rests, the higher gets the number of breakpoints we must
place. Choosing the correct position of a power reset in the presence of a
high number of breakpoints can be confusing, and we can make an error
that causes the analysis to produce wrong results. For this reason, we can
state that ScEpTIC has an easier setup than the other two tools, and permits
us to generate a high number of power resets with a lower effort than EDB
and Siren.
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Let us now consider the results the three tools return. EDB and Siren
both provide us the tracked information during runtime, and thus we analyze
the behavior of the program during its execution. With a high number of
breakpoints it can be difficult and confusing analyzing their results, for
the same reasons we previously described. ScEpTIC provides the result at
the end of the analysis, as we already described in Section 7.3. For each
intermittent execution it generates, it provides the list of encountered I/O
functions and the value of the logged variables. As consequence, the analysis
of the result ScEpTIC returns is easier than the one of EDB and Siren,
especially with a high number of intermittent executions generated.

Both EDB and Siren are conceived for debugging intermittent execu-
tions, and they are effective in doing so. They have more debugging capa-
bilities than ScEpTIC, but for this kind of analysis we only require tracking
the execution, logging variables and generating power resets. Even if the
result returned by the three tools are comparable, in our opinion ScEpTIC

makes the analysis of multiple intermittent executions easier.
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Chapter 9

Conclusion and Future
Works

Devices powered with the energy harvested from the environment have lower
maintenance costs, and enables applications and services considered to be
impractical due to battery limitations. They experience an intermittent
execution characterized by frequent shutdowns that may lead to an unpre-
dictable behavior. Different techniques exists for preserving the device state
across shutdowns, but very little work addresses the problems of testing and
analyzing the effects that an intermittent execution produces. In this thesis
we addressed such problems, and our contribution consists in two different
parts: an analysis of the effects that an intermittent execution causes, and
ScEpTIC, an intermittence-based debugging tool.

In Chapter 4 we studied and analyzed the effects that an intermittent
execution causes in the device memory. We found three different taxonomies
of unwanted behaviors, that we referred as inconsistencies: Data Access
Inconsistencies, Activation Record Inconsistencies, and Memory
Map Inconsistencies. For each taxonomy, we analyzed its causes from
the machine-code level, and we provided guidelines on how we can remove
such unwanted behaviors. Moreover, in Section 4.5 we provided a set of
techniques for finding the presence of these kinds of inconsistencies in a pro-
gram, and for analyzing the effects that they may cause over the device state
and behavior.

In Chapter 5 we studied and analyzed the effects that an intermittent
execution causes to environment interactions, and we discussed the possibil-
ity of using intermittence as input for our programs. In the first part of this
chapter, we analyzed how an intermittent execution affects both input and
output interactions with the environment. We found and analyzed two dif-
ferent taxonomies of unwanted behaviors: Input Access Inconsistencies
and Ouput Inconsistencies. For each taxonomy, we analyzed its causes
from the machine-code level, and we provided guidelines on how we can
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remove such unwanted behaviors. Moreover, we also provided a set of tech-
niques for verifying and analyzing their presence. In the second part of this
chapter, we analyzed the possibility of exploiting Memory Inconsistencies
as Intermittence-Based Inputs for our programs, and we discussed the
possibilities that this new kind of input opens. We examined real-case sce-
nario examples, and we provided a technique for analyzing the correctness
and effects of intermittence-based inputs.

In Chapter 6 and Chapter 7 we presented ScEpTIC, an intermittence-
oriented debugging tool that we developed. We implemented in it the tech-
niques we provided in the first part of this thesis. Inside these chapters, we
described the main architectural components of ScEpTIC, and we described
how we can use it for analyzing the correctness of a program in presence
of an intermittent power source. ScEpTIC was able to analyze in practical
time the effects that all the possible combinations of intermittent executions
produce.

We evaluated the performance of the different techniques we imple-
mented in ScEpTIC, comparing them with analysis approaches that anyone
can think of. ScEpTIC demonstrated the effectiveness of our techniques in
all the different analysis. For example, the analysis of Memory Inconsis-
tencies had a speedup of more than six order of magnitude with respect to
a naive brute-force approach. Furthermore, we also evaluated the perfor-
mance of our techniques with a lighter version of them, that did not include
some analysis elements. We demonstrated that all the components of our
techniques are essential for reducing the time that our analysis requires.

We developed ScEpTIC with extensibility in mind, and we would like to
extend the analysis it supports and increase its performance. In particular,
we would like to:

• Implement the analysis that only finds the presence of inconsistencies.

In ScEpTIC we did not implement such analysis, since our purpose was
to also analyze how inconsistencies affects the program behavior.

• Parallelize the analysis that ScEpTIC performs for identifying the ef-
fects of inconsistencies.

Our techniques execute one test for each checkpoint that we must ana-
lyze. Such tests are independent of each other, and thus we can exploit
parallelism for improving performance and reducing the analysis exe-
cution time.

• Make ScEpTIC able to perform an input-independent analysis.

Currently, ScEpTIC requires us to provide the test inputs. For example,
if the program senses the temperature from the environment, we must
configure the value of this parameter for running the analysis. More-
over, if the program changes its behavior depending on such input, we
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must run one test for each value that produces a different execution
flow. By making ScEpTIC input-independent, we would automatize
the entire analysis.

• Implement in ScEpTIC an active mode of debugging, that permit us
to pause the execution for analyzing the runtime state or changing it.

In conclusion, the literature overlooked most of the inconsistency tax-
onomies that we analyzed in this thesis. It also did not provide any technique
able to analyze in practical time all the possible effects that intermittent
executions may cause over the behavior of a program. The analysis and
techniques we developed in this thesis aims to increase the reliability of
intermittent programs. We provided both a detailed study of the effects
that intermittence causes over the device behavior, and a set of techniques
enabling the analysis of intermittent executions in practical time. The con-
tributions we made in this thesis enable the programmer understanding,
analyzing, and avoiding the problems that frequent shutdowns may cause
over the device behavior.
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